6939203: JSR 292 needs method handle constants
Summary: Add new CP types CONSTANT_MethodHandle, CONSTANT_MethodType; extend 'ldc' bytecode.
Reviewed-by: twisti, never
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_methodHandles_x86.cpp.incl"
#define __ _masm->
address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
address interpreted_entry) {
// Just before the actual machine code entry point, allocate space
// for a MethodHandleEntry::Data record, so that we can manage everything
// from one base pointer.
__ align(wordSize);
address target = __ pc() + sizeof(Data);
while (__ pc() < target) {
__ nop();
__ align(wordSize);
}
MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
me->set_end_address(__ pc()); // set a temporary end_address
me->set_from_interpreted_entry(interpreted_entry);
me->set_type_checking_entry(NULL);
return (address) me;
}
MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
address start_addr) {
MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
assert(me->end_address() == start_addr, "valid ME");
// Fill in the real end_address:
__ align(wordSize);
me->set_end_address(__ pc());
return me;
}
#ifdef ASSERT
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
const char* error_message) {
// Verify that argslot lies within (rsp, rbp].
Label L_ok, L_bad;
__ cmpptr(argslot_reg, rbp);
__ jccb(Assembler::above, L_bad);
__ cmpptr(rsp, argslot_reg);
__ jccb(Assembler::below, L_ok);
__ bind(L_bad);
__ stop(error_message);
__ bind(L_ok);
}
#endif
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
// rbx: methodOop
// rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
// rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
// rdx: garbage temp, blown away
Register rbx_method = rbx;
Register rcx_recv = rcx;
Register rax_mtype = rax;
Register rdx_temp = rdx;
// emit WrongMethodType path first, to enable jccb back-branch from main path
Label wrong_method_type;
__ bind(wrong_method_type);
__ push(rax_mtype); // required mtype
__ push(rcx_recv); // bad mh (1st stacked argument)
__ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
// here's where control starts out:
__ align(CodeEntryAlignment);
address entry_point = __ pc();
// fetch the MethodType from the method handle into rax (the 'check' register)
{
Register tem = rbx_method;
for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
__ movptr(rax_mtype, Address(tem, *pchase));
tem = rax_mtype; // in case there is another indirection
}
}
Register rbx_temp = rbx_method; // done with incoming methodOop
// given the MethodType, find out where the MH argument is buried
__ movptr(rdx_temp, Address(rax_mtype,
__ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rbx_temp)));
__ movl(rdx_temp, Address(rdx_temp,
__ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rbx_temp)));
__ movptr(rcx_recv, __ argument_address(rdx_temp));
__ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
return entry_point;
}
// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int arg_mask,
Register rax_argslot,
Register rbx_temp, Register rdx_temp, Register temp3_reg) {
assert(temp3_reg == noreg, "temp3 not required");
assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
(!arg_slots.is_register() ? rsp : arg_slots.as_register()));
#ifdef ASSERT
verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
__ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
__ jccb(Assembler::greater, L_bad);
__ testl(arg_slots.as_register(), -stack_move_unit() - 1);
__ jccb(Assembler::zero, L_ok);
__ bind(L_bad);
__ stop("assert arg_slots <= 0 and clear low bits");
__ bind(L_ok);
} else {
assert(arg_slots.as_constant() <= 0, "");
assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
}
#endif //ASSERT
#ifdef _LP64
if (arg_slots.is_register()) {
// clean high bits of stack motion register (was loaded as an int)
__ movslq(arg_slots.as_register(), arg_slots.as_register());
}
#endif
// Make space on the stack for the inserted argument(s).
// Then pull down everything shallower than rax_argslot.
// The stacked return address gets pulled down with everything else.
