8007294: ReduceFieldZeroing doesn't check for dependent load and can lead to incorrect execution
Summary: InitializeNode::can_capture_store() must check that the captured store doesn't overwrite a memory location that is loaded before the store.
Reviewed-by: kvn
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "libadt/vectset.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/regmask.hpp"
#include "opto/type.hpp"
#include "utilities/copy.hpp"
class RegMask;
// #include "phase.hpp"
class PhaseTransform;
class PhaseGVN;
// Arena we are currently building Nodes in
const uint Node::NotAMachineReg = 0xffff0000;
#ifndef PRODUCT
extern int nodes_created;
#endif
#ifdef ASSERT
//-------------------------- construct_node------------------------------------
// Set a breakpoint here to identify where a particular node index is built.
void Node::verify_construction() {
_debug_orig = NULL;
int old_debug_idx = Compile::debug_idx();
int new_debug_idx = old_debug_idx+1;
if (new_debug_idx > 0) {
// Arrange that the lowest five decimal digits of _debug_idx
// will repeat those of _idx. In case this is somehow pathological,
// we continue to assign negative numbers (!) consecutively.
const int mod = 100000;
int bump = (int)(_idx - new_debug_idx) % mod;
if (bump < 0) bump += mod;
assert(bump >= 0 && bump < mod, "");
new_debug_idx += bump;
}
Compile::set_debug_idx(new_debug_idx);
set_debug_idx( new_debug_idx );
assert(Compile::current()->unique() < (UINT_MAX - 1), "Node limit exceeded UINT_MAX");
if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
BREAKPOINT;
}
#if OPTO_DU_ITERATOR_ASSERT
_last_del = NULL;
_del_tick = 0;
#endif
_hash_lock = 0;
}
// #ifdef ASSERT ...
#if OPTO_DU_ITERATOR_ASSERT
void DUIterator_Common::sample(const Node* node) {
_vdui = VerifyDUIterators;
_node = node;
_outcnt = node->_outcnt;
_del_tick = node->_del_tick;
_last = NULL;
}
void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
assert(_node == node, "consistent iterator source");
assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
}
void DUIterator_Common::verify_resync() {
// Ensure that the loop body has just deleted the last guy produced.
const Node* node = _node;
// Ensure that at least one copy of the last-seen edge was deleted.
// Note: It is OK to delete multiple copies of the last-seen edge.
// Unfortunately, we have no way to verify that all the deletions delete
// that same edge. On this point we must use the Honor System.
assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
assert(node->_last_del == _last, "must have deleted the edge just produced");
// We liked this deletion, so accept the resulting outcnt and tick.
_outcnt = node->_outcnt;
_del_tick = node->_del_tick;
}
void DUIterator_Common::reset(const DUIterator_Common& that) {
if (this == &that) return; // ignore assignment to self
if (!_vdui) {
// We need to initialize everything, overwriting garbage values.
_last = that._last;
_vdui = that._vdui;
}
// Note: It is legal (though odd) for an iterator over some node x
// to be reassigned to iterate over another node y. Some doubly-nested
// progress loops depend on being able to do this.
const Node* node = that._node;
// Re-initialize everything, except _last.
_node = node;
_outcnt = node->_outcnt;
_del_tick = node->_del_tick;
}
void DUIterator::sample(const Node* node) {
DUIterator_Common::sample(node); // Initialize the assertion data.
_refresh_tick = 0; // No refreshes have happened, as yet.
}
void DUIterator::verify(const Node* node, bool at_end_ok) {
DUIterator_Common::verify(node, at_end_ok);
assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range");
}
void DUIterator::verify_increment() {
if (_refresh_tick & 1) {
// We have refreshed the index during this loop.
// Fix up _idx to meet asserts.
if (_idx > _outcnt) _idx = _outcnt;
}
verify(_node, true);
}
void DUIterator::verify_resync() {
// Note: We do not assert on _outcnt, because insertions are OK here.
DUIterator_Common::verify_resync();
// Make sure we are still in sync, possibly with no more out-edges:
verify(_node, true);
}
void DUIterator::reset(const DUIterator& that) {
if (this == &that) return; // self assignment is always a no-op
assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
assert(that._idx == 0, "assign only the result of Node::outs()");
assert(_idx == that._idx, "already assigned _idx");
if (!_vdui) {
// We need to initialize everything, overwriting garbage values.
sample(that._node);
} else {
DUIterator_Common::reset(that);
if (_refresh_tick & 1) {
_refresh_tick++; // Clear the "was refreshed" flag.
}
assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
}
}
void DUIterator::refresh() {
DUIterator_Common::sample(_node); // Re-fetch assertion data.
_refresh_tick |= 1; // Set the "was refreshed" flag.
}
void DUIterator::verify_finish() {
// If the loop has killed the node, do not require it to re-run.
if (_node->_outcnt == 0) _refresh_tick &= ~1;
// If this assert triggers, it means that a loop used refresh_out_pos
// to re-synch an iteration index, but the loop did not correctly
// re-run itself, using a "while (progress)" construct.
// This iterator enforces the rule that you must keep trying the loop
// until it "runs clean" without any need for refreshing.
assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
}
void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
DUIterator_Common::verify(node, at_end_ok);
Node** out = node->_out;
uint cnt = node->_outcnt;
assert(cnt == _outcnt, "no insertions allowed");
assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
// This last check is carefully designed to work for NO_OUT_ARRAY.
}
void DUIterator_Fast::verify_limit() {
const Node* node = _node;
verify(node, true);
assert(_outp == node->_out + node->_outcnt, "limit still correct");
}
void DUIterator_Fast::verify_resync() {
const Node* node = _node;
if (_outp == node->_out + _outcnt) {
// Note that the limit imax, not the pointer i, gets updated with the
// exact count of deletions. (For the pointer it's always "--i".)
assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
// This is a limit pointer, with a name like "imax".
// Fudge the _last field so that the common assert will be happy.
_last = (Node*) node->_last_del;
DUIterator_Common::verify_resync();
} else {
assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
// A normal internal pointer.
DUIterator_Common::verify_resync();
// Make sure we are still in sync, possibly with no more out-edges:
verify(node, true);
}
}
void DUIterator_Fast::verify_relimit(uint n) {
const Node* node = _node;
assert((int)n > 0, "use imax -= n only with a positive count");
// This must be a limit pointer, with a name like "imax".
assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
// The reported number of deletions must match what the node saw.
assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
// Fudge the _last field so that the common assert will be happy.
_last = (Node*) node->_last_del;
DUIterator_Common::verify_resync();
}
void DUIterator_Fast::reset(const DUIterator_Fast& that) {
assert(_outp == that._outp, "already assigned _outp");
DUIterator_Common::reset(that);
}
void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
// at_end_ok means the _outp is allowed to underflow by 1
_outp += at_end_ok;
DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc.
_outp -= at_end_ok;
assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
}
void DUIterator_Last::verify_limit() {
// Do not require the limit address to be resynched.
//verify(node, true);
assert(_outp == _node->_out, "limit still correct");
}
void DUIterator_Last::verify_step(uint num_edges) {
assert((int)num_edges > 0, "need non-zero edge count for loop progress");
_outcnt -= num_edges;
_del_tick += num_edges;
// Make sure we are still in sync, possibly with no more out-edges:
const Node* node = _node;
verify(node, true);
assert(node->_last_del == _last, "must have deleted the edge just produced");
}
#endif //OPTO_DU_ITERATOR_ASSERT
#endif //ASSERT
// This constant used to initialize _out may be any non-null value.
