6939203: JSR 292 needs method handle constants
Summary: Add new CP types CONSTANT_MethodHandle, CONSTANT_MethodType; extend 'ldc' bytecode.
Reviewed-by: twisti, never
/*
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_c1_LIRAssembler_x86.cpp.incl"
// These masks are used to provide 128-bit aligned bitmasks to the XMM
// instructions, to allow sign-masking or sign-bit flipping. They allow
// fast versions of NegF/NegD and AbsF/AbsD.
// Note: 'double' and 'long long' have 32-bits alignment on x86.
static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
// Use the expression (adr)&(~0xF) to provide 128-bits aligned address
// of 128-bits operands for SSE instructions.
jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
// Store the value to a 128-bits operand.
operand[0] = lo;
operand[1] = hi;
return operand;
}
// Buffer for 128-bits masks used by SSE instructions.
static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
// Static initialization during VM startup.
static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
NEEDS_CLEANUP // remove this definitions ?
const Register IC_Klass = rax; // where the IC klass is cached
const Register SYNC_header = rax; // synchronization header
const Register SHIFT_count = rcx; // where count for shift operations must be
#define __ _masm->
static void select_different_registers(Register preserve,
Register extra,
Register &tmp1,
Register &tmp2) {
if (tmp1 == preserve) {
assert_different_registers(tmp1, tmp2, extra);
tmp1 = extra;
} else if (tmp2 == preserve) {
assert_different_registers(tmp1, tmp2, extra);
tmp2 = extra;
}
assert_different_registers(preserve, tmp1, tmp2);
}
static void select_different_registers(Register preserve,
Register extra,
Register &tmp1,
Register &tmp2,
Register &tmp3) {
if (tmp1 == preserve) {
assert_different_registers(tmp1, tmp2, tmp3, extra);
tmp1 = extra;
} else if (tmp2 == preserve) {
assert_different_registers(tmp1, tmp2, tmp3, extra);
tmp2 = extra;
} else if (tmp3 == preserve) {
assert_different_registers(tmp1, tmp2, tmp3, extra);
tmp3 = extra;
}
assert_different_registers(preserve, tmp1, tmp2, tmp3);
}
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
if (opr->is_constant()) {
LIR_Const* constant = opr->as_constant_ptr();
switch (constant->type()) {
case T_INT: {
return true;
}
default:
return false;
}
}
return false;
}
LIR_Opr LIR_Assembler::receiverOpr() {
return FrameMap::receiver_opr;
}
LIR_Opr LIR_Assembler::incomingReceiverOpr() {
return receiverOpr();
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::as_pointer_opr(receiverOpr()->as_register());
}
//--------------fpu register translations-----------------------
address LIR_Assembler::float_constant(float f) {
address const_addr = __ float_constant(f);
if (const_addr == NULL) {
bailout("const section overflow");
return __ code()->consts()->start();
} else {
return const_addr;
}
}
address LIR_Assembler::double_constant(double d) {
address const_addr = __ double_constant(d);
if (const_addr == NULL) {
bailout("const section overflow");
return __ code()->consts()->start();
} else {
return const_addr;
}
}
void LIR_Assembler::set_24bit_FPU() {
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
}
void LIR_Assembler::reset_FPU() {
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
void LIR_Assembler::fpop() {
__ fpop();
}
void LIR_Assembler::fxch(int i) {
__ fxch(i);
}
void LIR_Assembler::fld(int i) {
__ fld_s(i);
}
void LIR_Assembler::ffree(int i) {
__ ffree(i);
}
void LIR_Assembler::breakpoint() {
__ int3();
}
void LIR_Assembler::push(LIR_Opr opr) {
if (opr->is_single_cpu()) {
__ push_reg(opr->as_register());
} else if (opr->is_double_cpu()) {
NOT_LP64(__ push_reg(opr->as_register_hi()));
__ push_reg(opr->as_register_lo());
} else if (opr->is_stack()) {
__ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
} else if (opr->is_constant()) {
LIR_Const* const_opr = opr->as_constant_ptr();
if (const_opr->type() == T_OBJECT) {
__ push_oop(const_opr->as_jobject());
} else if (const_opr->type() == T_INT) {
__ push_jint(const_opr->as_jint());
} else {
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::pop(LIR_Opr opr) {
if (opr->is_single_cpu()) {
__ pop_reg(opr->as_register());
} else {
ShouldNotReachHere();
}
}
bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
return addr->base()->is_illegal() && addr->index()->is_illegal();
}
//-------------------------------------------
Address LIR_Assembler::as_Address(LIR_Address* addr) {
return as_Address(addr, rscratch1);
}
Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
if (addr->base()->is_illegal()) {
assert(addr->index()->is_illegal(), "must be illegal too");
AddressLiteral laddr((address)addr->disp(), relocInfo::none);
if (! __ reachable(laddr)) {
__ movptr(tmp, laddr.addr());
Address res(tmp, 0);
return res;
} else {
return __ as_Address(laddr);
}
}
Register base = addr->base()->as_pointer_register();
if (addr->index()->is_illegal()) {
return Address( base, addr->disp());
} else if (addr->index()->is_cpu_register()) {
Register index = addr->index()->as_pointer_register();
return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
} else if (addr->index()->is_constant()) {
intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
assert(Assembler::is_simm32(addr_offset), "must be");
return Address(base, addr_offset);
} else {
Unimplemented();
return Address();
}
}
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
Address base = as_Address(addr);
return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
}
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
return as_Address(addr);
}
void LIR_Assembler::osr_entry() {
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->state();
int number_of_locks = entry_state->locks_size();
// we jump here if osr happens with the interpreter
// state set up to continue at the beginning of the
// loop that triggered osr - in particular, we have
// the following registers setup:
//
// rcx: osr buffer
//
// build frame
ciMethod* m = compilation()->method();
__ build_frame(initial_frame_size_in_bytes());
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[0..number_of_locks]
//
// locals is a direct copy of the interpreter frame so in the osr buffer
// so first slot in the local array is the last local from the interpreter
// and last slot is local[0] (receiver) from the interpreter
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method)
// Initialize monitors in the compiled activation.
// rcx: pointer to osr buffer
//
// All other registers are dead at this point and the locals will be
// copied into place by code emitted in the IR.
Register OSR_buf = osrBufferPointer()->as_pointer_register();
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = BytesPerWord * method()->max_locals() +
(2 * BytesPerWord) * (number_of_locks - 1);
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
// the OSR buffer using 2 word entries: first the lock and then
// the oop.
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
#ifdef ASSERT
// verify the interpreter's monitor has a non-null object
{
Label L;
__ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
__ jcc(Assembler::notZero, L);
__ stop("locked object is NULL");
__ bind(L);
}
#endif
__ movptr(rbx, Address(OSR_buf, slot_offset + 0));
__ movptr(frame_map()->address_for_monitor_lock(i), rbx);
__ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
__ movptr(frame_map()->address_for_monitor_object(i), rbx);
}
}
}
// inline cache check; done before the frame is built.
int LIR_Assembler::check_icache() {
Register receiver = FrameMap::receiver_opr->as_register();
Register ic_klass = IC_Klass;
const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
if (!VerifyOops) {
// insert some nops so that the verified entry point is aligned on CodeEntryAlignment
while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
__ nop();
}
}
int offset = __ offset();
__ inline_cache_check(receiver, IC_Klass);
assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
if (VerifyOops) {
// force alignment after the cache check.
// It's been verified to be aligned if !VerifyOops
__ align(CodeEntryAlignment);
}
return offset;
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
jobject o = NULL;
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
__ movoop(reg, o);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
if (exception->is_valid()) {
// preserve exception
// note: the monitor_exit runtime call is a leaf routine
// and cannot block => no GC can happen
// The slow case (MonitorAccessStub) uses the first two stack slots
// ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
__ movptr (Address(rsp, 2*wordSize), exception);
}
Register obj_reg = obj_opr->as_register();
Register lock_reg = lock_opr->as_register();
// setup registers (lock_reg must be rax, for lock_object)
assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
Register hdr = lock_reg;
assert(new_hdr == SYNC_header, "wrong register");
lock_reg = new_hdr;
// compute pointer to BasicLock
Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
__ lea(lock_reg, lock_addr);
// unlock object
MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
// _slow_case_stubs->append(slow_case);
// temporary fix: must be created after exceptionhandler, therefore as call stub
_slow_case_stubs->append(slow_case);
if (UseFastLocking) {
// try inlined fast unlocking first, revert to slow locking if it fails
// note: lock_reg points to the displaced header since the displaced header offset is 0!
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
} else {
// always do slow unlocking
// note: the slow unlocking code could be inlined here, however if we use
// slow unlocking, speed doesn't matter anyway and this solution is
// simpler and requires less duplicated code - additionally, the
// slow unlocking code is the same in either case which simplifies
// debugging
__ jmp(*slow_case->entry());
}
// done
__ bind(*slow_case->continuation());
if (exception->is_valid()) {
// restore exception
__ movptr (exception, Address(rsp, 2 * wordSize));
}
}
// This specifies the rsp decrement needed to build the frame
int LIR_Assembler::initial_frame_size_in_bytes() {
// if rounding, must let FrameMap know!