// That is, copy [rsp, argslot) downward by -size words. In pseudo-code:
// rsp -= size;
// for (rdx = rsp + size; rdx < argslot; rdx++)
// rdx[-size] = rdx[0]
// argslot -= size;
__ mov(rdx_temp, rsp); // source pointer for copy
__ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
{
Label loop;
__ bind(loop);
// pull one word down each time through the loop
__ movptr(rbx_temp, Address(rdx_temp, 0));
__ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
__ addptr(rdx_temp, wordSize);
__ cmpptr(rdx_temp, rax_argslot);
__ jccb(Assembler::less, loop);
}
// Now move the argslot down, to point to the opened-up space.
__ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
}
// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp, Register temp3_reg) {
assert(temp3_reg == noreg, "temp3 not required");
assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
(!arg_slots.is_register() ? rsp : arg_slots.as_register()));
#ifdef ASSERT
// Verify that [argslot..argslot+size) lies within (rsp, rbp).
__ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame");
if (arg_slots.is_register()) {
Label L_ok, L_bad;
__ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
__ jccb(Assembler::less, L_bad);
__ testl(arg_slots.as_register(), -stack_move_unit() - 1);
__ jccb(Assembler::zero, L_ok);
__ bind(L_bad);
__ stop("assert arg_slots >= 0 and clear low bits");
__ bind(L_ok);
} else {
assert(arg_slots.as_constant() >= 0, "");
assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
}
#endif //ASSERT
#ifdef _LP64
if (false) { // not needed, since register is positive
// clean high bits of stack motion register (was loaded as an int)
if (arg_slots.is_register())
__ movslq(arg_slots.as_register(), arg_slots.as_register());
}
#endif
// Pull up everything shallower than rax_argslot.
// Then remove the excess space on the stack.
// The stacked return address gets pulled up with everything else.
// That is, copy [rsp, argslot) upward by size words. In pseudo-code:
// for (rdx = argslot-1; rdx >= rsp; --rdx)
// rdx[size] = rdx[0]
// argslot += size;
// rsp += size;
__ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
{
Label loop;
__ bind(loop);
// pull one word up each time through the loop
__ movptr(rbx_temp, Address(rdx_temp, 0));
__ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
__ addptr(rdx_temp, -wordSize);
__ cmpptr(rdx_temp, rsp);
__ jccb(Assembler::greaterEqual, loop);
}
// Now move the argslot up, to point to the just-copied block.
__ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
// And adjust the argslot address to point at the deletion point.
__ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
}
#ifndef PRODUCT
extern "C" void print_method_handle(oop mh);
void trace_method_handle_stub(const char* adaptername,
oop mh,
intptr_t* entry_sp,
intptr_t* saved_sp,
intptr_t* saved_bp) {
// called as a leaf from native code: do not block the JVM!
intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
if (last_sp != saved_sp)
printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
if (Verbose) print_method_handle(mh);
}
#endif //PRODUCT
// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
|(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
|(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
|(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
|(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
|(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
|(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
|(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
|(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
//|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
);
// FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
}
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
// Here is the register state during an interpreted call,
// as set up by generate_method_handle_interpreter_entry():
// - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
// - rcx: receiver method handle
// - rax: method handle type (only used by the check_mtype entry point)
// - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
// - rdx: garbage temp, can blow away
Register rcx_recv = rcx;
Register rax_argslot = rax;
Register rbx_temp = rbx;
Register rdx_temp = rdx;
// This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
// and gen_c2i_adapter (from compiled calls):
Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);
guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
// some handy addresses
Address rbx_method_fie( rbx, methodOopDesc::from_interpreted_offset() );
Address rcx_mh_vmtarget( rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
Address rcx_dmh_vmindex( rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
Address rcx_bmh_vmargslot( rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
Address rcx_bmh_argument( rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
Address rcx_amh_vmargslot( rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
Address rcx_amh_argument( rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
Address vmarg; // __ argument_address(vmargslot)
const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
if (have_entry(ek)) {
__ nop(); // empty stubs make SG sick
return;
}
address interp_entry = __ pc();
if (UseCompressedOops) __ unimplemented("UseCompressedOops");
#ifndef PRODUCT
if (TraceMethodHandles) {
__ push(rax); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rsi); __ push(rdi);
__ lea(rax, Address(rsp, wordSize*6)); // entry_sp
// arguments:
__ push(rbp); // interpreter frame pointer
__ push(rsi); // saved_sp
__ push(rax); // entry_sp
__ push(rcx); // mh
__ push(rcx);
__ movptr(Address(rsp, 0), (intptr_t)entry_name(ek));
__ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
__ pop(rdi); __ pop(rsi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ pop(rax);
}
#endif //PRODUCT
switch ((int) ek) {
case _raise_exception:
{
// Not a real MH entry, but rather shared code for raising an exception.
