8136679: JFR event for adaptive IHOP
Reviewed-by: tbenson, mgerdin, sangheki, ehelin
/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/nmethod.hpp"
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "gc/shared/liveRange.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/iterator.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/orderAccess.inline.hpp"
int HeapRegion::LogOfHRGrainBytes = 0;
int HeapRegion::LogOfHRGrainWords = 0;
size_t HeapRegion::GrainBytes = 0;
size_t HeapRegion::GrainWords = 0;
size_t HeapRegion::CardsPerRegion = 0;
HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
HeapRegion* hr,
G1ParPushHeapRSClosure* cl,
CardTableModRefBS::PrecisionStyle precision) :
DirtyCardToOopClosure(hr, cl, precision, NULL),
_hr(hr), _rs_scan(cl), _g1(g1) { }
FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
OopClosure* oc) :
_r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
HeapWord* bottom,
HeapWord* top) {
G1CollectedHeap* g1h = _g1;
size_t oop_size;
HeapWord* cur = bottom;
// Start filtering what we add to the remembered set. If the object is
// not considered dead, either because it is marked (in the mark bitmap)
// or it was allocated after marking finished, then we add it. Otherwise
// we can safely ignore the object.
if (!g1h->is_obj_dead(oop(cur))) {
oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
} else {
oop_size = _hr->block_size(cur);
}
cur += oop_size;
if (cur < top) {
oop cur_oop = oop(cur);
oop_size = _hr->block_size(cur);
HeapWord* next_obj = cur + oop_size;
while (next_obj < top) {
// Keep filtering the remembered set.
if (!g1h->is_obj_dead(cur_oop)) {
// Bottom lies entirely below top, so we can call the
// non-memRegion version of oop_iterate below.
cur_oop->oop_iterate(_rs_scan);
}
cur = next_obj;
cur_oop = oop(cur);
oop_size = _hr->block_size(cur);
next_obj = cur + oop_size;
}
// Last object. Need to do dead-obj filtering here too.
if (!g1h->is_obj_dead(oop(cur))) {
oop(cur)->oop_iterate(_rs_scan, mr);
}
}
}
size_t HeapRegion::max_region_size() {
return HeapRegionBounds::max_size();
}
size_t HeapRegion::min_region_size_in_words() {
return HeapRegionBounds::min_size() >> LogHeapWordSize;
}
void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
size_t region_size = G1HeapRegionSize;
if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
HeapRegionBounds::min_size());
}
int region_size_log = log2_long((jlong) region_size);
// Recalculate the region size to make sure it's a power of
// 2. This means that region_size is the largest power of 2 that's
// <= what we've calculated so far.
region_size = ((size_t)1 << region_size_log);
// Now make sure that we don't go over or under our limits.
if (region_size < HeapRegionBounds::min_size()) {
region_size = HeapRegionBounds::min_size();
} else if (region_size > HeapRegionBounds::max_size()) {
region_size = HeapRegionBounds::max_size();
}
// And recalculate the log.
region_size_log = log2_long((jlong) region_size);
// Now, set up the globals.
guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
LogOfHRGrainBytes = region_size_log;
guarantee(LogOfHRGrainWords == 0, "we should only set it once");
LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
guarantee(GrainBytes == 0, "we should only set it once");
// The cast to int is safe, given that we've bounded region_size by
// MIN_REGION_SIZE and MAX_REGION_SIZE.
GrainBytes = region_size;
guarantee(GrainWords == 0, "we should only set it once");
GrainWords = GrainBytes >> LogHeapWordSize;
guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
guarantee(CardsPerRegion == 0, "we should only set it once");
CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
}
void HeapRegion::reset_after_compaction() {
G1OffsetTableContigSpace::reset_after_compaction();
// After a compaction the mark bitmap is invalid, so we must
// treat all objects as being inside the unmarked area.
zero_marked_bytes();
init_top_at_mark_start();
}
void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
assert(_humongous_start_region == NULL,
"we should have already filtered out humongous regions");
assert(!in_collection_set(),
"Should not clear heap region %u in the collection set", hrm_index());
set_allocation_context(AllocationContext::system());
set_young_index_in_cset(-1);
uninstall_surv_rate_group();
set_free();
reset_pre_dummy_top();
if (!par) {
// If this is parallel, this will be done later.