// The frame_map records size in slots (32bit word)
// subtract two words to account for return address and link
return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
}
int LIR_Assembler::emit_exception_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for exception handler
address handler_base = __ start_a_stub(exception_handler_size);
if (handler_base == NULL) {
// not enough space left for the handler
bailout("exception handler overflow");
return -1;
}
int offset = code_offset();
// the exception oop and pc are in rax, and rdx
// no other registers need to be preserved, so invalidate them
__ invalidate_registers(false, true, true, false, true, true);
// check that there is really an exception
__ verify_not_null_oop(rax);
// search an exception handler (rax: exception oop, rdx: throwing pc)
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
__ stop("should not reach here");
assert(code_offset() - offset <= exception_handler_size, "overflow");
__ end_a_stub();
return offset;
}
// Emit the code to remove the frame from the stack in the exception
// unwind path.
int LIR_Assembler::emit_unwind_handler() {
#ifndef PRODUCT
if (CommentedAssembly) {
_masm->block_comment("Unwind handler");
}
#endif
int offset = code_offset();
// Fetch the exception from TLS and clear out exception related thread state
__ get_thread(rsi);
__ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
__ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
__ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
__ bind(_unwind_handler_entry);
__ verify_not_null_oop(rax);
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ mov(rsi, rax); // Preserve the exception
}
// Preform needed unlocking
MonitorExitStub* stub = NULL;
if (method()->is_synchronized()) {
monitor_address(0, FrameMap::rax_opr);
stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
__ unlock_object(rdi, rbx, rax, *stub->entry());
__ bind(*stub->continuation());
}
if (compilation()->env()->dtrace_method_probes()) {
__ movoop(Address(rsp, 0), method()->constant_encoding());
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
}
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ mov(rax, rsi); // Restore the exception
}
// remove the activation and dispatch to the unwind handler
__ remove_frame(initial_frame_size_in_bytes());
__ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
// Emit the slow path assembly
if (stub != NULL) {
stub->emit_code(this);
}
return offset;
}
int LIR_Assembler::emit_deopt_handler() {
// if the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci => add a nop
// (was bug 5/14/1999 - gri)
__ nop();
// generate code for exception handler
address handler_base = __ start_a_stub(deopt_handler_size);
if (handler_base == NULL) {
// not enough space left for the handler
bailout("deopt handler overflow");
return -1;
}
int offset = code_offset();
InternalAddress here(__ pc());
__ pushptr(here.addr());
__ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
assert(code_offset() - offset <= deopt_handler_size, "overflow");
__ end_a_stub();
return offset;
}
// This is the fast version of java.lang.String.compare; it has not
// OSR-entry and therefore, we generate a slow version for OSR's
void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
__ movptr (rbx, rcx); // receiver is in rcx
__ movptr (rax, arg1->as_register());
// Get addresses of first characters from both Strings
__ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
__ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
__ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
// rbx, may be NULL
add_debug_info_for_null_check_here(info);
__ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
__ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
__ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
// compute minimum length (in rax) and difference of lengths (on top of stack)
if (VM_Version::supports_cmov()) {
__ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
__ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
__ mov (rcx, rbx);
__ subptr (rbx, rax); // subtract lengths
__ push (rbx); // result
__ cmov (Assembler::lessEqual, rax, rcx);
} else {
Label L;
__ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
__ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
__ mov (rax, rbx);
__ subptr (rbx, rcx);
__ push (rbx);
__ jcc (Assembler::lessEqual, L);
__ mov (rax, rcx);
__ bind (L);
}
// is minimum length 0?
Label noLoop, haveResult;
__ testptr (rax, rax);
__ jcc (Assembler::zero, noLoop);
// compare first characters
__ load_unsigned_short(rcx, Address(rdi, 0));
__ load_unsigned_short(rbx, Address(rsi, 0));
__ subl(rcx, rbx);
__ jcc(Assembler::notZero, haveResult);
// starting loop
__ decrement(rax); // we already tested index: skip one
__ jcc(Assembler::zero, noLoop);
// set rsi.edi to the end of the arrays (arrays have same length)
// negate the index
__ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
__ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
__ negptr(rax);
// compare the strings in a loop
Label loop;
__ align(wordSize);
__ bind(loop);
__ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
__ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
__ subl(rcx, rbx);
__ jcc(Assembler::notZero, haveResult);
__ increment(rax);
__ jcc(Assembler::notZero, loop);
// strings are equal up to min length
__ bind(noLoop);
__ pop(rax);
return_op(LIR_OprFact::illegalOpr);
__ bind(haveResult);
// leave instruction is going to discard the TOS value
__ mov (rax, rcx); // result of call is in rax,
}
void LIR_Assembler::return_op(LIR_Opr result) {
assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
assert(result->fpu() == 0, "result must already be on TOS");
}
// Pop the stack before the safepoint code
__ remove_frame(initial_frame_size_in_bytes());
bool result_is_oop = result->is_valid() ? result->is_oop() : false;
// Note: we do not need to round double result; float result has the right precision
// the poll sets the condition code, but no data registers
AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
relocInfo::poll_return_type);
// NOTE: the requires that the polling page be reachable else the reloc
// goes to the movq that loads the address and not the faulting instruction
// which breaks the signal handler code
__ test32(rax, polling_page);
__ ret(0);
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
relocInfo::poll_type);
if (info != NULL) {
add_debug_info_for_branch(info);
} else {
ShouldNotReachHere();
}
int offset = __ offset();
// NOTE: the requires that the polling page be reachable else the reloc
// goes to the movq that loads the address and not the faulting instruction
// which breaks the signal handler code
__ test32(rax, polling_page);
return offset;
}
void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
if (from_reg != to_reg) __ mov(to_reg, from_reg);
}
void LIR_Assembler::swap_reg(Register a, Register b) {
__ xchgptr(a, b);
}
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT:
case T_ADDRESS: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ movl(dest->as_register(), c->as_jint());
break;
}
case T_LONG: {
assert(patch_code == lir_patch_none, "no patching handled here");
#ifdef _LP64
__ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
#else
__ movptr(dest->as_register_lo(), c->as_jint_lo());
__ movptr(dest->as_register_hi(), c->as_jint_hi());
#endif // _LP64
break;
}
case T_OBJECT: {
if (patch_code != lir_patch_none) {
jobject2reg_with_patching(dest->as_register(), info);
} else {
__ movoop(dest->as_register(), c->as_jobject());
}
break;
}
case T_FLOAT: {
if (dest->is_single_xmm()) {
if (c->is_zero_float()) {
__ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
} else {
__ movflt(dest->as_xmm_float_reg(),
InternalAddress(float_constant(c->as_jfloat())));
}
} else {
assert(dest->is_single_fpu(), "must be");
assert(dest->fpu_regnr() == 0, "dest must be TOS");
if (c->is_zero_float()) {
__ fldz();
} else if (c->is_one_float()) {
__ fld1();
} else {
__ fld_s (InternalAddress(float_constant(c->as_jfloat())));
}
}
break;
}
case T_DOUBLE: {
if (dest->is_double_xmm()) {
if (c->is_zero_double()) {
__ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
} else {
__ movdbl(dest->as_xmm_double_reg(),
InternalAddress(double_constant(c->as_jdouble())));
}
} else {
assert(dest->is_double_fpu(), "must be");
assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
if (c->is_zero_double()) {
__ fldz();
} else if (c->is_one_double()) {
__ fld1();
} else {
__ fld_d (InternalAddress(double_constant(c->as_jdouble())));
}
}
break;
}
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_stack(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT: // fall through
case T_FLOAT:
case T_ADDRESS:
__ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
break;
case T_OBJECT:
__ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
break;
case T_LONG: // fall through
case T_DOUBLE:
#ifdef _LP64
__ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
#else
__ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
lo_word_offset_in_bytes), c->as_jint_lo_bits());
__ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
hi_word_offset_in_bytes), c->as_jint_hi_bits());
#endif // _LP64
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_address(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
LIR_Address* addr = dest->as_address_ptr();
int null_check_here = code_offset();
switch (type) {
case T_INT: // fall through
case T_FLOAT:
case T_ADDRESS:
__ movl(as_Address(addr), c->as_jint_bits());
break;
case T_OBJECT: // fall through
case T_ARRAY:
if (c->as_jobject() == NULL) {
__ movptr(as_Address(addr), NULL_WORD);
} else {
if (is_literal_address(addr)) {
ShouldNotReachHere();
__ movoop(as_Address(addr, noreg), c->as_jobject());
} else {
#ifdef _LP64
__ movoop(rscratch1, c->as_jobject());
null_check_here = code_offset();
__ movptr(as_Address_lo(addr), rscratch1);
#else
__ movoop(as_Address(addr), c->as_jobject());
#endif
}
}
break;
case T_LONG: // fall through
case T_DOUBLE:
#ifdef _LP64
if (is_literal_address(addr)) {
ShouldNotReachHere();
__ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
} else {
__ movptr(r10, (intptr_t)c->as_jlong_bits());
null_check_here = code_offset();
__ movptr(as_Address_lo(addr), r10);
}
#else
// Always reachable in 32bit so this doesn't produce useless move literal
__ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
__ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
#endif // _LP64
break;
case T_BOOLEAN: // fall through
case T_BYTE:
__ movb(as_Address(addr), c->as_jint() & 0xFF);
break;
case T_CHAR: // fall through
case T_SHORT:
__ movw(as_Address(addr), c->as_jint() & 0xFFFF);
break;
default:
ShouldNotReachHere();
};
if (info != NULL) {
add_debug_info_for_null_check(null_check_here, info);
}
}
void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
assert(src->is_register(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
// move between cpu-registers
if (dest->is_single_cpu()) {
#ifdef _LP64
if (src->type() == T_LONG) {
// Can do LONG -> OBJECT
move_regs(src->as_register_lo(), dest->as_register());
return;
}
#endif
assert(src->is_single_cpu(), "must match");
if (src->type() == T_OBJECT) {
__ verify_oop(src->as_register());
}
move_regs(src->as_register(), dest->as_register());
} else if (dest->is_double_cpu()) {
#ifdef _LP64
if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
// Surprising to me but we can see move of a long to t_object
__ verify_oop(src->as_register());
move_regs(src->as_register(), dest->as_register_lo());
return;
}
#endif
assert(src->is_double_cpu(), "must match");
Register f_lo = src->as_register_lo();
Register f_hi = src->as_register_hi();
Register t_lo = dest->as_register_lo();
Register t_hi = dest->as_register_hi();
#ifdef _LP64
assert(f_hi == f_lo, "must be same");
assert(t_hi == t_lo, "must be same");
move_regs(f_lo, t_lo);
#else
assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
if (f_lo == t_hi && f_hi == t_lo) {
swap_reg(f_lo, f_hi);
} else if (f_hi == t_lo) {
assert(f_lo != t_hi, "overwriting register");
move_regs(f_hi, t_hi);
move_regs(f_lo, t_lo);