// Extra local arguments are pushed on stack, as required type at TOS+8,
// failing object (or NULL) at TOS+4, failing bytecode type at TOS.
// Beyond those local arguments are the PC, of course.
Register rdx_code = rdx_temp;
Register rcx_fail = rcx_recv;
Register rax_want = rax_argslot;
Register rdi_pc = rdi;
__ pop(rdx_code); // TOS+0
__ pop(rcx_fail); // TOS+4
__ pop(rax_want); // TOS+8
__ pop(rdi_pc); // caller PC
__ mov(rsp, rsi); // cut the stack back to where the caller started
// Repush the arguments as if coming from the interpreter.
__ push(rdx_code);
__ push(rcx_fail);
__ push(rax_want);
Register rbx_method = rbx_temp;
Label no_method;
// FIXME: fill in _raise_exception_method with a suitable sun.dyn method
__ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
__ testptr(rbx_method, rbx_method);
__ jccb(Assembler::zero, no_method);
int jobject_oop_offset = 0;
__ movptr(rbx_method, Address(rbx_method, jobject_oop_offset)); // dereference the jobject
__ testptr(rbx_method, rbx_method);
__ jccb(Assembler::zero, no_method);
__ verify_oop(rbx_method);
__ push(rdi_pc); // and restore caller PC
__ jmp(rbx_method_fie);
// If we get here, the Java runtime did not do its job of creating the exception.
// Do something that is at least causes a valid throw from the interpreter.
__ bind(no_method);
__ pop(rax_want);
__ pop(rcx_fail);
__ push(rax_want);
__ push(rcx_fail);
__ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
}
break;
case _invokestatic_mh:
case _invokespecial_mh:
{
Register rbx_method = rbx_temp;
__ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
__ verify_oop(rbx_method);
// same as TemplateTable::invokestatic or invokespecial,
// minus the CP setup and profiling:
if (ek == _invokespecial_mh) {
// Must load & check the first argument before entering the target method.
__ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
__ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
__ null_check(rcx_recv);
__ verify_oop(rcx_recv);
}
__ jmp(rbx_method_fie);
}
break;
case _invokevirtual_mh:
{
// same as TemplateTable::invokevirtual,
// minus the CP setup and profiling:
// pick out the vtable index and receiver offset from the MH,
// and then we can discard it:
__ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
Register rbx_index = rbx_temp;
__ movl(rbx_index, rcx_dmh_vmindex);
// Note: The verifier allows us to ignore rcx_mh_vmtarget.
__ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
__ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
// get receiver klass
Register rax_klass = rax_argslot;
__ load_klass(rax_klass, rcx_recv);
__ verify_oop(rax_klass);
// get target methodOop & entry point
const int base = instanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
Address vtable_entry_addr(rax_klass,
rbx_index, Address::times_ptr,
base + vtableEntry::method_offset_in_bytes());
Register rbx_method = rbx_temp;
__ movptr(rbx_method, vtable_entry_addr);
__ verify_oop(rbx_method);
__ jmp(rbx_method_fie);
}
break;
case _invokeinterface_mh:
{
// same as TemplateTable::invokeinterface,
// minus the CP setup and profiling:
// pick out the interface and itable index from the MH.
__ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
Register rdx_intf = rdx_temp;
Register rbx_index = rbx_temp;
__ movptr(rdx_intf, rcx_mh_vmtarget);
__ movl(rbx_index, rcx_dmh_vmindex);
__ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
__ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
// get receiver klass
Register rax_klass = rax_argslot;
__ load_klass(rax_klass, rcx_recv);
__ verify_oop(rax_klass);
Register rdi_temp = rdi;
Register rbx_method = rbx_index;
// get interface klass
Label no_such_interface;
__ verify_oop(rdx_intf);
__ lookup_interface_method(rax_klass, rdx_intf,
// note: next two args must be the same:
rbx_index, rbx_method,
rdi_temp,
no_such_interface);
__ verify_oop(rbx_method);
__ jmp(rbx_method_fie);
__ hlt();
__ bind(no_such_interface);
// Throw an exception.
// For historical reasons, it will be IncompatibleClassChangeError.
__ pushptr(Address(rdx_intf, java_mirror_offset)); // required interface
__ push(rcx_recv); // bad receiver
__ push((int)Bytecodes::_invokeinterface); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
}
break;
case _bound_ref_mh:
case _bound_int_mh:
case _bound_long_mh:
case _bound_ref_direct_mh:
case _bound_int_direct_mh:
case _bound_long_direct_mh:
{
bool direct_to_method = (ek >= _bound_ref_direct_mh);
BasicType arg_type = T_ILLEGAL;
int arg_mask = _INSERT_NO_MASK;
int arg_slots = -1;
get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
// make room for the new argument:
__ movl(rax_argslot, rcx_bmh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
rax_argslot, rbx_temp, rdx_temp);
// store bound argument into the new stack slot:
__ movptr(rbx_temp, rcx_bmh_argument);
Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
if (arg_type == T_OBJECT) {
__ movptr(Address(rax_argslot, 0), rbx_temp);
} else {
__ load_sized_value(rdx_temp, prim_value_addr,
type2aelembytes(arg_type), is_signed_subword_type(arg_type));
__ movptr(Address(rax_argslot, 0), rdx_temp);
#ifndef _LP64
if (arg_slots == 2) {
__ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
__ movl(Address(rax_argslot, Interpreter::stackElementSize), rdx_temp);
}
#endif //_LP64
}
if (direct_to_method) {
Register rbx_method = rbx_temp;
__ movptr(rbx_method, rcx_mh_vmtarget);
__ verify_oop(rbx_method);
__ jmp(rbx_method_fie);
} else {
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ verify_oop(rcx_recv);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
}
break;
case _adapter_retype_only:
case _adapter_retype_raw:
// immediately jump to the next MH layer:
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ verify_oop(rcx_recv);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
// This is OK when all parameter types widen.
// It is also OK when a return type narrows.
break;
case _adapter_check_cast:
{
// temps:
Register rbx_klass = rbx_temp; // interesting AMH data
// check a reference argument before jumping to the next layer of MH:
__ movl(rax_argslot, rcx_amh_vmargslot);
vmarg = __ argument_address(rax_argslot);
// What class are we casting to?
__ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
__ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
Label done;
__ movptr(rdx_temp, vmarg);
__ testptr(rdx_temp, rdx_temp);
__ jccb(Assembler::zero, done); // no cast if null
__ load_klass(rdx_temp, rdx_temp);
// live at this point:
// - rbx_klass: klass required by the target method
// - rdx_temp: argument klass to test
// - rcx_recv: adapter method handle
__ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
// If we get here, the type check failed!
// Call the wrong_method_type stub, passing the failing argument type in rax.