// The value NULL is reserved for the top node only.
#define NO_OUT_ARRAY ((Node**)-1)
// This funny expression handshakes with Node::operator new
// to pull Compile::current out of the new node's _out field,
// and then calls a subroutine which manages most field
// initializations. The only one which is tricky is the
// _idx field, which is const, and so must be initialized
// by a return value, not an assignment.
//
// (Aren't you thankful that Java finals don't require so many tricks?)
#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
// Out-of-line code from node constructors.
// Executed only when extra debug info. is being passed around.
static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
C->set_node_notes_at(idx, nn);
}
// Shared initialization code.
inline int Node::Init(int req, Compile* C) {
assert(Compile::current() == C, "must use operator new(Compile*)");
int idx = C->next_unique();
// Allocate memory for the necessary number of edges.
if (req > 0) {
// Allocate space for _in array to have double alignment.
_in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
#ifdef ASSERT
_in[req-1] = this; // magic cookie for assertion check
#endif
}
// If there are default notes floating around, capture them:
Node_Notes* nn = C->default_node_notes();
if (nn != NULL) init_node_notes(C, idx, nn);
// Note: At this point, C is dead,
// and we begin to initialize the new Node.
_cnt = _max = req;
_outcnt = _outmax = 0;
_class_id = Class_Node;
_flags = 0;
_out = NO_OUT_ARRAY;
return idx;
}
//------------------------------Node-------------------------------------------
// Create a Node, with a given number of required edges.
Node::Node(uint req)
: _idx(IDX_INIT(req))
{
assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
if (req == 0) {
assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
_in = NULL;
} else {
assert( _in[req-1] == this, "Must pass arg count to 'new'" );
Node** to = _in;
for(uint i = 0; i < req; i++) {
to[i] = NULL;
}
}
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0)
: _idx(IDX_INIT(1))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[0] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1)
: _idx(IDX_INIT(2))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[1] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
assert( is_not_dead(n1), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
_in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2)
: _idx(IDX_INIT(3))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[2] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
assert( is_not_dead(n1), "can not use dead node");
assert( is_not_dead(n2), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
_in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
_in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
: _idx(IDX_INIT(4))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[3] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
assert( is_not_dead(n1), "can not use dead node");
assert( is_not_dead(n2), "can not use dead node");
assert( is_not_dead(n3), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
_in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
_in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
_in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
: _idx(IDX_INIT(5))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[4] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
assert( is_not_dead(n1), "can not use dead node");
assert( is_not_dead(n2), "can not use dead node");
assert( is_not_dead(n3), "can not use dead node");
assert( is_not_dead(n4), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
_in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
_in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
_in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
_in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
Node *n4, Node *n5)
: _idx(IDX_INIT(6))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[5] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
assert( is_not_dead(n1), "can not use dead node");
assert( is_not_dead(n2), "can not use dead node");
assert( is_not_dead(n3), "can not use dead node");
assert( is_not_dead(n4), "can not use dead node");
assert( is_not_dead(n5), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
_in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
_in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
_in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
_in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
_in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
}
//------------------------------Node-------------------------------------------
Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
Node *n4, Node *n5, Node *n6)
: _idx(IDX_INIT(7))
{
debug_only( verify_construction() );
NOT_PRODUCT(nodes_created++);
// Assert we allocated space for input array already
assert( _in[6] == this, "Must pass arg count to 'new'" );
assert( is_not_dead(n0), "can not use dead node");
assert( is_not_dead(n1), "can not use dead node");
assert( is_not_dead(n2), "can not use dead node");
assert( is_not_dead(n3), "can not use dead node");
assert( is_not_dead(n4), "can not use dead node");
assert( is_not_dead(n5), "can not use dead node");
assert( is_not_dead(n6), "can not use dead node");
_in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
_in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
_in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
_in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
_in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
_in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
_in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
}
//------------------------------clone------------------------------------------
// Clone a Node.
Node *Node::clone() const {
Compile *compile = Compile::current();
uint s = size_of(); // Size of inherited Node
Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
// Set the new input pointer array
n->_in = (Node**)(((char*)n)+s);
// Cannot share the old output pointer array, so kill it
n->_out = NO_OUT_ARRAY;
// And reset the counters to 0
n->_outcnt = 0;
n->_outmax = 0;
// Unlock this guy, since he is not in any hash table.
debug_only(n->_hash_lock = 0);
// Walk the old node's input list to duplicate its edges
uint i;
for( i = 0; i < len(); i++ ) {
Node *x = in(i);
n->_in[i] = x;
if (x != NULL) x->add_out(n);
}
if (is_macro())
compile->add_macro_node(n);
if (is_expensive())
compile->add_expensive_node(n);
n->set_idx(compile->next_unique()); // Get new unique index as well
debug_only( n->verify_construction() );
NOT_PRODUCT(nodes_created++);
// Do not patch over the debug_idx of a clone, because it makes it
// impossible to break on the clone's moment of creation.
//debug_only( n->set_debug_idx( debug_idx() ) );
compile->copy_node_notes_to(n, (Node*) this);
// MachNode clone
uint nopnds;
if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
MachNode *mach = n->as_Mach();
MachNode *mthis = this->as_Mach();
// Get address of _opnd_array.
// It should be the same offset since it is the clone of this node.
MachOper **from = mthis->_opnds;
MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
pointer_delta((const void*)from,
(const void*)(&mthis->_opnds), 1));
mach->_opnds = to;
for ( uint i = 0; i < nopnds; ++i ) {
to[i] = from[i]->clone(compile);
}
}
// cloning CallNode may need to clone JVMState
if (n->is_Call()) {
CallNode *call = n->as_Call();
call->clone_jvms();
}
return n; // Return the clone
}
//---------------------------setup_is_top--------------------------------------
// Call this when changing the top node, to reassert the invariants
// required by Node::is_top. See Compile::set_cached_top_node.
void Node::setup_is_top() {
if (this == (Node*)Compile::current()->top()) {
// This node has just become top. Kill its out array.
