/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#define __ _masm->
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
address entry = __ pc();
__ andr(esp, esp, -16);
__ mov(c_rarg3, esp);
// rmethod
// rlocals
// c_rarg3: first stack arg - wordSize
// adjust sp
__ sub(sp, c_rarg3, 18 * wordSize);
__ str(lr, Address(__ pre(sp, -2 * wordSize)));
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::slow_signature_handler),
rmethod, rlocals, c_rarg3);
// r0: result handler
// Stack layout:
// rsp: return address <- sp
// 1 garbage
// 8 integer args (if static first is unused)
// 1 float/double identifiers
// 8 double args
// stack args <- esp
// garbage
// expression stack bottom
// bcp (NULL)
// ...
// Restore LR
__ ldr(lr, Address(__ post(sp, 2 * wordSize)));
// Do FP first so we can use c_rarg3 as temp
__ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
const FloatRegister r = as_FloatRegister(i);
Label d, done;
__ tbnz(c_rarg3, i, d);
__ ldrs(r, Address(sp, (10 + i) * wordSize));
__ b(done);
__ bind(d);
__ ldrd(r, Address(sp, (10 + i) * wordSize));
__ bind(done);
}
// c_rarg0 contains the result from the call of
// InterpreterRuntime::slow_signature_handler so we don't touch it
// here. It will be loaded with the JNIEnv* later.
__ ldr(c_rarg1, Address(sp, 1 * wordSize));
for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
Register rm = as_Register(i), rn = as_Register(i+1);
__ ldp(rm, rn, Address(sp, i * wordSize));
}
__ add(sp, sp, 18 * wordSize);
__ ret(lr);
return entry;
}
//
// Various method entries
//
address InterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
// rmethod: Method*
// r13: sender sp
// esp: args
if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
// These don't need a safepoint check because they aren't virtually
// callable. We won't enter these intrinsics from compiled code.
// If in the future we added an intrinsic which was virtually callable
// we'd have to worry about how to safepoint so that this code is used.
// mathematical functions inlined by compiler
// (interpreter must provide identical implementation
// in order to avoid monotonicity bugs when switching
// from interpreter to compiler in the middle of some
// computation)
//
// stack:
// [ arg ] <-- esp
// [ arg ]
// retaddr in lr
address entry_point = NULL;
Register continuation = lr;
switch (kind) {
case Interpreter::java_lang_math_abs:
entry_point = __ pc();
__ ldrd(v0, Address(esp));
__ fabsd(v0, v0);
__ mov(sp, r13); // Restore caller's SP
break;
case Interpreter::java_lang_math_sqrt:
entry_point = __ pc();
__ ldrd(v0, Address(esp));
__ fsqrtd(v0, v0);
__ mov(sp, r13);
break;
case Interpreter::java_lang_math_sin :
case Interpreter::java_lang_math_cos :
case Interpreter::java_lang_math_tan :
case Interpreter::java_lang_math_log :
case Interpreter::java_lang_math_log10 :
case Interpreter::java_lang_math_exp :
entry_point = __ pc();
__ ldrd(v0, Address(esp));
__ mov(sp, r13);
__ mov(r19, lr);
continuation = r19; // The first callee-saved register
generate_transcendental_entry(kind, 1);
break;
case Interpreter::java_lang_math_pow :
entry_point = __ pc();
__ mov(r19, lr);
continuation = r19;
__ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
__ ldrd(v1, Address(esp));
__ mov(sp, r13);
generate_transcendental_entry(kind, 2);
break;
default:
;
}
if (entry_point) {
__ br(continuation);
}
return entry_point;
}
// double trigonometrics and transcendentals
// static jdouble dsin(jdouble x);
// static jdouble dcos(jdouble x);
// static jdouble dtan(jdouble x);
// static jdouble dlog(jdouble x);
// static jdouble dlog10(jdouble x);
// static jdouble dexp(jdouble x);
// static jdouble dpow(jdouble x, jdouble y);
void InterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
address fn;
switch (kind) {
case Interpreter::java_lang_math_sin :
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
break;
case Interpreter::java_lang_math_cos :
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
break;
case Interpreter::java_lang_math_tan :
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
break;
case Interpreter::java_lang_math_log :
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
break;
case Interpreter::java_lang_math_log10 :
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
break;
case Interpreter::java_lang_math_exp :
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
break;
case Interpreter::java_lang_math_pow :
fpargs = 2;
fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
break;
default:
ShouldNotReachHere();
}
const int gpargs = 0, rtype = 3;
__ mov(rscratch1, fn);
__ blrt(rscratch1, gpargs, fpargs, rtype);
}
// Jump into normal path for accessor and empty entry to jump to normal entry
// The "fast" optimization don't update compilation count therefore can disable inlining
// for these functions that should be inlined.
address InterpreterGenerator::generate_jump_to_normal_entry(void) {
address entry_point = __ pc();
assert(Interpreter::entry_for_kind(Interpreter::zerolocals) != NULL, "should already be generated");
__ b(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry_point;
}
// Abstract method entry
// Attempt to execute abstract method. Throw exception
address InterpreterGenerator::generate_abstract_entry(void) {
// rmethod: Method*
// r13: sender SP
address entry_point = __ pc();
// abstract method entry
// pop return address, reset last_sp to NULL
__ empty_expression_stack();
__ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
// throw exception
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_AbstractMethodError));
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
return entry_point;
}
void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
// This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
// the days we had adapter frames. When we deoptimize a situation where a
// compiled caller calls a compiled caller will have registers it expects
// to survive the call to the callee. If we deoptimize the callee the only
// way we can restore these registers is to have the oldest interpreter
// frame that we create restore these values. That is what this routine
// will accomplish.
// At the moment we have modified c2 to not have any callee save registers
// so this problem does not exist and this routine is just a place holder.
assert(f->is_interpreted_frame(), "must be interpreted");
}