} else {
assert(f_hi != t_lo, "overwriting register");
move_regs(f_lo, t_lo);
move_regs(f_hi, t_hi);
}
#endif // LP64
// special moves from fpu-register to xmm-register
// necessary for method results
} else if (src->is_single_xmm() && !dest->is_single_xmm()) {
__ movflt(Address(rsp, 0), src->as_xmm_float_reg());
__ fld_s(Address(rsp, 0));
} else if (src->is_double_xmm() && !dest->is_double_xmm()) {
__ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
__ fld_d(Address(rsp, 0));
} else if (dest->is_single_xmm() && !src->is_single_xmm()) {
__ fstp_s(Address(rsp, 0));
__ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
} else if (dest->is_double_xmm() && !src->is_double_xmm()) {
__ fstp_d(Address(rsp, 0));
__ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
// move between xmm-registers
} else if (dest->is_single_xmm()) {
assert(src->is_single_xmm(), "must match");
__ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
} else if (dest->is_double_xmm()) {
assert(src->is_double_xmm(), "must match");
__ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
// move between fpu-registers (no instruction necessary because of fpu-stack)
} else if (dest->is_single_fpu() || dest->is_double_fpu()) {
assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
assert(src->is_register(), "should not call otherwise");
assert(dest->is_stack(), "should not call otherwise");
if (src->is_single_cpu()) {
Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
if (type == T_OBJECT || type == T_ARRAY) {
__ verify_oop(src->as_register());
__ movptr (dst, src->as_register());
} else {
__ movl (dst, src->as_register());
}
} else if (src->is_double_cpu()) {
Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
__ movptr (dstLO, src->as_register_lo());
NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
} else if (src->is_single_xmm()) {
Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ movflt(dst_addr, src->as_xmm_float_reg());
} else if (src->is_double_xmm()) {
Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
__ movdbl(dst_addr, src->as_xmm_double_reg());
} else if (src->is_single_fpu()) {
assert(src->fpu_regnr() == 0, "argument must be on TOS");
Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
if (pop_fpu_stack) __ fstp_s (dst_addr);
else __ fst_s (dst_addr);
} else if (src->is_double_fpu()) {
assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
if (pop_fpu_stack) __ fstp_d (dst_addr);
else __ fst_d (dst_addr);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
LIR_Address* to_addr = dest->as_address_ptr();
PatchingStub* patch = NULL;
if (type == T_ARRAY || type == T_OBJECT) {
__ verify_oop(src->as_register());
}
if (patch_code != lir_patch_none) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
Address toa = as_Address(to_addr);
assert(toa.disp() != 0, "must have");
}
if (info != NULL) {
add_debug_info_for_null_check_here(info);
}
switch (type) {
case T_FLOAT: {
if (src->is_single_xmm()) {
__ movflt(as_Address(to_addr), src->as_xmm_float_reg());
} else {
assert(src->is_single_fpu(), "must be");
assert(src->fpu_regnr() == 0, "argument must be on TOS");
if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
else __ fst_s (as_Address(to_addr));
}
break;
}
case T_DOUBLE: {
if (src->is_double_xmm()) {
__ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
} else {
assert(src->is_double_fpu(), "must be");
assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
else __ fst_d (as_Address(to_addr));
}
break;
}
case T_ADDRESS: // fall through
case T_ARRAY: // fall through
case T_OBJECT: // fall through
#ifdef _LP64
__ movptr(as_Address(to_addr), src->as_register());
break;
#endif // _LP64
case T_INT:
__ movl(as_Address(to_addr), src->as_register());
break;
case T_LONG: {
Register from_lo = src->as_register_lo();
Register from_hi = src->as_register_hi();
#ifdef _LP64
__ movptr(as_Address_lo(to_addr), from_lo);
#else
Register base = to_addr->base()->as_register();
Register index = noreg;
if (to_addr->index()->is_register()) {
index = to_addr->index()->as_register();
}
if (base == from_lo || index == from_lo) {
assert(base != from_hi, "can't be");
assert(index == noreg || (index != base && index != from_hi), "can't handle this");
__ movl(as_Address_hi(to_addr), from_hi);
if (patch != NULL) {
patching_epilog(patch, lir_patch_high, base, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_low;
}
__ movl(as_Address_lo(to_addr), from_lo);
} else {
assert(index == noreg || (index != base && index != from_lo), "can't handle this");
__ movl(as_Address_lo(to_addr), from_lo);
if (patch != NULL) {
patching_epilog(patch, lir_patch_low, base, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_high;
}
__ movl(as_Address_hi(to_addr), from_hi);
}
#endif // _LP64
break;
}
case T_BYTE: // fall through
case T_BOOLEAN: {
Register src_reg = src->as_register();
Address dst_addr = as_Address(to_addr);
assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
__ movb(dst_addr, src_reg);
break;
}
case T_CHAR: // fall through
case T_SHORT:
__ movw(as_Address(to_addr), src->as_register());
break;
default:
ShouldNotReachHere();
}
if (patch_code != lir_patch_none) {
patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
}
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
assert(src->is_stack(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
if (dest->is_single_cpu()) {
if (type == T_ARRAY || type == T_OBJECT) {
__ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
__ verify_oop(dest->as_register());
} else {
__ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
}
} else if (dest->is_double_cpu()) {
Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
__ movptr(dest->as_register_lo(), src_addr_LO);
NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
} else if (dest->is_single_xmm()) {
Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
__ movflt(dest->as_xmm_float_reg(), src_addr);
} else if (dest->is_double_xmm()) {
Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
__ movdbl(dest->as_xmm_double_reg(), src_addr);
} else if (dest->is_single_fpu()) {
assert(dest->fpu_regnr() == 0, "dest must be TOS");
Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
__ fld_s(src_addr);
} else if (dest->is_double_fpu()) {
assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
__ fld_d(src_addr);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
if (src->is_single_stack()) {
if (type == T_OBJECT || type == T_ARRAY) {
__ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
__ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
} else {
#ifndef _LP64
__ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
__ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
#else
//no pushl on 64bits
__ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
__ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
#endif
}
} else if (src->is_double_stack()) {
#ifdef _LP64
__ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
__ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
#else
__ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
// push and pop the part at src + wordSize, adding wordSize for the previous push
__ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
__ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
__ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
#endif // _LP64
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
assert(src->is_address(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
LIR_Address* addr = src->as_address_ptr();
Address from_addr = as_Address(addr);
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE: // fall through
case T_CHAR: // fall through
case T_SHORT:
if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
// on pre P6 processors we may get partial register stalls
// so blow away the value of to_rinfo before loading a
// partial word into it. Do it here so that it precedes
// the potential patch point below.
__ xorptr(dest->as_register(), dest->as_register());
}
break;
}
PatchingStub* patch = NULL;
if (patch_code != lir_patch_none) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(from_addr.disp() != 0, "must have");
}
if (info != NULL) {
add_debug_info_for_null_check_here(info);
}
switch (type) {
case T_FLOAT: {
if (dest->is_single_xmm()) {
__ movflt(dest->as_xmm_float_reg(), from_addr);
} else {
assert(dest->is_single_fpu(), "must be");
assert(dest->fpu_regnr() == 0, "dest must be TOS");
__ fld_s(from_addr);
}
break;
}
case T_DOUBLE: {
if (dest->is_double_xmm()) {
__ movdbl(dest->as_xmm_double_reg(), from_addr);
} else {
assert(dest->is_double_fpu(), "must be");
assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
__ fld_d(from_addr);
}
break;
}
case T_ADDRESS: // fall through
case T_OBJECT: // fall through
case T_ARRAY: // fall through
#ifdef _LP64
__ movptr(dest->as_register(), from_addr);
break;
#endif // _L64
case T_INT:
__ movl(dest->as_register(), from_addr);
break;
case T_LONG: {
Register to_lo = dest->as_register_lo();
Register to_hi = dest->as_register_hi();
#ifdef _LP64
__ movptr(to_lo, as_Address_lo(addr));
#else
Register base = addr->base()->as_register();
Register index = noreg;
if (addr->index()->is_register()) {
index = addr->index()->as_register();
}
if ((base == to_lo && index == to_hi) ||
(base == to_hi && index == to_lo)) {
// addresses with 2 registers are only formed as a result of
// array access so this code will never have to deal with
// patches or null checks.
assert(info == NULL && patch == NULL, "must be");
__ lea(to_hi, as_Address(addr));
__ movl(to_lo, Address(to_hi, 0));
__ movl(to_hi, Address(to_hi, BytesPerWord));
} else if (base == to_lo || index == to_lo) {
assert(base != to_hi, "can't be");
assert(index == noreg || (index != base && index != to_hi), "can't handle this");
__ movl(to_hi, as_Address_hi(addr));
if (patch != NULL) {
patching_epilog(patch, lir_patch_high, base, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_low;
}
__ movl(to_lo, as_Address_lo(addr));
} else {
assert(index == noreg || (index != base && index != to_lo), "can't handle this");
__ movl(to_lo, as_Address_lo(addr));
if (patch != NULL) {
patching_epilog(patch, lir_patch_low, base, info);
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
patch_code = lir_patch_high;
}
__ movl(to_hi, as_Address_hi(addr));
}
#endif // _LP64
break;
}
case T_BOOLEAN: // fall through
case T_BYTE: {
Register dest_reg = dest->as_register();
assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
__ movsbl(dest_reg, from_addr);
} else {
__ movb(dest_reg, from_addr);
__ shll(dest_reg, 24);
__ sarl(dest_reg, 24);
}
break;
}
case T_CHAR: {
Register dest_reg = dest->as_register();
assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
__ movzwl(dest_reg, from_addr);
} else {
__ movw(dest_reg, from_addr);
}
break;
}
case T_SHORT: {
Register dest_reg = dest->as_register();
if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
__ movswl(dest_reg, from_addr);
} else {
__ movw(dest_reg, from_addr);
__ shll(dest_reg, 16);
__ sarl(dest_reg, 16);
}
break;
}
default:
ShouldNotReachHere();
}
if (patch != NULL) {
patching_epilog(patch, patch_code, addr->base()->as_register(), info);
}
if (type == T_ARRAY || type == T_OBJECT) {
__ verify_oop(dest->as_register());
}
}
void LIR_Assembler::prefetchr(LIR_Opr src) {
LIR_Address* addr = src->as_address_ptr();
Address from_addr = as_Address(addr);
if (VM_Version::supports_sse()) {
switch (ReadPrefetchInstr) {
case 0:
__ prefetchnta(from_addr); break;
case 1:
__ prefetcht0(from_addr); break;
case 2:
__ prefetcht2(from_addr); break;
default:
ShouldNotReachHere(); break;
}
} else if (VM_Version::supports_3dnow()) {
__ prefetchr(from_addr);
}
}
void LIR_Assembler::prefetchw(LIR_Opr src) {
LIR_Address* addr = src->as_address_ptr();
Address from_addr = as_Address(addr);
if (VM_Version::supports_sse()) {
switch (AllocatePrefetchInstr) {
case 0:
__ prefetchnta(from_addr); break;
case 1:
__ prefetcht0(from_addr); break;
case 2:
__ prefetcht2(from_addr); break;
case 3:
__ prefetchw(from_addr); break;
default:
ShouldNotReachHere(); break;
}
} else if (VM_Version::supports_3dnow()) {
__ prefetchw(from_addr);
}
}
NEEDS_CLEANUP; // This could be static?
Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
int elem_size = type2aelembytes(type);
switch (elem_size) {
case 1: return Address::times_1;
case 2: return Address::times_2;
case 4: return Address::times_4;
case 8: return Address::times_8;
}
ShouldNotReachHere();
return Address::no_scale;
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
switch (op->code()) {
case lir_idiv:
case lir_irem:
arithmetic_idiv(op->code(),
op->in_opr1(),
op->in_opr2(),
op->in_opr3(),
op->result_opr(),
op->info());
break;
default: ShouldNotReachHere(); break;
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) _branch_target_blocks.append(op->block());
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
#endif
if (op->cond() == lir_cond_always) {
if (op->info() != NULL) add_debug_info_for_branch(op->info());
__ jmp (*(op->label()));
} else {
Assembler::Condition acond = Assembler::zero;
if (op->code() == lir_cond_float_branch) {
assert(op->ublock() != NULL, "must have unordered successor");
__ jcc(Assembler::parity, *(op->ublock()->label()));
switch(op->cond()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::below; break;
case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
case lir_cond_greater: acond = Assembler::above; break;
default: ShouldNotReachHere();
}
} else {
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
default: ShouldNotReachHere();
}
}
__ jcc(acond,*(op->label()));
}
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
LIR_Opr src = op->in_opr();
LIR_Opr dest = op->result_opr();
switch (op->bytecode()) {
case Bytecodes::_i2l:
#ifdef _LP64
__ movl2ptr(dest->as_register_lo(), src->as_register());
#else
move_regs(src->as_register(), dest->as_register_lo());
move_regs(src->as_register(), dest->as_register_hi());
__ sarl(dest->as_register_hi(), 31);
#endif // LP64
break;
case Bytecodes::_l2i:
move_regs(src->as_register_lo(), dest->as_register());
break;
case Bytecodes::_i2b:
move_regs(src->as_register(), dest->as_register());
__ sign_extend_byte(dest->as_register());
break;
case Bytecodes::_i2c:
move_regs(src->as_register(), dest->as_register());
__ andl(dest->as_register(), 0xFFFF);
break;
case Bytecodes::_i2s:
move_regs(src->as_register(), dest->as_register());
__ sign_extend_short(dest->as_register());
break;
case Bytecodes::_f2d:
case Bytecodes::_d2f:
if (dest->is_single_xmm()) {
__ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
} else if (dest->is_double_xmm()) {
__ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
} else {
assert(src->fpu() == dest->fpu(), "register must be equal");
// do nothing (float result is rounded later through spilling)
}
break;
case Bytecodes::_i2f:
case Bytecodes::_i2d:
if (dest->is_single_xmm()) {
__ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
} else if (dest->is_double_xmm()) {
__ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
} else {
assert(dest->fpu() == 0, "result must be on TOS");
__ movl(Address(rsp, 0), src->as_register());
__ fild_s(Address(rsp, 0));
}
break;
case Bytecodes::_f2i:
case Bytecodes::_d2i:
if (src->is_single_xmm()) {
__ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
} else if (src->is_double_xmm()) {
__ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
} else {
assert(src->fpu() == 0, "input must be on TOS");
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
__ fist_s(Address(rsp, 0));
__ movl(dest->as_register(), Address(rsp, 0));
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
// IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
assert(op->stub() != NULL, "stub required");
__ cmpl(dest->as_register(), 0x80000000);
__ jcc(Assembler::equal, *op->stub()->entry());
__ bind(*op->stub()->continuation());
break;
case Bytecodes::_l2f:
case Bytecodes::_l2d:
assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
assert(dest->fpu() == 0, "result must be on TOS");
__ movptr(Address(rsp, 0), src->as_register_lo());
NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
__ fild_d(Address(rsp, 0));
// float result is rounded later through spilling
break;
case Bytecodes::_f2l:
case Bytecodes::_d2l:
assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
assert(src->fpu() == 0, "input must be on TOS");
assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
// instruction sequence too long to inline it here
{
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
}
break;
default: ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
if (op->init_check()) {
__ cmpl(Address(op->klass()->as_register(),
instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
instanceKlass::fully_initialized);
add_debug_info_for_null_check_here(op->stub()->info());
__ jcc(Assembler::notEqual, *op->stub()->entry());
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
if (UseSlowPath ||
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
__ jmp(*op->stub()->entry());
} else {
Register len = op->len()->as_register();
Register tmp1 = op->tmp1()->as_register();
Register tmp2 = op->tmp2()->as_register();
Register tmp3 = op->tmp3()->as_register();
if (len == tmp1) {
tmp1 = tmp3;
} else if (len == tmp2) {
tmp2 = tmp3;
} else if (len == tmp3) {
// everything is ok
} else {
__ mov(tmp3, len);
}
__ allocate_array(op->obj()->as_register(),
len,
tmp1,
tmp2,
arrayOopDesc::header_size(op->type()),
array_element_size(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
LIR_Code code = op->code();
if (code == lir_store_check) {
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = op->tmp3()->as_register();
CodeStub* stub = op->stub();
Label done;
__ cmpptr(value, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, done);
add_debug_info_for_null_check_here(op->info_for_exception());
__ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
__ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
// get instance klass
__ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
__ push(klass_RInfo);
__ push(k_RInfo);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ pop(klass_RInfo);
__ pop(k_RInfo);
// result is a boolean
__ cmpl(k_RInfo, 0);
__ jcc(Assembler::equal, *stub->entry());
__ bind(done);
} else if (op->code() == lir_checkcast) {
// we always need a stub for the failure case.
CodeStub* stub = op->stub();
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
ciKlass* k = op->klass();
Register Rtmp1 = noreg;
Label done;
if (obj == k_RInfo) {
k_RInfo = dst;
} else if (obj == klass_RInfo) {
klass_RInfo = dst;
}
if (k->is_loaded()) {
select_different_registers(obj, dst, k_RInfo, klass_RInfo);
} else {
Rtmp1 = op->tmp3()->as_register();
select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
}
assert_different_registers(obj, k_RInfo, klass_RInfo);
if (!k->is_loaded()) {
jobject2reg_with_patching(k_RInfo, op->info_for_patch());
} else {
#ifdef _LP64
__ movoop(k_RInfo, k->constant_encoding());
#else
k_RInfo = noreg;
#endif // _LP64
}
assert(obj != k_RInfo, "must be different");
__ cmpptr(obj, (int32_t)NULL_WORD);
if (op->profiled_method() != NULL) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
Label profile_done;
__ jcc(Assembler::notEqual, profile_done);
// Object is null; update methodDataOop
ciMethodData* md = method->method_data();
if (md == NULL) {
bailout("out of memory building methodDataOop");
return;
}
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL, "need data for checkcast");
assert(data->is_BitData(), "need BitData for checkcast");
Register mdo = klass_RInfo;
__ movoop(mdo, md->constant_encoding());
Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
__ orl(data_addr, header_bits);
__ jmp(done);
__ bind(profile_done);
} else {
__ jcc(Assembler::equal, done);
}
__ verify_oop(obj);
if (op->fast_check()) {
// get object classo
// not a safepoint as obj null check happens earlier
if (k->is_loaded()) {
#ifdef _LP64
__ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
#else
__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
#endif // _LP64
} else {
__ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
}
__ jcc(Assembler::notEqual, *stub->entry());
__ bind(done);
} else {
// get object class
// not a safepoint as obj null check happens earlier
__ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
if (k->is_loaded()) {
// See if we get an immediate positive hit
#ifdef _LP64
__ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
#else
__ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
#endif // _LP64
if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
__ jcc(Assembler::notEqual, *stub->entry());
} else {
// See if we get an immediate positive hit
__ jcc(Assembler::equal, done);
// check for self
#ifdef _LP64
__ cmpptr(klass_RInfo, k_RInfo);
#else
__ cmpoop(klass_RInfo, k->constant_encoding());
#endif // _LP64
__ jcc(Assembler::equal, done);
__ push(klass_RInfo);
#ifdef _LP64
__ push(k_RInfo);
#else
__ pushoop(k->constant_encoding());
#endif // _LP64
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ pop(klass_RInfo);
__ pop(klass_RInfo);
// result is a boolean
__ cmpl(klass_RInfo, 0);
__ jcc(Assembler::equal, *stub->entry());
}
__ bind(done);
} else {
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
__ push(klass_RInfo);
__ push(k_RInfo);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ pop(klass_RInfo);
__ pop(k_RInfo);
// result is a boolean
__ cmpl(k_RInfo, 0);
__ jcc(Assembler::equal, *stub->entry());
__ bind(done);
}
}
if (dst != obj) {
__ mov(dst, obj);
}
} else if (code == lir_instanceof) {
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
ciKlass* k = op->klass();
Label done;
Label zero;
Label one;
if (obj == k_RInfo) {
k_RInfo = klass_RInfo;
klass_RInfo = obj;
}
// patching may screw with our temporaries on sparc,
// so let's do it before loading the class
if (!k->is_loaded()) {
jobject2reg_with_patching(k_RInfo, op->info_for_patch());
} else {
LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
}
assert(obj != k_RInfo, "must be different");
__ verify_oop(obj);
if (op->fast_check()) {
__ cmpptr(obj, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, zero);
// get object class
// not a safepoint as obj null check happens earlier
if (LP64_ONLY(false &&) k->is_loaded()) {
NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