HeapRegionRemSet* hrrs = rem_set();
if (locked) {
hrrs->clear_locked();
} else {
hrrs->clear();
}
}
zero_marked_bytes();
_offsets.resize(HeapRegion::GrainWords);
init_top_at_mark_start();
if (clear_space) clear(SpaceDecorator::Mangle);
}
void HeapRegion::par_clear() {
assert(used() == 0, "the region should have been already cleared");
assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
HeapRegionRemSet* hrrs = rem_set();
hrrs->clear();
CardTableModRefBS* ct_bs =
barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
ct_bs->clear(MemRegion(bottom(), end()));
}
void HeapRegion::calc_gc_efficiency() {
// GC efficiency is the ratio of how much space would be
// reclaimed over how long we predict it would take to reclaim it.
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1CollectorPolicy* g1p = g1h->g1_policy();
// Retrieve a prediction of the elapsed time for this region for
// a mixed gc because the region will only be evacuated during a
// mixed gc.
double region_elapsed_time_ms =
g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
_gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
}
void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
assert(!is_humongous(), "sanity / pre-condition");
assert(top() == bottom(), "should be empty");
_type.set_starts_humongous();
_humongous_start_region = this;
_offsets.set_for_starts_humongous(obj_top, fill_size);
}
void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
assert(!is_humongous(), "sanity / pre-condition");
assert(top() == bottom(), "should be empty");
assert(first_hr->is_starts_humongous(), "pre-condition");
_type.set_continues_humongous();
_humongous_start_region = first_hr;
}
void HeapRegion::clear_humongous() {
assert(is_humongous(), "pre-condition");
assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
_humongous_start_region = NULL;
}
HeapRegion::HeapRegion(uint hrm_index,
G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) :
G1OffsetTableContigSpace(sharedOffsetArray, mr),
_hrm_index(hrm_index),
_allocation_context(AllocationContext::system()),
_humongous_start_region(NULL),
_next_in_special_set(NULL),
_evacuation_failed(false),
_prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
_next_young_region(NULL),
_next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
#ifdef ASSERT
_containing_set(NULL),
#endif // ASSERT
_young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
_rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
_predicted_bytes_to_copy(0)
{
_rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
initialize(mr);
}
void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
assert(_rem_set->is_empty(), "Remembered set must be empty");
G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
hr_clear(false /*par*/, false /*clear_space*/);
set_top(bottom());
record_timestamp();
}
CompactibleSpace* HeapRegion::next_compaction_space() const {
return G1CollectedHeap::heap()->next_compaction_region(this);
}
void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
bool during_conc_mark) {
// We always recreate the prev marking info and we'll explicitly
// mark all objects we find to be self-forwarded on the prev
// bitmap. So all objects need to be below PTAMS.
_prev_marked_bytes = 0;
if (during_initial_mark) {
// During initial-mark, we'll also explicitly mark all objects
// we find to be self-forwarded on the next bitmap. So all
// objects need to be below NTAMS.
_next_top_at_mark_start = top();
_next_marked_bytes = 0;
} else if (during_conc_mark) {
// During concurrent mark, all objects in the CSet (including
// the ones we find to be self-forwarded) are implicitly live.
// So all objects need to be above NTAMS.
_next_top_at_mark_start = bottom();
_next_marked_bytes = 0;
}
}
void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
bool during_conc_mark,
size_t marked_bytes) {
assert(marked_bytes <= used(),
"marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
_prev_top_at_mark_start = top();
_prev_marked_bytes = marked_bytes;
}
HeapWord*
HeapRegion::object_iterate_mem_careful(MemRegion mr,
ObjectClosure* cl) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
// We used to use "block_start_careful" here. But we're actually happy
// to update the BOT while we do this...