Register rax_mtype = rax_argslot;
__ movl(rax_argslot, rcx_amh_vmargslot); // reload argslot field
__ movptr(rdx_temp, vmarg);
__ pushptr(rcx_amh_argument); // required class
__ push(rdx_temp); // bad object
__ push((int)Bytecodes::_checkcast); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
__ bind(done);
// get the new MH:
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_prim_to_prim:
case _adapter_ref_to_prim:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim
{
// perform an in-place conversion to int or an int subword
__ movl(rax_argslot, rcx_amh_vmargslot);
vmarg = __ argument_address(rax_argslot);
switch (ek) {
case _adapter_opt_i2i:
__ movl(rdx_temp, vmarg);
break;
case _adapter_opt_l2i:
{
// just delete the extra slot; on a little-endian machine we keep the first
__ lea(rax_argslot, __ argument_address(rax_argslot, 1));
remove_arg_slots(_masm, -stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
__ movl(rdx_temp, vmarg);
}
break;
case _adapter_opt_unboxi:
{
// Load the value up from the heap.
__ movptr(rdx_temp, vmarg);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
if (is_subword_type(BasicType(bt)))
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
}
#endif
__ null_check(rdx_temp, value_offset);
__ movl(rdx_temp, Address(rdx_temp, value_offset));
// We load this as a word. Because we are little-endian,
// the low bits will be correct, but the high bits may need cleaning.
// The vminfo will guide us to clean those bits.
}
break;
default:
ShouldNotReachHere();
}
// Do the requested conversion and store the value.
Register rbx_vminfo = rbx_temp;
__ movl(rbx_vminfo, rcx_amh_conversion);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
// get the new MH:
__ movptr(rcx_recv, rcx_mh_vmtarget);
// (now we are done with the old MH)
// original 32-bit vmdata word must be of this form:
// | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
__ xchgptr(rcx, rbx_vminfo); // free rcx for shifts
__ shll(rdx_temp /*, rcx*/);
Label zero_extend, done;
__ testl(rcx, CONV_VMINFO_SIGN_FLAG);
__ jccb(Assembler::zero, zero_extend);
// this path is taken for int->byte, int->short
__ sarl(rdx_temp /*, rcx*/);
__ jmpb(done);
__ bind(zero_extend);
// this is taken for int->char
__ shrl(rdx_temp /*, rcx*/);
__ bind(done);
__ movl(vmarg, rdx_temp); // Store the value.
__ xchgptr(rcx, rbx_vminfo); // restore rcx_recv
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim
{
// perform an in-place int-to-long or ref-to-long conversion
__ movl(rax_argslot, rcx_amh_vmargslot);
// on a little-endian machine we keep the first slot and add another after
__ lea(rax_argslot, __ argument_address(rax_argslot, 1));
insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
rax_argslot, rbx_temp, rdx_temp);
Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
switch (ek) {
case _adapter_opt_i2l:
{
#ifdef _LP64
__ movslq(rdx_temp, vmarg1); // Load sign-extended
__ movq(vmarg1, rdx_temp); // Store into first slot
#else
__ movl(rdx_temp, vmarg1);
__ sarl(rdx_temp, BitsPerInt - 1); // __ extend_sign()
__ movl(vmarg2, rdx_temp); // store second word
#endif
}
break;
case _adapter_opt_unboxl:
{
// Load the value up from the heap.