_outcnt = _outmax = 0;
_out = NULL; // marker value for top
assert(is_top(), "must be top");
} else {
if (_out == NULL) _out = NO_OUT_ARRAY;
assert(!is_top(), "must not be top");
}
}
//------------------------------~Node------------------------------------------
// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
extern int reclaim_idx ;
extern int reclaim_in ;
extern int reclaim_node;
void Node::destruct() {
// Eagerly reclaim unique Node numberings
Compile* compile = Compile::current();
if ((uint)_idx+1 == compile->unique()) {
compile->set_unique(compile->unique()-1);
#ifdef ASSERT
reclaim_idx++;
#endif
}
// Clear debug info:
Node_Notes* nn = compile->node_notes_at(_idx);
if (nn != NULL) nn->clear();
// Walk the input array, freeing the corresponding output edges
_cnt = _max; // forget req/prec distinction
uint i;
for( i = 0; i < _max; i++ ) {
set_req(i, NULL);
//assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
}
assert(outcnt() == 0, "deleting a node must not leave a dangling use");
// See if the input array was allocated just prior to the object
int edge_size = _max*sizeof(void*);
int out_edge_size = _outmax*sizeof(void*);
char *edge_end = ((char*)_in) + edge_size;
char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
char *out_edge_end = out_array + out_edge_size;
int node_size = size_of();
// Free the output edge array
if (out_edge_size > 0) {
#ifdef ASSERT
if( out_edge_end == compile->node_arena()->hwm() )
reclaim_in += out_edge_size; // count reclaimed out edges with in edges
#endif
compile->node_arena()->Afree(out_array, out_edge_size);
}
// Free the input edge array and the node itself
if( edge_end == (char*)this ) {
#ifdef ASSERT
if( edge_end+node_size == compile->node_arena()->hwm() ) {
reclaim_in += edge_size;
reclaim_node+= node_size;
}
#else
// It was; free the input array and object all in one hit
compile->node_arena()->Afree(_in,edge_size+node_size);
#endif
} else {
// Free just the input array
#ifdef ASSERT
if( edge_end == compile->node_arena()->hwm() )
reclaim_in += edge_size;
#endif
compile->node_arena()->Afree(_in,edge_size);
// Free just the object
#ifdef ASSERT
if( ((char*)this) + node_size == compile->node_arena()->hwm() )
reclaim_node+= node_size;
#else
compile->node_arena()->Afree(this,node_size);
#endif
}
if (is_macro()) {
compile->remove_macro_node(this);
}
if (is_expensive()) {
compile->remove_expensive_node(this);
}
#ifdef ASSERT
// We will not actually delete the storage, but we'll make the node unusable.
*(address*)this = badAddress; // smash the C++ vtbl, probably
_in = _out = (Node**) badAddress;
_max = _cnt = _outmax = _outcnt = 0;
#endif
}
//------------------------------grow-------------------------------------------
// Grow the input array, making space for more edges
void Node::grow( uint len ) {
Arena* arena = Compile::current()->node_arena();
uint new_max = _max;
if( new_max == 0 ) {
_max = 4;
_in = (Node**)arena->Amalloc(4*sizeof(Node*));
Node** to = _in;
to[0] = NULL;
to[1] = NULL;
to[2] = NULL;
to[3] = NULL;
return;
}
while( new_max <= len ) new_max <<= 1; // Find next power-of-2
// Trimming to limit allows a uint8 to handle up to 255 edges.
// Previously I was using only powers-of-2 which peaked at 128 edges.
//if( new_max >= limit ) new_max = limit-1;
_in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
_max = new_max; // Record new max length
// This assertion makes sure that Node::_max is wide enough to
// represent the numerical value of new_max.
assert(_max == new_max && _max > len, "int width of _max is too small");
}
//-----------------------------out_grow----------------------------------------
// Grow the input array, making space for more edges
void Node::out_grow( uint len ) {
assert(!is_top(), "cannot grow a top node's out array");
Arena* arena = Compile::current()->node_arena();
uint new_max = _outmax;
if( new_max == 0 ) {
_outmax = 4;
_out = (Node **)arena->Amalloc(4*sizeof(Node*));
return;
}
while( new_max <= len ) new_max <<= 1; // Find next power-of-2
// Trimming to limit allows a uint8 to handle up to 255 edges.
// Previously I was using only powers-of-2 which peaked at 128 edges.
//if( new_max >= limit ) new_max = limit-1;
assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
_out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
//Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
_outmax = new_max; // Record new max length
// This assertion makes sure that Node::_max is wide enough to
// represent the numerical value of new_max.
assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
}
#ifdef ASSERT
//------------------------------is_dead----------------------------------------
bool Node::is_dead() const {
// Mach and pinch point nodes may look like dead.
if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
return false;
for( uint i = 0; i < _max; i++ )
if( _in[i] != NULL )
return false;
dump();
return true;
}
#endif
//------------------------------is_unreachable---------------------------------
bool Node::is_unreachable(PhaseIterGVN &igvn) const {
assert(!is_Mach(), "doesn't work with MachNodes");
return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
}
//------------------------------add_req----------------------------------------
// Add a new required input at the end
void Node::add_req( Node *n ) {
assert( is_not_dead(n), "can not use dead node");
// Look to see if I can move precedence down one without reallocating
if( (_cnt >= _max) || (in(_max-1) != NULL) )
grow( _max+1 );
// Find a precedence edge to move
if( in(_cnt) != NULL ) { // Next precedence edge is busy?
uint i;
for( i=_cnt; i<_max; i++ )
if( in(i) == NULL ) // Find the NULL at end of prec edge list
break; // There must be one, since we grew the array
_in[i] = in(_cnt); // Move prec over, making space for req edge
}
_in[_cnt++] = n; // Stuff over old prec edge
if (n != NULL) n->add_out((Node *)this);
}
//---------------------------add_req_batch-------------------------------------
// Add a new required input at the end
void Node::add_req_batch( Node *n, uint m ) {
assert( is_not_dead(n), "can not use dead node");
// check various edge cases
if ((int)m <= 1) {
assert((int)m >= 0, "oob");
if (m != 0) add_req(n);
return;
}
// Look to see if I can move precedence down one without reallocating
if( (_cnt+m) > _max || _in[_max-m] )
grow( _max+m );
// Find a precedence edge to move
if( _in[_cnt] != NULL ) { // Next precedence edge is busy?
uint i;
for( i=_cnt; i<_max; i++ )
if( _in[i] == NULL ) // Find the NULL at end of prec edge list
break; // There must be one, since we grew the array
// Slide all the precs over by m positions (assume #prec << m).
Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
}
// Stuff over the old prec edges
for(uint i=0; i<m; i++ ) {
_in[_cnt++] = n;
}
// Insert multiple out edges on the node.
if (n != NULL && !n->is_top()) {
for(uint i=0; i<m; i++ ) {
n->add_out((Node *)this);
}
}
}
//------------------------------del_req----------------------------------------
// Delete the required edge and compact the edge array
void Node::del_req( uint idx ) {
assert( idx < _cnt, "oob");
assert( !VerifyHashTableKeys || _hash_lock == 0,
"remove node from hash table before modifying it");
// First remove corresponding def-use edge
Node *n = in(idx);
if (n != NULL) n->del_out((Node *)this);
_in[idx] = in(--_cnt); // Compact the array
_in[_cnt] = NULL; // NULL out emptied slot
}
//------------------------------ins_req----------------------------------------
// Insert a new required input at the end
void Node::ins_req( uint idx, Node *n ) {
assert( is_not_dead(n), "can not use dead node");
add_req(NULL); // Make space
assert( idx < _max, "Must have allocated enough space");
// Slide over
if(_cnt-idx-1 > 0) {
Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
}
_in[idx] = n; // Stuff over old required edge
if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
}
//-----------------------------find_edge---------------------------------------
int Node::find_edge(Node* n) {
for (uint i = 0; i < len(); i++) {
if (_in[i] == n) return i;
}
return -1;
}
//----------------------------replace_edge-------------------------------------
int Node::replace_edge(Node* old, Node* neww) {
if (old == neww) return 0; // nothing to do
uint nrep = 0;
for (uint i = 0; i < len(); i++) {
if (in(i) == old) {
if (i < req())
set_req(i, neww);
else
set_prec(i, neww);
nrep++;
}
}
return nrep;
}
//-------------------------disconnect_inputs-----------------------------------
// NULL out all inputs to eliminate incoming Def-Use edges.