HeapWord* cur = block_start(mr.start());
mr = mr.intersection(used_region());
if (mr.is_empty()) return NULL;
// Otherwise, find the obj that extends onto mr.start().
assert(cur <= mr.start()
&& (oop(cur)->klass_or_null() == NULL ||
cur + oop(cur)->size() > mr.start()),
"postcondition of block_start");
oop obj;
while (cur < mr.end()) {
obj = oop(cur);
if (obj->klass_or_null() == NULL) {
// Ran into an unparseable point.
return cur;
} else if (!g1h->is_obj_dead(obj)) {
cl->do_object(obj);
}
cur += block_size(cur);
}
return NULL;
}
HeapWord*
HeapRegion::
oops_on_card_seq_iterate_careful(MemRegion mr,
FilterOutOfRegionClosure* cl,
bool filter_young,
jbyte* card_ptr) {
// Currently, we should only have to clean the card if filter_young
// is true and vice versa.
if (filter_young) {
assert(card_ptr != NULL, "pre-condition");
} else {
assert(card_ptr == NULL, "pre-condition");
}
G1CollectedHeap* g1h = G1CollectedHeap::heap();
// If we're within a stop-world GC, then we might look at a card in a
// GC alloc region that extends onto a GC LAB, which may not be
// parseable. Stop such at the "scan_top" of the region.
if (g1h->is_gc_active()) {
mr = mr.intersection(MemRegion(bottom(), scan_top()));
} else {
mr = mr.intersection(used_region());
}
if (mr.is_empty()) return NULL;
// Otherwise, find the obj that extends onto mr.start().
// The intersection of the incoming mr (for the card) and the
// allocated part of the region is non-empty. This implies that
// we have actually allocated into this region. The code in
// G1CollectedHeap.cpp that allocates a new region sets the
// is_young tag on the region before allocating. Thus we
// safely know if this region is young.
if (is_young() && filter_young) {
return NULL;
}
assert(!is_young(), "check value of filter_young");
// We can only clean the card here, after we make the decision that
// the card is not young. And we only clean the card if we have been
// asked to (i.e., card_ptr != NULL).
if (card_ptr != NULL) {
*card_ptr = CardTableModRefBS::clean_card_val();
// We must complete this write before we do any of the reads below.
OrderAccess::storeload();
}
// Cache the boundaries of the memory region in some const locals
HeapWord* const start = mr.start();
HeapWord* const end = mr.end();
// We used to use "block_start_careful" here. But we're actually happy
// to update the BOT while we do this...
HeapWord* cur = block_start(start);
assert(cur <= start, "Postcondition");
oop obj;
HeapWord* next = cur;
do {
cur = next;
obj = oop(cur);
if (obj->klass_or_null() == NULL) {
// Ran into an unparseable point.
return cur;
}
// Otherwise...
next = cur + block_size(cur);
} while (next <= start);
// If we finish the above loop...We have a parseable object that
// begins on or before the start of the memory region, and ends
// inside or spans the entire region.
assert(cur <= start, "Loop postcondition");
assert(obj->klass_or_null() != NULL, "Loop postcondition");
do {
obj = oop(cur);
assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
if (obj->klass_or_null() == NULL) {
// Ran into an unparseable point.
return cur;
}
// Advance the current pointer. "obj" still points to the object to iterate.
cur = cur + block_size(cur);
if (!g1h->is_obj_dead(obj)) {
// Non-objArrays are sometimes marked imprecise at the object start. We
// always need to iterate over them in full.