__ movptr(rdx_temp, vmarg1);
int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
__ null_check(rdx_temp, value_offset);
#ifdef _LP64
__ movq(rbx_temp, Address(rdx_temp, value_offset));
__ movq(vmarg1, rbx_temp);
#else
__ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
__ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
__ movl(vmarg1, rbx_temp);
__ movl(vmarg2, rdx_temp);
#endif
}
break;
default:
ShouldNotReachHere();
}
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim
case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim
{
// perform an in-place floating primitive conversion
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot, 1));
if (ek == _adapter_opt_f2d) {
insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
rax_argslot, rbx_temp, rdx_temp);
}
Address vmarg(rax_argslot, -Interpreter::stackElementSize);
#ifdef _LP64
if (ek == _adapter_opt_f2d) {
__ movflt(xmm0, vmarg);
__ cvtss2sd(xmm0, xmm0);
__ movdbl(vmarg, xmm0);
} else {
__ movdbl(xmm0, vmarg);
__ cvtsd2ss(xmm0, xmm0);
__ movflt(vmarg, xmm0);
}
#else //_LP64
if (ek == _adapter_opt_f2d) {
__ fld_s(vmarg); // load float to ST0
__ fstp_s(vmarg); // store single
} else {
__ fld_d(vmarg); // load double to ST0
__ fstp_s(vmarg); // store single
}
#endif //_LP64
if (ek == _adapter_opt_d2f) {
remove_arg_slots(_masm, -stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
}
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_prim_to_ref:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
case _adapter_swap_args:
case _adapter_rot_args:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_swap_1:
case _adapter_opt_swap_2:
case _adapter_opt_rot_1_up:
case _adapter_opt_rot_1_down:
case _adapter_opt_rot_2_up:
case _adapter_opt_rot_2_down:
{
int swap_bytes = 0, rotate = 0;
get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
// 'argslot' is the position of the first argument to swap
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// 'vminfo' is the second
Register rbx_destslot = rbx_temp;
__ movl(rbx_destslot, rcx_amh_conversion);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
__ andl(rbx_destslot, CONV_VMINFO_MASK);
__ lea(rbx_destslot, __ argument_address(rbx_destslot));
DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
if (!rotate) {
for (int i = 0; i < swap_bytes; i += wordSize) {
__ movptr(rdx_temp, Address(rax_argslot , i));
__ push(rdx_temp);
__ movptr(rdx_temp, Address(rbx_destslot, i));
__ movptr(Address(rax_argslot, i), rdx_temp);
__ pop(rdx_temp);
__ movptr(Address(rbx_destslot, i), rdx_temp);
}
} else {
// push the first chunk, which is going to get overwritten
for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
__ movptr(rdx_temp, Address(rax_argslot, i));
__ push(rdx_temp);
}
if (rotate > 0) {
// rotate upward
__ subptr(rax_argslot, swap_bytes);
#ifdef ASSERT
{
// Verify that argslot > destslot, by at least swap_bytes.
Label L_ok;
__ cmpptr(rax_argslot, rbx_destslot);
__ jccb(Assembler::aboveEqual, L_ok);
__ stop("source must be above destination (upward rotation)");
__ bind(L_ok);
}
#endif
// work argslot down to destslot, copying contiguous data upwards
// pseudo-code:
// rax = src_addr - swap_bytes
// rbx = dest_addr
// while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
Label loop;
__ bind(loop);
__ movptr(rdx_temp, Address(rax_argslot, 0));
__ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
__ addptr(rax_argslot, -wordSize);
__ cmpptr(rax_argslot, rbx_destslot);
__ jccb(Assembler::aboveEqual, loop);
} else {
__ addptr(rax_argslot, swap_bytes);
#ifdef ASSERT
{
// Verify that argslot < destslot, by at least swap_bytes.