// Return the number of edges between 'n' and 'this'
int Node::disconnect_inputs(Node *n, Compile* C) {
int edges_to_n = 0;
uint cnt = req();
for( uint i = 0; i < cnt; ++i ) {
if( in(i) == 0 ) continue;
if( in(i) == n ) ++edges_to_n;
set_req(i, NULL);
}
// Remove precedence edges if any exist
// Note: Safepoints may have precedence edges, even during parsing
if( (req() != len()) && (in(req()) != NULL) ) {
uint max = len();
for( uint i = 0; i < max; ++i ) {
if( in(i) == 0 ) continue;
if( in(i) == n ) ++edges_to_n;
set_prec(i, NULL);
}
}
// Node::destruct requires all out edges be deleted first
// debug_only(destruct();) // no reuse benefit expected
if (edges_to_n == 0) {
C->record_dead_node(_idx);
}
return edges_to_n;
}
//-----------------------------uncast---------------------------------------
// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
// Strip away casting. (It is depth-limited.)
Node* Node::uncast() const {
// Should be inline:
//return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
if (is_ConstraintCast() || is_CheckCastPP())
return uncast_helper(this);
else
return (Node*) this;
}
//---------------------------uncast_helper-------------------------------------
Node* Node::uncast_helper(const Node* p) {
#ifdef ASSERT
uint depth_count = 0;
const Node* orig_p = p;
#endif
while (true) {
#ifdef ASSERT
if (depth_count >= K) {
orig_p->dump(4);
if (p != orig_p)
p->dump(1);
}
assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
#endif
if (p == NULL || p->req() != 2) {
break;
} else if (p->is_ConstraintCast()) {
p = p->in(1);
} else if (p->is_CheckCastPP()) {
p = p->in(1);
} else {
break;
}
}
return (Node*) p;
}
//------------------------------add_prec---------------------------------------
// Add a new precedence input. Precedence inputs are unordered, with
// duplicates removed and NULLs packed down at the end.
void Node::add_prec( Node *n ) {
assert( is_not_dead(n), "can not use dead node");
// Check for NULL at end
if( _cnt >= _max || in(_max-1) )
grow( _max+1 );
// Find a precedence edge to move
uint i = _cnt;
while( in(i) != NULL ) i++;
_in[i] = n; // Stuff prec edge over NULL
if ( n != NULL) n->add_out((Node *)this); // Add mirror edge
}
//------------------------------rm_prec----------------------------------------
// Remove a precedence input. Precedence inputs are unordered, with
// duplicates removed and NULLs packed down at the end.
void Node::rm_prec( uint j ) {
// Find end of precedence list to pack NULLs
uint i;
for( i=j; i<_max; i++ )
if( !_in[i] ) // Find the NULL at end of prec edge list
break;
if (_in[j] != NULL) _in[j]->del_out((Node *)this);
_in[j] = _in[--i]; // Move last element over removed guy
_in[i] = NULL; // NULL out last element
}
//------------------------------size_of----------------------------------------
uint Node::size_of() const { return sizeof(*this); }
//------------------------------ideal_reg--------------------------------------
uint Node::ideal_reg() const { return 0; }
//------------------------------jvms-------------------------------------------
JVMState* Node::jvms() const { return NULL; }
#ifdef ASSERT
//------------------------------jvms-------------------------------------------
bool Node::verify_jvms(const JVMState* using_jvms) const {
for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
if (jvms == using_jvms) return true;
}
return false;
}
//------------------------------init_NodeProperty------------------------------
void Node::init_NodeProperty() {
assert(_max_classes <= max_jushort, "too many NodeProperty classes");
assert(_max_flags <= max_jushort, "too many NodeProperty flags");
}
#endif
//------------------------------format-----------------------------------------
// Print as assembly
void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
//------------------------------emit-------------------------------------------
// Emit bytes starting at parameter 'ptr'.
void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
//------------------------------size-------------------------------------------
// Size of instruction in bytes
uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
//------------------------------CFG Construction-------------------------------
// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
// Goto and Return.
const Node *Node::is_block_proj() const { return 0; }
// Minimum guaranteed type
const Type *Node::bottom_type() const { return Type::BOTTOM; }
//------------------------------raise_bottom_type------------------------------
// Get the worst-case Type output for this Node.
void Node::raise_bottom_type(const Type* new_type) {
if (is_Type()) {
TypeNode *n = this->as_Type();
if (VerifyAliases) {
assert(new_type->higher_equal(n->type()), "new type must refine old type");
}
n->set_type(new_type);
} else if (is_Load()) {
LoadNode *n = this->as_Load();
if (VerifyAliases) {
assert(new_type->higher_equal(n->type()), "new type must refine old type");
}
n->set_type(new_type);
}
}
//------------------------------Identity---------------------------------------
// Return a node that the given node is equivalent to.
Node *Node::Identity( PhaseTransform * ) {
return this; // Default to no identities
}
//------------------------------Value------------------------------------------
// Compute a new Type for a node using the Type of the inputs.
const Type *Node::Value( PhaseTransform * ) const {
return bottom_type(); // Default to worst-case Type
}
//------------------------------Ideal------------------------------------------
//
// 'Idealize' the graph rooted at this Node.
//
// In order to be efficient and flexible there are some subtle invariants
// these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks
// these invariants, although its too slow to have on by default. If you are
// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
//
// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
// pointer. If ANY change is made, it must return the root of the reshaped
// graph - even if the root is the same Node. Example: swapping the inputs
// to an AddINode gives the same answer and same root, but you still have to
// return the 'this' pointer instead of NULL.
//
// You cannot return an OLD Node, except for the 'this' pointer. Use the
// Identity call to return an old Node; basically if Identity can find
// another Node have the Ideal call make no change and return NULL.
// Example: AddINode::Ideal must check for add of zero; in this case it
// returns NULL instead of doing any graph reshaping.
//
// You cannot modify any old Nodes except for the 'this' pointer. Due to
// sharing there may be other users of the old Nodes relying on their current
// semantics. Modifying them will break the other users.
// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
// "X+3" unchanged in case it is shared.
//
// If you modify the 'this' pointer's inputs, you should use
// 'set_req'. If you are making a new Node (either as the new root or
// some new internal piece) you may use 'init_req' to set the initial
// value. You can make a new Node with either 'new' or 'clone'. In
// either case, def-use info is correctly maintained.
//
// Example: reshape "(X+3)+4" into "X+7":
// set_req(1, in(1)->in(1));
// set_req(2, phase->intcon(7));
// return this;
// Example: reshape "X*4" into "X<<2"
// return new (C) LShiftINode(in(1), phase->intcon(2));
//
// You must call 'phase->transform(X)' on any new Nodes X you make, except
// for the returned root node. Example: reshape "X*31" with "(X<<5)-X".
// Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
// return new (C) AddINode(shift, in(1));
//
// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
// These forms are faster than 'phase->transform(new (C) ConNode())' and Do
// The Right Thing with def-use info.
//
// You cannot bury the 'this' Node inside of a graph reshape. If the reshaped
// graph uses the 'this' Node it must be the root. If you want a Node with
// the same Opcode as the 'this' pointer use 'clone'.
//
Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
return NULL; // Default to being Ideal already
}
// Some nodes have specific Ideal subgraph transformations only if they are
// unique users of specific nodes. Such nodes should be put on IGVN worklist
// for the transformations to happen.
bool Node::has_special_unique_user() const {
assert(outcnt() == 1, "match only for unique out");
Node* n = unique_out();
int op = Opcode();
if( this->is_Store() ) {
// Condition for back-to-back stores folding.
return n->Opcode() == op && n->in(MemNode::Memory) == this;
} else if( op == Op_AddL ) {
// Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
return n->Opcode() == Op_ConvL2I && n->in(1) == this;
} else if( op == Op_SubI || op == Op_SubL ) {
// Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
return n->Opcode() == op && n->in(2) == this;
}
return false;
};
//--------------------------find_exact_control---------------------------------
// Skip Proj and CatchProj nodes chains. Check for Null and Top.