k_RInfo = noreg;
} else {
__ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
}
__ jcc(Assembler::equal, one);
} else {
// get object class
// not a safepoint as obj null check happens earlier
__ cmpptr(obj, (int32_t)NULL_WORD);
__ jcc(Assembler::equal, zero);
__ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
#ifndef _LP64
if (k->is_loaded()) {
// See if we get an immediate positive hit
__ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
__ jcc(Assembler::equal, one);
if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
// check for self
__ cmpoop(klass_RInfo, k->constant_encoding());
__ jcc(Assembler::equal, one);
__ push(klass_RInfo);
__ pushoop(k->constant_encoding());
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ pop(klass_RInfo);
__ pop(dst);
__ jmp(done);
}
}
else // next block is unconditional if LP64:
#endif // LP64
{
assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
// perform the fast part of the checking logic
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
__ push(klass_RInfo);
__ push(k_RInfo);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
__ pop(klass_RInfo);
__ pop(dst);
__ jmp(done);
}
}
__ bind(zero);
__ xorptr(dst, dst);
__ jmp(done);
__ bind(one);
__ movptr(dst, 1);
__ bind(done);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
assert(op->new_value()->as_register_lo() == rbx, "wrong register");
assert(op->new_value()->as_register_hi() == rcx, "wrong register");
Register addr = op->addr()->as_register();
if (os::is_MP()) {
__ lock();
}
NOT_LP64(__ cmpxchg8(Address(addr, 0)));
} else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
Register newval = op->new_value()->as_register();
Register cmpval = op->cmp_value()->as_register();
assert(cmpval == rax, "wrong register");
assert(newval != NULL, "new val must be register");
assert(cmpval != newval, "cmp and new values must be in different registers");
assert(cmpval != addr, "cmp and addr must be in different registers");
assert(newval != addr, "new value and addr must be in different registers");
if (os::is_MP()) {
__ lock();
}
if ( op->code() == lir_cas_obj) {
__ cmpxchgptr(newval, Address(addr, 0));
} else if (op->code() == lir_cas_int) {
__ cmpxchgl(newval, Address(addr, 0));
} else {
LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
}
#ifdef _LP64
} else if (op->code() == lir_cas_long) {
Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
Register newval = op->new_value()->as_register_lo();
Register cmpval = op->cmp_value()->as_register_lo();
assert(cmpval == rax, "wrong register");
assert(newval != NULL, "new val must be register");
assert(cmpval != newval, "cmp and new values must be in different registers");
assert(cmpval != addr, "cmp and addr must be in different registers");
assert(newval != addr, "new value and addr must be in different registers");
if (os::is_MP()) {
__ lock();
}
__ cmpxchgq(newval, Address(addr, 0));
#endif // _LP64
} else {
Unimplemented();
}
}
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
Assembler::Condition acond, ncond;
switch (condition) {
case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
default: ShouldNotReachHere();
}
if (opr1->is_cpu_register()) {
reg2reg(opr1, result);
} else if (opr1->is_stack()) {
stack2reg(opr1, result, result->type());
} else if (opr1->is_constant()) {
const2reg(opr1, result, lir_patch_none, NULL);
} else {
ShouldNotReachHere();
}
if (VM_Version::supports_cmov() && !opr2->is_constant()) {
// optimized version that does not require a branch
if (opr2->is_single_cpu()) {
assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
__ cmov(ncond, result->as_register(), opr2->as_register());
} else if (opr2->is_double_cpu()) {
assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
__ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
} else if (opr2->is_single_stack()) {
__ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
} else if (opr2->is_double_stack()) {
__ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
} else {
ShouldNotReachHere();
}
} else {
Label skip;
__ jcc (acond, skip);
if (opr2->is_cpu_register()) {
reg2reg(opr2, result);
} else if (opr2->is_stack()) {
stack2reg(opr2, result, result->type());
} else if (opr2->is_constant()) {
const2reg(opr2, result, lir_patch_none, NULL);
} else {
ShouldNotReachHere();
}
__ bind(skip);
}
}
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
if (left->is_single_cpu()) {
assert(left == dest, "left and dest must be equal");
Register lreg = left->as_register();
if (right->is_single_cpu()) {
// cpu register - cpu register
Register rreg = right->as_register();
switch (code) {
case lir_add: __ addl (lreg, rreg); break;
case lir_sub: __ subl (lreg, rreg); break;
case lir_mul: __ imull(lreg, rreg); break;
default: ShouldNotReachHere();
}
} else if (right->is_stack()) {
// cpu register - stack
Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
switch (code) {
case lir_add: __ addl(lreg, raddr); break;
case lir_sub: __ subl(lreg, raddr); break;
default: ShouldNotReachHere();
}
} else if (right->is_constant()) {
// cpu register - constant
jint c = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_add: {
__ increment(lreg, c);
break;
}
case lir_sub: {
__ decrement(lreg, c);
break;
}
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
} else if (left->is_double_cpu()) {
assert(left == dest, "left and dest must be equal");
Register lreg_lo = left->as_register_lo();
Register lreg_hi = left->as_register_hi();
if (right->is_double_cpu()) {
// cpu register - cpu register
Register rreg_lo = right->as_register_lo();
Register rreg_hi = right->as_register_hi();
NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
switch (code) {
case lir_add:
__ addptr(lreg_lo, rreg_lo);
NOT_LP64(__ adcl(lreg_hi, rreg_hi));
break;
case lir_sub:
__ subptr(lreg_lo, rreg_lo);
NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
break;
case lir_mul:
#ifdef _LP64
__ imulq(lreg_lo, rreg_lo);
#else
assert(lreg_lo == rax && lreg_hi == rdx, "must be");
__ imull(lreg_hi, rreg_lo);
__ imull(rreg_hi, lreg_lo);
__ addl (rreg_hi, lreg_hi);
__ mull (rreg_lo);
__ addl (lreg_hi, rreg_hi);
#endif // _LP64
break;
default:
ShouldNotReachHere();
}
} else if (right->is_constant()) {
// cpu register - constant
#ifdef _LP64
jlong c = right->as_constant_ptr()->as_jlong_bits();
__ movptr(r10, (intptr_t) c);
switch (code) {
case lir_add:
__ addptr(lreg_lo, r10);
break;
case lir_sub:
__ subptr(lreg_lo, r10);
break;
default:
ShouldNotReachHere();
}
#else
jint c_lo = right->as_constant_ptr()->as_jint_lo();
jint c_hi = right->as_constant_ptr()->as_jint_hi();
switch (code) {
case lir_add:
__ addptr(lreg_lo, c_lo);
__ adcl(lreg_hi, c_hi);
break;
case lir_sub:
__ subptr(lreg_lo, c_lo);
__ sbbl(lreg_hi, c_hi);
break;
default:
ShouldNotReachHere();
}
#endif // _LP64
} else {
ShouldNotReachHere();
}
} else if (left->is_single_xmm()) {
assert(left == dest, "left and dest must be equal");
XMMRegister lreg = left->as_xmm_float_reg();
if (right->is_single_xmm()) {
XMMRegister rreg = right->as_xmm_float_reg();
switch (code) {
case lir_add: __ addss(lreg, rreg); break;
case lir_sub: __ subss(lreg, rreg); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ mulss(lreg, rreg); break;
case lir_div_strictfp: // fall through
case lir_div: __ divss(lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
Address raddr;
if (right->is_single_stack()) {
raddr = frame_map()->address_for_slot(right->single_stack_ix());
} else if (right->is_constant()) {
// hack for now
raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
} else {
ShouldNotReachHere();
}
switch (code) {
case lir_add: __ addss(lreg, raddr); break;
case lir_sub: __ subss(lreg, raddr); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ mulss(lreg, raddr); break;
case lir_div_strictfp: // fall through
case lir_div: __ divss(lreg, raddr); break;
default: ShouldNotReachHere();
}
}
} else if (left->is_double_xmm()) {
assert(left == dest, "left and dest must be equal");
XMMRegister lreg = left->as_xmm_double_reg();
if (right->is_double_xmm()) {
XMMRegister rreg = right->as_xmm_double_reg();
switch (code) {
case lir_add: __ addsd(lreg, rreg); break;
case lir_sub: __ subsd(lreg, rreg); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ mulsd(lreg, rreg); break;
case lir_div_strictfp: // fall through
case lir_div: __ divsd(lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
Address raddr;
if (right->is_double_stack()) {
raddr = frame_map()->address_for_slot(right->double_stack_ix());
} else if (right->is_constant()) {
// hack for now
raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
} else {
ShouldNotReachHere();
}
switch (code) {
case lir_add: __ addsd(lreg, raddr); break;
case lir_sub: __ subsd(lreg, raddr); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ mulsd(lreg, raddr); break;
case lir_div_strictfp: // fall through
case lir_div: __ divsd(lreg, raddr); break;
default: ShouldNotReachHere();
}
}
} else if (left->is_single_fpu()) {
assert(dest->is_single_fpu(), "fpu stack allocation required");
if (right->is_single_fpu()) {
arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
} else {
assert(left->fpu_regnr() == 0, "left must be on TOS");
assert(dest->fpu_regnr() == 0, "dest must be on TOS");
Address raddr;
if (right->is_single_stack()) {
raddr = frame_map()->address_for_slot(right->single_stack_ix());
} else if (right->is_constant()) {
address const_addr = float_constant(right->as_jfloat());
assert(const_addr != NULL, "incorrect float/double constant maintainance");
// hack for now
raddr = __ as_Address(InternalAddress(const_addr));
} else {
ShouldNotReachHere();
}
switch (code) {
case lir_add: __ fadd_s(raddr); break;
case lir_sub: __ fsub_s(raddr); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ fmul_s(raddr); break;
case lir_div_strictfp: // fall through
case lir_div: __ fdiv_s(raddr); break;
default: ShouldNotReachHere();
}
}
} else if (left->is_double_fpu()) {
assert(dest->is_double_fpu(), "fpu stack allocation required");
if (code == lir_mul_strictfp || code == lir_div_strictfp) {
// Double values require special handling for strictfp mul/div on x86
__ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
__ fmulp(left->fpu_regnrLo() + 1);
}
if (right->is_double_fpu()) {
arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
} else {
assert(left->fpu_regnrLo() == 0, "left must be on TOS");
assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
Address raddr;
if (right->is_double_stack()) {
raddr = frame_map()->address_for_slot(right->double_stack_ix());
} else if (right->is_constant()) {
// hack for now
raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
} else {
ShouldNotReachHere();
}
switch (code) {
case lir_add: __ fadd_d(raddr); break;
case lir_sub: __ fsub_d(raddr); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ fmul_d(raddr); break;
case lir_div_strictfp: // fall through
case lir_div: __ fdiv_d(raddr); break;
default: ShouldNotReachHere();
}
}
if (code == lir_mul_strictfp || code == lir_div_strictfp) {
// Double values require special handling for strictfp mul/div on x86
__ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
__ fmulp(dest->fpu_regnrLo() + 1);
}
} else if (left->is_single_stack() || left->is_address()) {
assert(left == dest, "left and dest must be equal");
Address laddr;
if (left->is_single_stack()) {
laddr = frame_map()->address_for_slot(left->single_stack_ix());
} else if (left->is_address()) {
laddr = as_Address(left->as_address_ptr());
} else {
ShouldNotReachHere();
}
if (right->is_single_cpu()) {
Register rreg = right->as_register();
switch (code) {
case lir_add: __ addl(laddr, rreg); break;
case lir_sub: __ subl(laddr, rreg); break;
default: ShouldNotReachHere();
}
} else if (right->is_constant()) {
jint c = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_add: {
__ incrementl(laddr, c);
break;
}
case lir_sub: {
__ decrementl(laddr, c);
break;
}
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
assert(left_index == 0 || right_index == 0, "either must be on top of stack");
bool left_is_tos = (left_index == 0);
bool dest_is_tos = (dest_index == 0);
int non_tos_index = (left_is_tos ? right_index : left_index);
switch (code) {
case lir_add:
if (pop_fpu_stack) __ faddp(non_tos_index);
else if (dest_is_tos) __ fadd (non_tos_index);
else __ fadda(non_tos_index);
break;
case lir_sub:
if (left_is_tos) {
if (pop_fpu_stack) __ fsubrp(non_tos_index);
else if (dest_is_tos) __ fsub (non_tos_index);
else __ fsubra(non_tos_index);
} else {
if (pop_fpu_stack) __ fsubp (non_tos_index);
else if (dest_is_tos) __ fsubr (non_tos_index);
else __ fsuba (non_tos_index);
}
break;
case lir_mul_strictfp: // fall through
case lir_mul:
if (pop_fpu_stack) __ fmulp(non_tos_index);
else if (dest_is_tos) __ fmul (non_tos_index);
else __ fmula(non_tos_index);
break;
case lir_div_strictfp: // fall through
case lir_div:
if (left_is_tos) {
if (pop_fpu_stack) __ fdivrp(non_tos_index);
else if (dest_is_tos) __ fdiv (non_tos_index);
else __ fdivra(non_tos_index);
} else {
if (pop_fpu_stack) __ fdivp (non_tos_index);
else if (dest_is_tos) __ fdivr (non_tos_index);
else __ fdiva (non_tos_index);
}
break;
case lir_rem:
assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
__ fremr(noreg);
break;
default:
ShouldNotReachHere();
}
}
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
if (value->is_double_xmm()) {
switch(code) {
case lir_abs :
{
if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
__ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
}
__ andpd(dest->as_xmm_double_reg(),
ExternalAddress((address)double_signmask_pool));
}
break;
case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
// all other intrinsics are not available in the SSE instruction set, so FPU is used
default : ShouldNotReachHere();
}
} else if (value->is_double_fpu()) {
assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
switch(code) {
case lir_log : __ flog() ; break;
case lir_log10 : __ flog10() ; break;
case lir_abs : __ fabs() ; break;
case lir_sqrt : __ fsqrt(); break;
case lir_sin :
// Should consider not saving rbx, if not necessary
__ trigfunc('s', op->as_Op2()->fpu_stack_size());
break;
case lir_cos :
// Should consider not saving rbx, if not necessary
assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
__ trigfunc('c', op->as_Op2()->fpu_stack_size());
break;
case lir_tan :
// Should consider not saving rbx, if not necessary
__ trigfunc('t', op->as_Op2()->fpu_stack_size());
break;
default : ShouldNotReachHere();
}
} else {
Unimplemented();
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
// assert(left->destroys_register(), "check");
if (left->is_single_cpu()) {
Register reg = left->as_register();
if (right->is_constant()) {
int val = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_logic_and: __ andl (reg, val); break;
case lir_logic_or: __ orl (reg, val); break;
case lir_logic_xor: __ xorl (reg, val); break;
default: ShouldNotReachHere();
}
} else if (right->is_stack()) {
// added support for stack operands
Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
switch (code) {
case lir_logic_and: __ andl (reg, raddr); break;
case lir_logic_or: __ orl (reg, raddr); break;
case lir_logic_xor: __ xorl (reg, raddr); break;
default: ShouldNotReachHere();
}
} else {
Register rright = right->as_register();
switch (code) {
case lir_logic_and: __ andptr (reg, rright); break;
case lir_logic_or : __ orptr (reg, rright); break;
case lir_logic_xor: __ xorptr (reg, rright); break;
default: ShouldNotReachHere();
}
}
move_regs(reg, dst->as_register());
} else {
Register l_lo = left->as_register_lo();
Register l_hi = left->as_register_hi();
if (right->is_constant()) {
#ifdef _LP64
__ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
switch (code) {
case lir_logic_and:
__ andq(l_lo, rscratch1);
break;
case lir_logic_or:
__ orq(l_lo, rscratch1);
break;
case lir_logic_xor:
__ xorq(l_lo, rscratch1);
break;
default: ShouldNotReachHere();
}
#else
int r_lo = right->as_constant_ptr()->as_jint_lo();
int r_hi = right->as_constant_ptr()->as_jint_hi();
switch (code) {
case lir_logic_and:
__ andl(l_lo, r_lo);
__ andl(l_hi, r_hi);
break;
case lir_logic_or:
__ orl(l_lo, r_lo);
__ orl(l_hi, r_hi);
break;
case lir_logic_xor:
__ xorl(l_lo, r_lo);
__ xorl(l_hi, r_hi);
break;
default: ShouldNotReachHere();
}
#endif // _LP64
} else {
#ifdef _LP64
Register r_lo;
if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
r_lo = right->as_register();
} else {
r_lo = right->as_register_lo();
}
#else
Register r_lo = right->as_register_lo();
Register r_hi = right->as_register_hi();
assert(l_lo != r_hi, "overwriting registers");
#endif
switch (code) {
case lir_logic_and:
__ andptr(l_lo, r_lo);
NOT_LP64(__ andptr(l_hi, r_hi);)
break;
case lir_logic_or:
__ orptr(l_lo, r_lo);
NOT_LP64(__ orptr(l_hi, r_hi);)
break;
case lir_logic_xor:
__ xorptr(l_lo, r_lo);
NOT_LP64(__ xorptr(l_hi, r_hi);)
break;
default: ShouldNotReachHere();
}
}
Register dst_lo = dst->as_register_lo();
Register dst_hi = dst->as_register_hi();
#ifdef _LP64
move_regs(l_lo, dst_lo);
#else
if (dst_lo == l_hi) {
assert(dst_hi != l_lo, "overwriting registers");
move_regs(l_hi, dst_hi);
move_regs(l_lo, dst_lo);
} else {
assert(dst_lo != l_hi, "overwriting registers");
move_regs(l_lo, dst_lo);
move_regs(l_hi, dst_hi);
}
#endif // _LP64
}
}
// we assume that rax, and rdx can be overwritten
void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
assert(left->is_single_cpu(), "left must be register");
assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
assert(result->is_single_cpu(), "result must be register");
// assert(left->destroys_register(), "check");
// assert(right->destroys_register(), "check");
Register lreg = left->as_register();
Register dreg = result->as_register();
if (right->is_constant()) {
int divisor = right->as_constant_ptr()->as_jint();
assert(divisor > 0 && is_power_of_2(divisor), "must be");
if (code == lir_idiv) {
assert(lreg == rax, "must be rax,");
assert(temp->as_register() == rdx, "tmp register must be rdx");
__ cdql(); // sign extend into rdx:rax
if (divisor == 2) {
__ subl(lreg, rdx);
} else {
__ andl(rdx, divisor - 1);
__ addl(lreg, rdx);
}
__ sarl(lreg, log2_intptr(divisor));
move_regs(lreg, dreg);
} else if (code == lir_irem) {
Label done;
__ mov(dreg, lreg);
__ andl(dreg, 0x80000000 | (divisor - 1));
__ jcc(Assembler::positive, done);
__ decrement(dreg);
__ orl(dreg, ~(divisor - 1));
__ increment(dreg);
__ bind(done);
} else {
ShouldNotReachHere();
}
} else {
Register rreg = right->as_register();
assert(lreg == rax, "left register must be rax,");
assert(rreg != rdx, "right register must not be rdx");
assert(temp->as_register() == rdx, "tmp register must be rdx");
move_regs(lreg, rax);
int idivl_offset = __ corrected_idivl(rreg);
add_debug_info_for_div0(idivl_offset, info);
if (code == lir_irem) {
move_regs(rdx, dreg); // result is in rdx
} else {
move_regs(rax, dreg);
}
}
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
if (opr1->is_single_cpu()) {
Register reg1 = opr1->as_register();
if (opr2->is_single_cpu()) {
// cpu register - cpu register
if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
__ cmpptr(reg1, opr2->as_register());
} else {
assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
__ cmpl(reg1, opr2->as_register());
}
} else if (opr2->is_stack()) {
// cpu register - stack
if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
__ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
} else {
__ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
}
} else if (opr2->is_constant()) {
// cpu register - constant
LIR_Const* c = opr2->as_constant_ptr();
if (c->type() == T_INT) {
__ cmpl(reg1, c->as_jint());
} else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
// In 64bit oops are single register
jobject o = c->as_jobject();
if (o == NULL) {
__ cmpptr(reg1, (int32_t)NULL_WORD);
} else {
#ifdef _LP64
__ movoop(rscratch1, o);
__ cmpptr(reg1, rscratch1);
#else
__ cmpoop(reg1, c->as_jobject());
#endif // _LP64
}
} else {
ShouldNotReachHere();
}
// cpu register - address
} else if (opr2->is_address()) {
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
__ cmpl(reg1, as_Address(opr2->as_address_ptr()));
} else {
ShouldNotReachHere();
}
} else if(opr1->is_double_cpu()) {
Register xlo = opr1->as_register_lo();