Label L_ok;
__ cmpptr(rax_argslot, rbx_destslot);
__ jccb(Assembler::belowEqual, L_ok);
__ stop("source must be below destination (downward rotation)");
__ bind(L_ok);
}
#endif
// work argslot up to destslot, copying contiguous data downwards
// pseudo-code:
// rax = src_addr + swap_bytes
// rbx = dest_addr
// while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
Label loop;
__ bind(loop);
__ movptr(rdx_temp, Address(rax_argslot, 0));
__ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
__ addptr(rax_argslot, wordSize);
__ cmpptr(rax_argslot, rbx_destslot);
__ jccb(Assembler::belowEqual, loop);
}
// pop the original first chunk into the destination slot, now free
for (int i = 0; i < swap_bytes; i += wordSize) {
__ pop(rdx_temp);
__ movptr(Address(rbx_destslot, i), rdx_temp);
}
}
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_dup_args:
{
// 'argslot' is the position of the first argument to duplicate
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// 'stack_move' is negative number of words to duplicate
Register rdx_stack_move = rdx_temp;
__ movl2ptr(rdx_stack_move, rcx_amh_conversion);
__ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
int argslot0_num = 0;
Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
assert(argslot0.base() == rsp, "");
int pre_arg_size = argslot0.disp();
assert(pre_arg_size % wordSize == 0, "");
assert(pre_arg_size > 0, "must include PC");
// remember the old rsp+1 (argslot[0])
Register rbx_oldarg = rbx_temp;
__ lea(rbx_oldarg, argslot0);
// move rsp down to make room for dups
__ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
// compute the new rsp+1 (argslot[0])
Register rdx_newarg = rdx_temp;
__ lea(rdx_newarg, argslot0);
__ push(rdi); // need a temp
// (preceding push must be done after arg addresses are taken!)
// pull down the pre_arg_size data (PC)
for (int i = -pre_arg_size; i < 0; i += wordSize) {
__ movptr(rdi, Address(rbx_oldarg, i));
__ movptr(Address(rdx_newarg, i), rdi);
}
// copy from rax_argslot[0...] down to new_rsp[1...]
// pseudo-code:
// rbx = old_rsp+1
// rdx = new_rsp+1
// rax = argslot
// while (rdx < rbx) *rdx++ = *rax++
Label loop;
__ bind(loop);
__ movptr(rdi, Address(rax_argslot, 0));
__ movptr(Address(rdx_newarg, 0), rdi);
__ addptr(rax_argslot, wordSize);
__ addptr(rdx_newarg, wordSize);
__ cmpptr(rdx_newarg, rbx_oldarg);
__ jccb(Assembler::less, loop);
__ pop(rdi); // restore temp
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_drop_args:
{
// 'argslot' is the position of the first argument to nuke
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
__ push(rdi); // need a temp
// (must do previous push after argslot address is taken)
// 'stack_move' is number of words to drop
Register rdi_stack_move = rdi;
__ movl2ptr(rdi_stack_move, rcx_amh_conversion);
__ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
remove_arg_slots(_masm, rdi_stack_move,
rax_argslot, rbx_temp, rdx_temp);
__ pop(rdi); // restore temp
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
}
break;
case _adapter_collect_args:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
case _adapter_spread_args:
// handled completely by optimized cases
__ stop("init_AdapterMethodHandle should not issue this");
break;
case _adapter_opt_spread_0:
case _adapter_opt_spread_1:
case _adapter_opt_spread_more:
{
// spread an array out into a group of arguments
int length_constant = get_ek_adapter_opt_spread_info(ek);
// find the address of the array argument
__ movl(rax_argslot, rcx_amh_vmargslot);
__ lea(rax_argslot, __ argument_address(rax_argslot));
// grab some temps
{ __ push(rsi); __ push(rdi); }
// (preceding pushes must be done after argslot address is taken!)
#define UNPUSH_RSI_RDI \
{ __ pop(rdi); __ pop(rsi); }
// arx_argslot points both to the array and to the first output arg
vmarg = Address(rax_argslot, 0);
// Get the array value.
Register rsi_array = rsi;
Register rdx_array_klass = rdx_temp;
BasicType elem_type = T_OBJECT;
int length_offset = arrayOopDesc::length_offset_in_bytes();
int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type);
__ movptr(rsi_array, vmarg);
Label skip_array_check;
if (length_constant == 0) {
__ testptr(rsi_array, rsi_array);
__ jcc(Assembler::zero, skip_array_check);
}
__ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
__ load_klass(rdx_array_klass, rsi_array);
// Check the array type.
Register rbx_klass = rbx_temp;
__ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
__ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
Label ok_array_klass, bad_array_klass, bad_array_length;
__ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
// If we get here, the type check failed!