Node* Node::find_exact_control(Node* ctrl) {
if (ctrl == NULL && this->is_Region())
ctrl = this->as_Region()->is_copy();
if (ctrl != NULL && ctrl->is_CatchProj()) {
if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
ctrl = ctrl->in(0);
if (ctrl != NULL && !ctrl->is_top())
ctrl = ctrl->in(0);
}
if (ctrl != NULL && ctrl->is_Proj())
ctrl = ctrl->in(0);
return ctrl;
}
//--------------------------dominates------------------------------------------
// Helper function for MemNode::all_controls_dominate().
// Check if 'this' control node dominates or equal to 'sub' control node.
// We already know that if any path back to Root or Start reaches 'this',
// then all paths so, so this is a simple search for one example,
// not an exhaustive search for a counterexample.
bool Node::dominates(Node* sub, Node_List &nlist) {
assert(this->is_CFG(), "expecting control");
assert(sub != NULL && sub->is_CFG(), "expecting control");
// detect dead cycle without regions
int iterations_without_region_limit = DominatorSearchLimit;
Node* orig_sub = sub;
Node* dom = this;
bool met_dom = false;
nlist.clear();
// Walk 'sub' backward up the chain to 'dom', watching for regions.
// After seeing 'dom', continue up to Root or Start.
// If we hit a region (backward split point), it may be a loop head.
// Keep going through one of the region's inputs. If we reach the
// same region again, go through a different input. Eventually we
// will either exit through the loop head, or give up.
// (If we get confused, break out and return a conservative 'false'.)
while (sub != NULL) {
if (sub->is_top()) break; // Conservative answer for dead code.
if (sub == dom) {
if (nlist.size() == 0) {
// No Region nodes except loops were visited before and the EntryControl
// path was taken for loops: it did not walk in a cycle.
return true;
} else if (met_dom) {
break; // already met before: walk in a cycle
} else {
// Region nodes were visited. Continue walk up to Start or Root
// to make sure that it did not walk in a cycle.
met_dom = true; // first time meet
iterations_without_region_limit = DominatorSearchLimit; // Reset
}
}
if (sub->is_Start() || sub->is_Root()) {
// Success if we met 'dom' along a path to Start or Root.
// We assume there are no alternative paths that avoid 'dom'.
// (This assumption is up to the caller to ensure!)
return met_dom;
}
Node* up = sub->in(0);
// Normalize simple pass-through regions and projections:
up = sub->find_exact_control(up);
// If sub == up, we found a self-loop. Try to push past it.
if (sub == up && sub->is_Loop()) {
// Take loop entry path on the way up to 'dom'.
up = sub->in(1); // in(LoopNode::EntryControl);
} else if (sub == up && sub->is_Region() && sub->req() != 3) {
// Always take in(1) path on the way up to 'dom' for clone regions
// (with only one input) or regions which merge > 2 paths
// (usually used to merge fast/slow paths).
up = sub->in(1);
} else if (sub == up && sub->is_Region()) {
// Try both paths for Regions with 2 input paths (it may be a loop head).
// It could give conservative 'false' answer without information
// which region's input is the entry path.
iterations_without_region_limit = DominatorSearchLimit; // Reset
bool region_was_visited_before = false;
// Was this Region node visited before?
// If so, we have reached it because we accidentally took a
// loop-back edge from 'sub' back into the body of the loop,
// and worked our way up again to the loop header 'sub'.
// So, take the first unexplored path on the way up to 'dom'.
for (int j = nlist.size() - 1; j >= 0; j--) {
intptr_t ni = (intptr_t)nlist.at(j);
Node* visited = (Node*)(ni & ~1);
bool visited_twice_already = ((ni & 1) != 0);
if (visited == sub) {
if (visited_twice_already) {
// Visited 2 paths, but still stuck in loop body. Give up.
return false;
}
// The Region node was visited before only once.
// (We will repush with the low bit set, below.)
nlist.remove(j);
// We will find a new edge and re-insert.
region_was_visited_before = true;
break;
}
}
// Find an incoming edge which has not been seen yet; walk through it.
assert(up == sub, "");
uint skip = region_was_visited_before ? 1 : 0;
for (uint i = 1; i < sub->req(); i++) {
Node* in = sub->in(i);
if (in != NULL && !in->is_top() && in != sub) {
if (skip == 0) {
up = in;
break;
}
--skip; // skip this nontrivial input
}
}
// Set 0 bit to indicate that both paths were taken.
nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
}
if (up == sub) {
break; // some kind of tight cycle
}
if (up == orig_sub && met_dom) {
// returned back after visiting 'dom'
break; // some kind of cycle
}
if (--iterations_without_region_limit < 0) {
break; // dead cycle
}
sub = up;
}
// Did not meet Root or Start node in pred. chain.
// Conservative answer for dead code.
return false;
}
//------------------------------remove_dead_region-----------------------------
// This control node is dead. Follow the subgraph below it making everything
// using it dead as well. This will happen normally via the usual IterGVN
// worklist but this call is more efficient. Do not update use-def info
// inside the dead region, just at the borders.
static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
// Con's are a popular node to re-hit in the hash table again.
if( dead->is_Con() ) return;
// Can't put ResourceMark here since igvn->_worklist uses the same arena
// for verify pass with +VerifyOpto and we add/remove elements in it here.
Node_List nstack(Thread::current()->resource_area());
Node *top = igvn->C->top();
nstack.push(dead);
while (nstack.size() > 0) {
dead = nstack.pop();
if (dead->outcnt() > 0) {
// Keep dead node on stack until all uses are processed.
nstack.push(dead);
// For all Users of the Dead... ;-)
for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
Node* use = dead->last_out(k);
igvn->hash_delete(use); // Yank from hash table prior to mod
if (use->in(0) == dead) { // Found another dead node
assert (!use->is_Con(), "Control for Con node should be Root node.");
use->set_req(0, top); // Cut dead edge to prevent processing
nstack.push(use); // the dead node again.
} else { // Else found a not-dead user
for (uint j = 1; j < use->req(); j++) {
if (use->in(j) == dead) { // Turn all dead inputs into TOP
use->set_req(j, top);
}
}
igvn->_worklist.push(use);
}
// Refresh the iterator, since any number of kills might have happened.
k = dead->last_outs(kmin);
}
} else { // (dead->outcnt() == 0)
// Done with outputs.
igvn->hash_delete(dead);
igvn->_worklist.remove(dead);
igvn->set_type(dead, Type::TOP);
if (dead->is_macro()) {
igvn->C->remove_macro_node(dead);
}
if (dead->is_expensive()) {
igvn->C->remove_expensive_node(dead);
}
igvn->C->record_dead_node(dead->_idx);
// Kill all inputs to the dead guy
for (uint i=0; i < dead->req(); i++) {
Node *n = dead->in(i); // Get input to dead guy
if (n != NULL && !n->is_top()) { // Input is valid?
dead->set_req(i, top); // Smash input away
if (n->outcnt() == 0) { // Input also goes dead?
if (!n->is_Con())
nstack.push(n); // Clear it out as well
} else if (n->outcnt() == 1 &&
n->has_special_unique_user()) {
igvn->add_users_to_worklist( n );
} else if (n->outcnt() <= 2 && n->is_Store()) {
// Push store's uses on worklist to enable folding optimization for
// store/store and store/load to the same address.