Register xhi = opr1->as_register_hi();
if (opr2->is_double_cpu()) {
#ifdef _LP64
__ cmpptr(xlo, opr2->as_register_lo());
#else
// cpu register - cpu register
Register ylo = opr2->as_register_lo();
Register yhi = opr2->as_register_hi();
__ subl(xlo, ylo);
__ sbbl(xhi, yhi);
if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
__ orl(xhi, xlo);
}
#endif // _LP64
} else if (opr2->is_constant()) {
// cpu register - constant 0
assert(opr2->as_jlong() == (jlong)0, "only handles zero");
#ifdef _LP64
__ cmpptr(xlo, (int32_t)opr2->as_jlong());
#else
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
__ orl(xhi, xlo);
#endif // _LP64
} else {
ShouldNotReachHere();
}
} else if (opr1->is_single_xmm()) {
XMMRegister reg1 = opr1->as_xmm_float_reg();
if (opr2->is_single_xmm()) {
// xmm register - xmm register
__ ucomiss(reg1, opr2->as_xmm_float_reg());
} else if (opr2->is_stack()) {
// xmm register - stack
__ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
} else if (opr2->is_constant()) {
// xmm register - constant
__ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
} else if (opr2->is_address()) {
// xmm register - address
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
__ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
} else {
ShouldNotReachHere();
}
} else if (opr1->is_double_xmm()) {
XMMRegister reg1 = opr1->as_xmm_double_reg();
if (opr2->is_double_xmm()) {
// xmm register - xmm register
__ ucomisd(reg1, opr2->as_xmm_double_reg());
} else if (opr2->is_stack()) {
// xmm register - stack
__ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
} else if (opr2->is_constant()) {
// xmm register - constant
__ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
} else if (opr2->is_address()) {
// xmm register - address
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
__ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
} else {
ShouldNotReachHere();
}
} else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
assert(opr2->is_fpu_register(), "both must be registers");
__ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
} else if (opr1->is_address() && opr2->is_constant()) {
LIR_Const* c = opr2->as_constant_ptr();
#ifdef _LP64
if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
__ movoop(rscratch1, c->as_jobject());
}
#endif // LP64
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
// special case: address - constant
LIR_Address* addr = opr1->as_address_ptr();
if (c->type() == T_INT) {
__ cmpl(as_Address(addr), c->as_jint());
} else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
#ifdef _LP64
// %%% Make this explode if addr isn't reachable until we figure out a
// better strategy by giving noreg as the temp for as_Address
__ cmpptr(rscratch1, as_Address(addr, noreg));
#else
__ cmpoop(as_Address(addr), c->as_jobject());
#endif // _LP64
} else {
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
if (left->is_single_xmm()) {
assert(right->is_single_xmm(), "must match");
__ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
} else if (left->is_double_xmm()) {
assert(right->is_double_xmm(), "must match");
__ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
} else {
assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
assert(left->fpu() == 0, "left must be on TOS");
__ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
}
} else {
assert(code == lir_cmp_l2i, "check");
#ifdef _LP64
Label done;
Register dest = dst->as_register();
__ cmpptr(left->as_register_lo(), right->as_register_lo());
__ movl(dest, -1);
__ jccb(Assembler::less, done);
__ set_byte_if_not_zero(dest);
__ movzbl(dest, dest);
__ bind(done);
#else
__ lcmp2int(left->as_register_hi(),
left->as_register_lo(),
right->as_register_hi(),
right->as_register_lo());
move_regs(left->as_register_hi(), dst->as_register());
#endif // _LP64
}
}
void LIR_Assembler::align_call(LIR_Code code) {
if (os::is_MP()) {
// make sure that the displacement word of the call ends up word aligned
int offset = __ offset();
switch (code) {
case lir_static_call:
case lir_optvirtual_call:
case lir_dynamic_call:
offset += NativeCall::displacement_offset;
break;
case lir_icvirtual_call:
offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
break;
case lir_virtual_call: // currently, sparc-specific for niagara
default: ShouldNotReachHere();
}
while (offset++ % BytesPerWord != 0) {
__ nop();
}
}
}
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
"must be aligned");
__ call(AddressLiteral(op->addr(), rtype));
add_call_info(code_offset(), op->info());
}
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
RelocationHolder rh = virtual_call_Relocation::spec(pc());
__ movoop(IC_Klass, (jobject)Universe::non_oop_word());
assert(!os::is_MP() ||
(__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
"must be aligned");
__ call(AddressLiteral(op->addr(), rh));
add_call_info(code_offset(), op->info());
}
/* Currently, vtable-dispatch is only enabled for sparc platforms */
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
ShouldNotReachHere();
}
void LIR_Assembler::emit_static_call_stub() {
address call_pc = __ pc();
address stub = __ start_a_stub(call_stub_size);
if (stub == NULL) {
bailout("static call stub overflow");
return;
}
int start = __ offset();
if (os::is_MP()) {
// make sure that the displacement word of the call ends up word aligned
int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
while (offset++ % BytesPerWord != 0) {
__ nop();
}
}
__ relocate(static_stub_Relocation::spec(call_pc));
__ movoop(rbx, (jobject)NULL);
// must be set to -1 at code generation time
assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
// On 64bit this will die since it will take a movq & jmp, must be only a jmp
__ jump(RuntimeAddress(__ pc()));
assert(__ offset() - start <= call_stub_size, "stub too big");
__ end_a_stub();
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
assert(exceptionOop->as_register() == rax, "must match");
assert(exceptionPC->as_register() == rdx, "must match");
// exception object is not added to oop map by LinearScan
// (LinearScan assumes that no oops are in fixed registers)
info->add_register_oop(exceptionOop);
Runtime1::StubID unwind_id;
// get current pc information
// pc is only needed if the method has an exception handler, the unwind code does not need it.
int pc_for_athrow_offset = __ offset();
InternalAddress pc_for_athrow(__ pc());
__ lea(exceptionPC->as_register(), pc_for_athrow);
add_call_info(pc_for_athrow_offset, info); // for exception handler
__ verify_not_null_oop(rax);
// search an exception handler (rax: exception oop, rdx: throwing pc)
if (compilation()->has_fpu_code()) {
unwind_id = Runtime1::handle_exception_id;
} else {
unwind_id = Runtime1::handle_exception_nofpu_id;
}
__ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
// enough room for two byte trap
__ nop();
}
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
assert(exceptionOop->as_register() == rax, "must match");
__ jmp(_unwind_handler_entry);
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
// optimized version for linear scan:
// * count must be already in ECX (guaranteed by LinearScan)
// * left and dest must be equal
// * tmp must be unused
assert(count->as_register() == SHIFT_count, "count must be in ECX");
assert(left == dest, "left and dest must be equal");
assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
if (left->is_single_cpu()) {
Register value = left->as_register();
assert(value != SHIFT_count, "left cannot be ECX");
switch (code) {
case lir_shl: __ shll(value); break;
case lir_shr: __ sarl(value); break;
case lir_ushr: __ shrl(value); break;
default: ShouldNotReachHere();
}
} else if (left->is_double_cpu()) {
Register lo = left->as_register_lo();
Register hi = left->as_register_hi();
assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
#ifdef _LP64
switch (code) {
case lir_shl: __ shlptr(lo); break;
case lir_shr: __ sarptr(lo); break;
case lir_ushr: __ shrptr(lo); break;
default: ShouldNotReachHere();
}
#else
switch (code) {
case lir_shl: __ lshl(hi, lo); break;
case lir_shr: __ lshr(hi, lo, true); break;
case lir_ushr: __ lshr(hi, lo, false); break;
default: ShouldNotReachHere();
}
#endif // LP64
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
if (dest->is_single_cpu()) {
// first move left into dest so that left is not destroyed by the shift
Register value = dest->as_register();
count = count & 0x1F; // Java spec
move_regs(left->as_register(), value);
switch (code) {
case lir_shl: __ shll(value, count); break;
case lir_shr: __ sarl(value, count); break;
case lir_ushr: __ shrl(value, count); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_cpu()) {
#ifndef _LP64
Unimplemented();
#else
// first move left into dest so that left is not destroyed by the shift
Register value = dest->as_register_lo();
count = count & 0x1F; // Java spec
move_regs(left->as_register_lo(), value);
switch (code) {
case lir_shl: __ shlptr(value, count); break;
case lir_shr: __ sarptr(value, count); break;
case lir_ushr: __ shrptr(value, count); break;
default: ShouldNotReachHere();
}
#endif // _LP64
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
}
void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
}
void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
}
// This code replaces a call to arraycopy; no exception may
// be thrown in this code, they must be thrown in the System.arraycopy
// activation frame; we could save some checks if this would not be the case
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
ciArrayKlass* default_type = op->expected_type();
Register src = op->src()->as_register();
Register dst = op->dst()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
CodeStub* stub = op->stub();
int flags = op->flags();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
// if we don't know anything or it's an object array, just go through the generic arraycopy
if (default_type == NULL) {
Label done;
// save outgoing arguments on stack in case call to System.arraycopy is needed
// HACK ALERT. This code used to push the parameters in a hardwired fashion
// for interpreter calling conventions. Now we have to do it in new style conventions.