__ jmp(bad_array_klass);
__ bind(ok_array_klass);
// Check length.
if (length_constant >= 0) {
__ cmpl(Address(rsi_array, length_offset), length_constant);
} else {
Register rbx_vminfo = rbx_temp;
__ movl(rbx_vminfo, rcx_amh_conversion);
assert(CONV_VMINFO_SHIFT == 0, "preshifted");
__ andl(rbx_vminfo, CONV_VMINFO_MASK);
__ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
}
__ jcc(Assembler::notEqual, bad_array_length);
Register rdx_argslot_limit = rdx_temp;
// Array length checks out. Now insert any required stack slots.
if (length_constant == -1) {
// Form a pointer to the end of the affected region.
__ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
// 'stack_move' is negative number of words to insert
Register rdi_stack_move = rdi;
__ movl2ptr(rdi_stack_move, rcx_amh_conversion);
__ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
Register rsi_temp = rsi_array; // spill this
insert_arg_slots(_masm, rdi_stack_move, -1,
rax_argslot, rbx_temp, rsi_temp);
// reload the array (since rsi was killed)
__ movptr(rsi_array, vmarg);
} else if (length_constant > 1) {
int arg_mask = 0;
int new_slots = (length_constant - 1);
for (int i = 0; i < new_slots; i++) {
arg_mask <<= 1;
arg_mask |= _INSERT_REF_MASK;
}
insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
rax_argslot, rbx_temp, rdx_temp);
} else if (length_constant == 1) {
// no stack resizing required
} else if (length_constant == 0) {
remove_arg_slots(_masm, -stack_move_unit(),
rax_argslot, rbx_temp, rdx_temp);
}
// Copy from the array to the new slots.
// Note: Stack change code preserves integrity of rax_argslot pointer.
// So even after slot insertions, rax_argslot still points to first argument.
if (length_constant == -1) {
// [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
Register rsi_source = rsi_array;
__ lea(rsi_source, Address(rsi_array, elem0_offset));
Label loop;
__ bind(loop);
__ movptr(rbx_temp, Address(rsi_source, 0));
__ movptr(Address(rax_argslot, 0), rbx_temp);
__ addptr(rsi_source, type2aelembytes(elem_type));
__ addptr(rax_argslot, Interpreter::stackElementSize);
__ cmpptr(rax_argslot, rdx_argslot_limit);
__ jccb(Assembler::less, loop);
} else if (length_constant == 0) {
__ bind(skip_array_check);
// nothing to copy
} else {
int elem_offset = elem0_offset;
int slot_offset = 0;
for (int index = 0; index < length_constant; index++) {
__ movptr(rbx_temp, Address(rsi_array, elem_offset));
__ movptr(Address(rax_argslot, slot_offset), rbx_temp);
elem_offset += type2aelembytes(elem_type);
slot_offset += Interpreter::stackElementSize;
}
}
// Arguments are spread. Move to next method handle.
UNPUSH_RSI_RDI;
__ movptr(rcx_recv, rcx_mh_vmtarget);
__ jump_to_method_handle_entry(rcx_recv, rdx_temp);
__ bind(bad_array_klass);
UNPUSH_RSI_RDI;
__ pushptr(Address(rdx_array_klass, java_mirror_offset)); // required type
__ pushptr(vmarg); // bad array
__ push((int)Bytecodes::_aaload); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
__ bind(bad_array_length);
UNPUSH_RSI_RDI;
__ push(rcx_recv); // AMH requiring a certain length
__ pushptr(vmarg); // bad array
__ push((int)Bytecodes::_arraylength); // who is complaining?
__ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
#undef UNPUSH_RSI_RDI
}
break;
case _adapter_flyby:
case _adapter_ricochet:
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
break;
default: ShouldNotReachHere();
}
__ hlt();
address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
__ unimplemented(entry_name(ek)); // %%% FIXME: NYI
init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}