// The restriction (outcnt() <= 2) is the same as in set_req_X()
// and remove_globally_dead_node().
igvn->add_users_to_worklist( n );
}
}
}
} // (dead->outcnt() == 0)
} // while (nstack.size() > 0) for outputs
return;
}
//------------------------------remove_dead_region-----------------------------
bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
Node *n = in(0);
if( !n ) return false;
// Lost control into this guy? I.e., it became unreachable?
// Aggressively kill all unreachable code.
if (can_reshape && n->is_top()) {
kill_dead_code(this, phase->is_IterGVN());
return false; // Node is dead.
}
if( n->is_Region() && n->as_Region()->is_copy() ) {
Node *m = n->nonnull_req();
set_req(0, m);
return true;
}
return false;
}
//------------------------------Ideal_DU_postCCP-------------------------------
// Idealize graph, using DU info. Must clone result into new-space
Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
return NULL; // Default to no change
}
//------------------------------hash-------------------------------------------
// Hash function over Nodes.
uint Node::hash() const {
uint sum = 0;
for( uint i=0; i<_cnt; i++ ) // Add in all inputs
sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs
return (sum>>2) + _cnt + Opcode();
}
//------------------------------cmp--------------------------------------------
// Compare special parts of simple Nodes
uint Node::cmp( const Node &n ) const {
return 1; // Must be same
}
//------------------------------rematerialize-----------------------------------
// Should we clone rather than spill this instruction?
bool Node::rematerialize() const {
if ( is_Mach() )
return this->as_Mach()->rematerialize();
else
return (_flags & Flag_rematerialize) != 0;
}
//------------------------------needs_anti_dependence_check---------------------
// Nodes which use memory without consuming it, hence need antidependences.
bool Node::needs_anti_dependence_check() const {
if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
return false;
else
return in(1)->bottom_type()->has_memory();
}
// Get an integer constant from a ConNode (or CastIINode).
// Return a default value if there is no apparent constant here.
const TypeInt* Node::find_int_type() const {
if (this->is_Type()) {
return this->as_Type()->type()->isa_int();
} else if (this->is_Con()) {
assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
return this->bottom_type()->isa_int();
}
return NULL;
}
// Get a pointer constant from a ConstNode.
// Returns the constant if it is a pointer ConstNode
intptr_t Node::get_ptr() const {
assert( Opcode() == Op_ConP, "" );
return ((ConPNode*)this)->type()->is_ptr()->get_con();
}
// Get a narrow oop constant from a ConNNode.
intptr_t Node::get_narrowcon() const {
assert( Opcode() == Op_ConN, "" );
return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
}
// Get a long constant from a ConNode.
// Return a default value if there is no apparent constant here.
const TypeLong* Node::find_long_type() const {
if (this->is_Type()) {
return this->as_Type()->type()->isa_long();
} else if (this->is_Con()) {
assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
return this->bottom_type()->isa_long();
}
return NULL;
}
// Get a double constant from a ConstNode.
// Returns the constant if it is a double ConstNode
jdouble Node::getd() const {
assert( Opcode() == Op_ConD, "" );
return ((ConDNode*)this)->type()->is_double_constant()->getd();
}
// Get a float constant from a ConstNode.
// Returns the constant if it is a float ConstNode
jfloat Node::getf() const {
assert( Opcode() == Op_ConF, "" );
return ((ConFNode*)this)->type()->is_float_constant()->getf();
}
#ifndef PRODUCT
//----------------------------NotANode----------------------------------------
// Used in debugging code to avoid walking across dead or uninitialized edges.
static inline bool NotANode(const Node* n) {
if (n == NULL) return true;
if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
if (*(address*)n == badAddress) return true; // kill by Node::destruct
return false;
}
//------------------------------find------------------------------------------
// Find a neighbor of this Node with the given _idx
// If idx is negative, find its absolute value, following both _in and _out.
static void find_recur(Compile* C, Node* &result, Node *n, int idx, bool only_ctrl,
VectorSet* old_space, VectorSet* new_space ) {
int node_idx = (idx >= 0) ? idx : -idx;
if (NotANode(n)) return; // Gracefully handle NULL, -1, 0xabababab, etc.
// Contained in new_space or old_space? Check old_arena first since it's mostly empty.
VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
if( v->test(n->_idx) ) return;
if( (int)n->_idx == node_idx
debug_only(|| n->debug_idx() == node_idx) ) {
if (result != NULL)
tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
(uintptr_t)result, (uintptr_t)n, node_idx);
result = n;
}
v->set(n->_idx);
for( uint i=0; i<n->len(); i++ ) {
if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
}
// Search along forward edges also:
if (idx < 0 && !only_ctrl) {
for( uint j=0; j<n->outcnt(); j++ ) {
find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
}
}
#ifdef ASSERT
// Search along debug_orig edges last, checking for cycles
Node* orig = n->debug_orig();
if (orig != NULL) {
do {
if (NotANode(orig)) break;
find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
orig = orig->debug_orig();
} while (orig != NULL && orig != n->debug_orig());
}
#endif //ASSERT
}
// call this from debugger:
Node* find_node(Node* n, int idx) {
return n->find(idx);
}
//------------------------------find-------------------------------------------
Node* Node::find(int idx) const {
ResourceArea *area = Thread::current()->resource_area();
VectorSet old_space(area), new_space(area);
Node* result = NULL;
find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
return result;
}
//------------------------------find_ctrl--------------------------------------
// Find an ancestor to this node in the control history with given _idx
Node* Node::find_ctrl(int idx) const {
ResourceArea *area = Thread::current()->resource_area();
VectorSet old_space(area), new_space(area);
Node* result = NULL;
find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
return result;
}
#endif
#ifndef PRODUCT
int Node::_in_dump_cnt = 0;
// -----------------------------Name-------------------------------------------
extern const char *NodeClassNames[];
const char *Node::Name() const { return NodeClassNames[Opcode()]; }
static bool is_disconnected(const Node* n) {
for (uint i = 0; i < n->req(); i++) {
if (n->in(i) != NULL) return false;
}
return true;
}
#ifdef ASSERT
static void dump_orig(Node* orig, outputStream *st) {
Compile* C = Compile::current();
if (NotANode(orig)) orig = NULL;
if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
if (orig == NULL) return;
st->print(" !orig=");
Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
if (NotANode(fast)) fast = NULL;
while (orig != NULL) {
bool discon = is_disconnected(orig); // if discon, print [123] else 123
if (discon) st->print("[");
if (!Compile::current()->node_arena()->contains(orig))
st->print("o");
st->print("%d", orig->_idx);
if (discon) st->print("]");
orig = orig->debug_orig();
if (NotANode(orig)) orig = NULL;
if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
if (orig != NULL) st->print(",");
if (fast != NULL) {
// Step fast twice for each single step of orig:
fast = fast->debug_orig();
if (NotANode(fast)) fast = NULL;
if (fast != NULL && fast != orig) {
fast = fast->debug_orig();
if (NotANode(fast)) fast = NULL;
}
if (fast == orig) {
st->print("...");
break;
}
}
}
}
void Node::set_debug_orig(Node* orig) {
_debug_orig = orig;
if (BreakAtNode == 0) return;
if (NotANode(orig)) orig = NULL;
int trip = 10;
while (orig != NULL) {
if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
BREAKPOINT;
}
orig = orig->debug_orig();
if (NotANode(orig)) orig = NULL;
if (trip-- <= 0) break;
}
}
#endif //ASSERT
//------------------------------dump------------------------------------------
// Dump a Node
void Node::dump(const char* suffix, outputStream *st) const {
Compile* C = Compile::current();
bool is_new = C->node_arena()->contains(this);
_in_dump_cnt++;
st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
// Dump the required and precedence inputs
dump_req(st);
dump_prec(st);
// Dump the outputs
dump_out(st);
if (is_disconnected(this)) {
#ifdef ASSERT
st->print(" [%d]",debug_idx());
dump_orig(debug_orig(), st);
#endif
st->cr();
_in_dump_cnt--;
return; // don't process dead nodes
}
// Dump node-specific info
dump_spec(st);
#ifdef ASSERT
// Dump the non-reset _debug_idx
if (Verbose && WizardMode) {
st->print(" [%d]",debug_idx());
}
#endif
const Type *t = bottom_type();
if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
const TypeInstPtr *toop = t->isa_instptr();
const TypeKlassPtr *tkls = t->isa_klassptr();
ciKlass* klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
if (klass && klass->is_loaded() && klass->is_interface()) {
st->print(" Interface:");
} else if (toop) {
st->print(" Oop:");
} else if (tkls) {
st->print(" Klass:");
}
t->dump_on(st);
} else if (t == Type::MEMORY) {
st->print(" Memory:");
MemNode::dump_adr_type(this, adr_type(), st);
} else if (Verbose || WizardMode) {
st->print(" Type:");
if (t) {
t->dump_on(st);
} else {
st->print("no type");
}
} else if (t->isa_vect() && this->is_MachSpillCopy()) {
// Dump MachSpillcopy vector type.