// For the moment until C1 gets the new register allocator I just force all the
// args to the right place (except the register args) and then on the back side
// reload the register args properly if we go slow path. Yuck
// These are proper for the calling convention
store_parameter(length, 2);
store_parameter(dst_pos, 1);
store_parameter(dst, 0);
// these are just temporary placements until we need to reload
store_parameter(src_pos, 3);
store_parameter(src, 4);
NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
// pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
#ifdef _LP64
// The arguments are in java calling convention so we can trivially shift them to C
// convention
assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
__ mov(c_rarg0, j_rarg0);
assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
__ mov(c_rarg1, j_rarg1);
assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
__ mov(c_rarg2, j_rarg2);
assert_different_registers(c_rarg3, j_rarg4);
__ mov(c_rarg3, j_rarg3);
#ifdef _WIN64
// Allocate abi space for args but be sure to keep stack aligned
__ subptr(rsp, 6*wordSize);
store_parameter(j_rarg4, 4);
__ call(RuntimeAddress(entry));
__ addptr(rsp, 6*wordSize);
#else
__ mov(c_rarg4, j_rarg4);
__ call(RuntimeAddress(entry));
#endif // _WIN64
#else
__ push(length);
__ push(dst_pos);
__ push(dst);
__ push(src_pos);
__ push(src);
__ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
#endif // _LP64
__ cmpl(rax, 0);
__ jcc(Assembler::equal, *stub->continuation());
// Reload values from the stack so they are where the stub
// expects them.
__ movptr (dst, Address(rsp, 0*BytesPerWord));
__ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
__ movptr (length, Address(rsp, 2*BytesPerWord));
__ movptr (src_pos, Address(rsp, 3*BytesPerWord));
__ movptr (src, Address(rsp, 4*BytesPerWord));
__ jmp(*stub->entry());
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
int elem_size = type2aelembytes(basic_type);
int shift_amount;
Address::ScaleFactor scale;
switch (elem_size) {
case 1 :
shift_amount = 0;
scale = Address::times_1;
break;
case 2 :
shift_amount = 1;
scale = Address::times_2;
break;
case 4 :
shift_amount = 2;
scale = Address::times_4;
break;
case 8 :
shift_amount = 3;
scale = Address::times_8;
break;
default:
ShouldNotReachHere();
}
Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
// length and pos's are all sign extended at this point on 64bit
// test for NULL
if (flags & LIR_OpArrayCopy::src_null_check) {
__ testptr(src, src);
__ jcc(Assembler::zero, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ testptr(dst, dst);
__ jcc(Assembler::zero, *stub->entry());
}
// check if negative
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
__ testl(src_pos, src_pos);
__ jcc(Assembler::less, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
__ testl(dst_pos, dst_pos);
__ jcc(Assembler::less, *stub->entry());
}
if (flags & LIR_OpArrayCopy::length_positive_check) {
__ testl(length, length);
__ jcc(Assembler::less, *stub->entry());
}
if (flags & LIR_OpArrayCopy::src_range_check) {
__ lea(tmp, Address(src_pos, length, Address::times_1, 0));
__ cmpl(tmp, src_length_addr);
__ jcc(Assembler::above, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
__ cmpl(tmp, dst_length_addr);
__ jcc(Assembler::above, *stub->entry());
}
if (flags & LIR_OpArrayCopy::type_check) {
__ movptr(tmp, src_klass_addr);
__ cmpptr(tmp, dst_klass_addr);
__ jcc(Assembler::notEqual, *stub->entry());
}
#ifdef ASSERT
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
// Sanity check the known type with the incoming class. For the
// primitive case the types must match exactly with src.klass and
// dst.klass each exactly matching the default type. For the
// object array case, if no type check is needed then either the
// dst type is exactly the expected type and the src type is a
// subtype which we can't check or src is the same array as dst
// but not necessarily exactly of type default_type.
Label known_ok, halt;
__ movoop(tmp, default_type->constant_encoding());
if (basic_type != T_OBJECT) {
__ cmpptr(tmp, dst_klass_addr);
__ jcc(Assembler::notEqual, halt);
__ cmpptr(tmp, src_klass_addr);
__ jcc(Assembler::equal, known_ok);
} else {
__ cmpptr(tmp, dst_klass_addr);
__ jcc(Assembler::equal, known_ok);
__ cmpptr(src, dst);
__ jcc(Assembler::equal, known_ok);
}
__ bind(halt);
__ stop("incorrect type information in arraycopy");
__ bind(known_ok);
}
#endif
if (shift_amount > 0 && basic_type != T_OBJECT) {
__ shlptr(length, shift_amount);
}
#ifdef _LP64
assert_different_registers(c_rarg0, dst, dst_pos, length);
__ movl2ptr(src_pos, src_pos); //higher 32bits must be null
__ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
assert_different_registers(c_rarg1, length);
__ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
__ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
__ mov(c_rarg2, length);
#else
__ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
store_parameter(tmp, 0);
__ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
store_parameter(tmp, 1);
store_parameter(length, 2);
#endif // _LP64
if (basic_type == T_OBJECT) {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
}
__ bind(*stub->continuation());
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_register(); // may not be an oop
Register hdr = op->hdr_opr()->as_register();
Register lock = op->lock_opr()->as_register();
if (!UseFastLocking) {
__ jmp(*op->stub()->entry());
} else if (op->code() == lir_lock) {
Register scratch = noreg;
if (UseBiasedLocking) {
scratch = op->scratch_opr()->as_register();
}
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
// add debug info for NullPointerException only if one is possible
int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
if (op->info() != NULL) {
add_debug_info_for_null_check(null_check_offset, op->info());
}
// done
} else if (op->code() == lir_unlock) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
} else {
Unimplemented();
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
// Update counter for all call types
ciMethodData* md = method->method_data();
if (md == NULL) {
bailout("out of memory building methodDataOop");
return;
}
ciProfileData* data = md->bci_to_data(bci);
assert(data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
Register mdo = op->mdo()->as_register();
__ movoop(mdo, md->constant_encoding());
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
Bytecodes::Code bc = method->java_code_at_bci(bci);
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
Tier1ProfileVirtualCalls) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the methodDataOop rather than needing to do
// dynamic tests on the receiver type
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ addl(data_addr, DataLayout::counter_increment);
return;
}
}
// Receiver type not found in profile data; select an empty slot
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
__ movoop(recv_addr, known_klass->constant_encoding());
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ addl(data_addr, DataLayout::counter_increment);
return;
}
}
} else {
__ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
Label update_done;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
__ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
__ jcc(Assembler::notEqual, next_test);
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ addl(data_addr, DataLayout::counter_increment);
__ jmp(update_done);
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
__ cmpptr(recv_addr, (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, next_test);
__ movptr(recv_addr, recv);
__ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
__ jmp(update_done);
__ bind(next_test);
}
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
__ addl(counter_addr, DataLayout::counter_increment);
__ bind(update_done);
}
} else {
// Static call
__ addl(counter_addr, DataLayout::counter_increment);
}
}
void LIR_Assembler::emit_delay(LIR_OpDelay*) {
Unimplemented();
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
__ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
}
void LIR_Assembler::align_backward_branch_target() {
__ align(BytesPerWord);
}
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
if (left->is_single_cpu()) {
__ negl(left->as_register());
move_regs(left->as_register(), dest->as_register());
} else if (left->is_double_cpu()) {
Register lo = left->as_register_lo();
#ifdef _LP64
Register dst = dest->as_register_lo();
__ movptr(dst, lo);
__ negptr(dst);
#else
Register hi = left->as_register_hi();
__ lneg(hi, lo);
if (dest->as_register_lo() == hi) {
assert(dest->as_register_hi() != lo, "destroying register");
move_regs(hi, dest->as_register_hi());
move_regs(lo, dest->as_register_lo());
} else {
move_regs(lo, dest->as_register_lo());
move_regs(hi, dest->as_register_hi());
}
#endif // _LP64
} else if (dest->is_single_xmm()) {
if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
__ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
}
__ xorps(dest->as_xmm_float_reg(),
ExternalAddress((address)float_signflip_pool));
} else if (dest->is_double_xmm()) {
if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
__ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
}
__ xorpd(dest->as_xmm_double_reg(),
ExternalAddress((address)double_signflip_pool));
} else if (left->is_single_fpu() || left->is_double_fpu()) {
assert(left->fpu() == 0, "arg must be on TOS");
assert(dest->fpu() == 0, "dest must be TOS");
__ fchs();
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
assert(addr->is_address() && dest->is_register(), "check");
Register reg;
reg = dest->as_pointer_register();
__ lea(reg, as_Address(addr->as_address_ptr()));
}
void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
assert(!tmp->is_valid(), "don't need temporary");
__ call(RuntimeAddress(dest));
if (info != NULL) {
add_call_info_here(info);
}
}
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
assert(type == T_LONG, "only for volatile long fields");
if (info != NULL) {
add_debug_info_for_null_check_here(info);
}
if (src->is_double_xmm()) {
if (dest->is_double_cpu()) {
#ifdef _LP64
__ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
#else
__ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
__ psrlq(src->as_xmm_double_reg(), 32);
__ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
#endif // _LP64
} else if (dest->is_double_stack()) {
__ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
} else if (dest->is_address()) {
__ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
} else {
ShouldNotReachHere();
}
} else if (dest->is_double_xmm()) {
if (src->is_double_stack()) {
__ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
} else if (src->is_address()) {
__ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
} else {
ShouldNotReachHere();
}
} else if (src->is_double_fpu()) {
assert(src->fpu_regnrLo() == 0, "must be TOS");
if (dest->is_double_stack()) {
__ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
} else if (dest->is_address()) {
__ fistp_d(as_Address(dest->as_address_ptr()));
} else {
ShouldNotReachHere();
}
} else if (dest->is_double_fpu()) {
assert(dest->fpu_regnrLo() == 0, "must be TOS");
if (src->is_double_stack()) {
__ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
} else if (src->is_address()) {
__ fild_d(as_Address(src->as_address_ptr()));
} else {
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::membar() {
// QQQ sparc TSO uses this,
__ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
}
void LIR_Assembler::membar_acquire() {
// No x86 machines currently require load fences
// __ load_fence();
}
void LIR_Assembler::membar_release() {
// No x86 machines currently require store fences
// __ store_fence();
}
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
assert(result_reg->is_register(), "check");
#ifdef _LP64
// __ get_thread(result_reg->as_register_lo());
__ mov(result_reg->as_register(), r15_thread);
#else
__ get_thread(result_reg->as_register());
#endif // _LP64
}
void LIR_Assembler::peephole(LIR_List*) {
// do nothing for now
}
#undef __