t->dump_on(st);
}
if (is_new) {
debug_only(dump_orig(debug_orig(), st));
Node_Notes* nn = C->node_notes_at(_idx);
if (nn != NULL && !nn->is_clear()) {
if (nn->jvms() != NULL) {
st->print(" !jvms:");
nn->jvms()->dump_spec(st);
}
}
}
if (suffix) st->print(suffix);
_in_dump_cnt--;
}
//------------------------------dump_req--------------------------------------
void Node::dump_req(outputStream *st) const {
// Dump the required input edges
for (uint i = 0; i < req(); i++) { // For all required inputs
Node* d = in(i);
if (d == NULL) {
st->print("_ ");
} else if (NotANode(d)) {
st->print("NotANode "); // uninitialized, sentinel, garbage, etc.
} else {
st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
}
}
}
//------------------------------dump_prec-------------------------------------
void Node::dump_prec(outputStream *st) const {
// Dump the precedence edges
int any_prec = 0;
for (uint i = req(); i < len(); i++) { // For all precedence inputs
Node* p = in(i);
if (p != NULL) {
if (!any_prec++) st->print(" |");
if (NotANode(p)) { st->print("NotANode "); continue; }
st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
}
}
}
//------------------------------dump_out--------------------------------------
void Node::dump_out(outputStream *st) const {
// Delimit the output edges
st->print(" [[");
// Dump the output edges
for (uint i = 0; i < _outcnt; i++) { // For all outputs
Node* u = _out[i];
if (u == NULL) {
st->print("_ ");
} else if (NotANode(u)) {
st->print("NotANode ");
} else {
st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
}
}
st->print("]] ");
}
//------------------------------dump_nodes-------------------------------------
static void dump_nodes(const Node* start, int d, bool only_ctrl) {
Node* s = (Node*)start; // remove const
if (NotANode(s)) return;
uint depth = (uint)ABS(d);
int direction = d;
Compile* C = Compile::current();
GrowableArray <Node *> nstack(C->unique());
nstack.append(s);
int begin = 0;
int end = 0;
for(uint i = 0; i < depth; i++) {
end = nstack.length();
for(int j = begin; j < end; j++) {
Node* tp = nstack.at(j);
uint limit = direction > 0 ? tp->len() : tp->outcnt();
for(uint k = 0; k < limit; k++) {
Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
if (NotANode(n)) continue;
// do not recurse through top or the root (would reach unrelated stuff)
if (n->is_Root() || n->is_top()) continue;
if (only_ctrl && !n->is_CFG()) continue;
bool on_stack = nstack.contains(n);
if (!on_stack) {
nstack.append(n);
}
}
}
begin = end;
}
end = nstack.length();
if (direction > 0) {
for(int j = end-1; j >= 0; j--) {
nstack.at(j)->dump();
}
} else {
for(int j = 0; j < end; j++) {
nstack.at(j)->dump();
}
}
}
//------------------------------dump-------------------------------------------
void Node::dump(int d) const {
dump_nodes(this, d, false);
}
//------------------------------dump_ctrl--------------------------------------
// Dump a Node's control history to depth
void Node::dump_ctrl(int d) const {
dump_nodes(this, d, true);
}
// VERIFICATION CODE
// For each input edge to a node (ie - for each Use-Def edge), verify that
// there is a corresponding Def-Use edge.
//------------------------------verify_edges-----------------------------------
void Node::verify_edges(Unique_Node_List &visited) {
uint i, j, idx;
int cnt;
Node *n;
// Recursive termination test
if (visited.member(this)) return;
visited.push(this);
// Walk over all input edges, checking for correspondence
for( i = 0; i < len(); i++ ) {
n = in(i);
if (n != NULL && !n->is_top()) {
// Count instances of (Node *)this
cnt = 0;
for (idx = 0; idx < n->_outcnt; idx++ ) {
if (n->_out[idx] == (Node *)this) cnt++;
}
assert( cnt > 0,"Failed to find Def-Use edge." );
// Check for duplicate edges
// walk the input array downcounting the input edges to n
for( j = 0; j < len(); j++ ) {
if( in(j) == n ) cnt--;
}
assert( cnt == 0,"Mismatched edge count.");
} else if (n == NULL) {
assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
} else {
assert(n->is_top(), "sanity");
// Nothing to check.
}
}
// Recursive walk over all input edges
for( i = 0; i < len(); i++ ) {
n = in(i);
if( n != NULL )
in(i)->verify_edges(visited);
}
}
//------------------------------verify_recur-----------------------------------
static const Node *unique_top = NULL;
void Node::verify_recur(const Node *n, int verify_depth,
VectorSet &old_space, VectorSet &new_space) {
if ( verify_depth == 0 ) return;
if (verify_depth > 0) --verify_depth;
Compile* C = Compile::current();
// Contained in new_space or old_space?
VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
// Check for visited in the proper space. Numberings are not unique
// across spaces so we need a separate VectorSet for each space.
if( v->test_set(n->_idx) ) return;
if (n->is_Con() && n->bottom_type() == Type::TOP) {
if (C->cached_top_node() == NULL)
C->set_cached_top_node((Node*)n);
assert(C->cached_top_node() == n, "TOP node must be unique");
}
for( uint i = 0; i < n->len(); i++ ) {
Node *x = n->in(i);
if (!x || x->is_top()) continue;
// Verify my input has a def-use edge to me
if (true /*VerifyDefUse*/) {
// Count use-def edges from n to x
int cnt = 0;
for( uint j = 0; j < n->len(); j++ )
if( n->in(j) == x )
cnt++;
// Count def-use edges from x to n
uint max = x->_outcnt;
for( uint k = 0; k < max; k++ )
if (x->_out[k] == n)
cnt--;
assert( cnt == 0, "mismatched def-use edge counts" );
}
verify_recur(x, verify_depth, old_space, new_space);
}
}
//------------------------------verify-----------------------------------------
// Check Def-Use info for my subgraph
void Node::verify() const {
Compile* C = Compile::current();
Node* old_top = C->cached_top_node();
ResourceMark rm;
ResourceArea *area = Thread::current()->resource_area();
VectorSet old_space(area), new_space(area);
verify_recur(this, -1, old_space, new_space);
C->set_cached_top_node(old_top);
}
#endif
//------------------------------walk-------------------------------------------
// Graph walk, with both pre-order and post-order functions
void Node::walk(NFunc pre, NFunc post, void *env) {
VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
walk_(pre, post, env, visited);
}
void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
if( visited.test_set(_idx) ) return;
pre(*this,env); // Call the pre-order walk function
for( uint i=0; i<_max; i++ )
if( in(i) ) // Input exists and is not walked?
in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
post(*this,env); // Call the post-order walk function
}
void Node::nop(Node &, void*) {}
//------------------------------Registers--------------------------------------
// Do we Match on this edge index or not? Generally false for Control
// and true for everything else. Weird for calls & returns.
uint Node::match_edge(uint idx) const {
return idx; // True for other than index 0 (control)
}
static RegMask _not_used_at_all;
// Register classes are defined for specific machines
const RegMask &Node::out_RegMask() const {
ShouldNotCallThis();
return _not_used_at_all;
}
const RegMask &Node::in_RegMask(uint) const {
ShouldNotCallThis();
return _not_used_at_all;
}
//=============================================================================
//-----------------------------------------------------------------------------
void Node_Array::reset( Arena *new_arena ) {
_a->Afree(_nodes,_max*sizeof(Node*));
_max = 0;
_nodes = NULL;
_a = new_arena;
}
//------------------------------clear------------------------------------------
// Clear all entries in _nodes to NULL but keep storage
void Node_Array::clear() {
Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
}
//-----------------------------------------------------------------------------
void Node_Array::grow( uint i ) {
if( !_max ) {
_max = 1;
_nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
_nodes[0] = NULL;
}
uint old = _max;
while( i >= _max ) _max <<= 1; // Double to fit
_nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
}
//-----------------------------------------------------------------------------
void Node_Array::insert( uint i, Node *n ) {
if( _nodes[_max-1] ) grow(_max); // Get more space if full
Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
_nodes[i] = n;
}
//-----------------------------------------------------------------------------
void Node_Array::remove( uint i ) {
Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
_nodes[_max-1] = NULL;
}
//-----------------------------------------------------------------------------
void Node_Array::sort( C_sort_func_t func) {
qsort( _nodes, _max, sizeof( Node* ), func );
}
//-----------------------------------------------------------------------------
void Node_Array::dump() const {
#ifndef PRODUCT
for( uint i = 0; i < _max; i++ ) {
Node *nn = _nodes[i];
if( nn != NULL ) {
tty->print("%5d--> ",i); nn->dump();
}
}
#endif
}
//--------------------------is_iteratively_computed------------------------------
// Operation appears to be iteratively computed (such as an induction variable)
// It is possible for this operation to return false for a loop-varying
// value, if it appears (by local graph inspection) to be computed by a simple conditional.
bool Node::is_iteratively_computed() {
if (ideal_reg()) { // does operation have a result register?
for (uint i = 1; i < req(); i++) {
Node* n = in(i);
if (n != NULL && n->is_Phi()) {
for (uint j = 1; j < n->req(); j++) {
if (n->in(j) == this) {
return true;
}
}
}
}
}
return false;
}
//--------------------------find_similar------------------------------
// Return a node with opcode "opc" and same inputs as "this" if one can
// be found; Otherwise return NULL;
Node* Node::find_similar(int opc) {
if (req() >= 2) {
Node* def = in(1);
if (def && def->outcnt() >= 2) {
for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
Node* use = def->fast_out(i);
if (use->Opcode() == opc &&
use->req() == req()) {
uint j;
for (j = 0; j < use->req(); j++) {
if (use->in(j) != in(j)) {
break;
}
}
if (j == use->req()) {
return use;
}
}
}
}
}
return NULL;
}
//--------------------------unique_ctrl_out------------------------------
// Return the unique control out if only one. Null if none or more than one.
Node* Node::unique_ctrl_out() {
Node* found = NULL;
for (uint i = 0; i < outcnt(); i++) {
Node* use = raw_out(i);
if (use->is_CFG() && use != this) {
if (found != NULL) return NULL;
found = use;
}
}
return found;
}
//=============================================================================
//------------------------------yank-------------------------------------------
// Find and remove
void Node_List::yank( Node *n ) {
uint i;
for( i = 0; i < _cnt; i++ )
if( _nodes[i] == n )
break;
if( i < _cnt )
_nodes[i] = _nodes[--_cnt];
}
//------------------------------dump-------------------------------------------
void Node_List::dump() const {
#ifndef PRODUCT
for( uint i = 0; i < _cnt; i++ )
if( _nodes[i] ) {
tty->print("%5d--> ",i);
_nodes[i]->dump();
}
#endif
}
//=============================================================================
//------------------------------remove-----------------------------------------
void Unique_Node_List::remove( Node *n ) {
if( _in_worklist[n->_idx] ) {
for( uint i = 0; i < size(); i++ )
if( _nodes[i] == n ) {
map(i,Node_List::pop());
_in_worklist >>= n->_idx;
return;
}
ShouldNotReachHere();
}
}
//-----------------------remove_useless_nodes----------------------------------
// Remove useless nodes from worklist
void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
for( uint i = 0; i < size(); ++i ) {
Node *n = at(i);
assert( n != NULL, "Did not expect null entries in worklist");
if( ! useful.test(n->_idx) ) {
_in_worklist >>= n->_idx;
map(i,Node_List::pop());
// Node *replacement = Node_List::pop();
// if( i != size() ) { // Check if removing last entry
// _nodes[i] = replacement;
// }
--i; // Visit popped node
// If it was last entry, loop terminates since size() was also reduced
}
}
}
//=============================================================================
void Node_Stack::grow() {
size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
size_t max = old_max << 1; // max * 2
_inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
_inode_max = _inodes + max;
_inode_top = _inodes + old_top; // restore _top
}
// Node_Stack is used to map nodes.
Node* Node_Stack::find(uint idx) const {
uint sz = size();
for (uint i=0; i < sz; i++) {
if (idx == index_at(i) )
return node_at(i);
}
return NULL;
}
//=============================================================================
uint TypeNode::size_of() const { return sizeof(*this); }
#ifndef PRODUCT
void TypeNode::dump_spec(outputStream *st) const {
if( !Verbose && !WizardMode ) {
// standard dump does this in Verbose and WizardMode
st->print(" #"); _type->dump_on(st);
}
}
#endif
uint TypeNode::hash() const {
return Node::hash() + _type->hash();
}
uint TypeNode::cmp( const Node &n ) const
{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
const Type *TypeNode::bottom_type() const { return _type; }
const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
//------------------------------ideal_reg--------------------------------------
uint TypeNode::ideal_reg() const {
return _type->ideal_reg();
}