// We only iterate over object arrays in full if they are completely contained
// in the memory region.
if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
obj->oop_iterate(cl);
} else {
obj->oop_iterate(cl, mr);
}
}
} while (cur < end);
return NULL;
}
// Code roots support
void HeapRegion::add_strong_code_root(nmethod* nm) {
HeapRegionRemSet* hrrs = rem_set();
hrrs->add_strong_code_root(nm);
}
void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
HeapRegionRemSet* hrrs = rem_set();
hrrs->add_strong_code_root_locked(nm);
}
void HeapRegion::remove_strong_code_root(nmethod* nm) {
HeapRegionRemSet* hrrs = rem_set();
hrrs->remove_strong_code_root(nm);
}
void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
HeapRegionRemSet* hrrs = rem_set();
hrrs->strong_code_roots_do(blk);
}
class VerifyStrongCodeRootOopClosure: public OopClosure {
const HeapRegion* _hr;
nmethod* _nm;
bool _failures;
bool _has_oops_in_region;
template <class T> void do_oop_work(T* p) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
// Note: not all the oops embedded in the nmethod are in the
// current region. We only look at those which are.
if (_hr->is_in(obj)) {
// Object is in the region. Check that its less than top
if (_hr->top() <= (HeapWord*)obj) {
// Object is above top
gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
"[" PTR_FORMAT ", " PTR_FORMAT ") is above "
"top " PTR_FORMAT,
p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
_failures = true;
return;
}
// Nmethod has at least one oop in the current region
_has_oops_in_region = true;
}
}
}
public:
VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
_hr(hr), _failures(false), _has_oops_in_region(false) {}
void do_oop(narrowOop* p) { do_oop_work(p); }
void do_oop(oop* p) { do_oop_work(p); }
bool failures() { return _failures; }
bool has_oops_in_region() { return _has_oops_in_region; }
};
class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
const HeapRegion* _hr;
bool _failures;
public:
VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
_hr(hr), _failures(false) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
if (nm != NULL) {
// Verify that the nemthod is live
if (!nm->is_alive()) {
gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
PTR_FORMAT " in its strong code roots",
p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
_failures = true;
} else {
VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
nm->oops_do(&oop_cl);
if (!oop_cl.has_oops_in_region()) {
gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
PTR_FORMAT " in its strong code roots "
"with no pointers into region",
p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
_failures = true;
} else if (oop_cl.failures()) {
gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
"failures for nmethod " PTR_FORMAT,
p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
_failures = true;
}
}
}
}
bool failures() { return _failures; }
};
void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
if (!G1VerifyHeapRegionCodeRoots) {
// We're not verifying code roots.
return;
}
if (vo == VerifyOption_G1UseMarkWord) {
// Marking verification during a full GC is performed after class
// unloading, code cache unloading, etc so the strong code roots
// attached to each heap region are in an inconsistent state. They won't
// be consistent until the strong code roots are rebuilt after the
// actual GC. Skip verifying the strong code roots in this particular
// time.
assert(VerifyDuringGC, "only way to get here");
return;
}
HeapRegionRemSet* hrrs = rem_set();
size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
// if this region is empty then there should be no entries
// on its strong code root list
if (is_empty()) {
if (strong_code_roots_length > 0) {
gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
"but has " SIZE_FORMAT " code root entries",
p2i(bottom()), p2i(end()), strong_code_roots_length);
*failures = true;
}
return;
}
if (is_continues_humongous()) {
if (strong_code_roots_length > 0) {
gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
"region but has " SIZE_FORMAT " code root entries",
HR_FORMAT_PARAMS(this), strong_code_roots_length);
*failures = true;
}
return;
}
VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
strong_code_roots_do(&cb_cl);
if (cb_cl.failures()) {
*failures = true;
}
}
void HeapRegion::print() const { print_on(gclog_or_tty); }
void HeapRegion::print_on(outputStream* st) const {
st->print("AC%4u", allocation_context());
st->print(" %2s", get_short_type_str());
if (in_collection_set())
st->print(" CS");
else
st->print(" ");
st->print(" TS %5d", _gc_time_stamp);
st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
G1OffsetTableContigSpace::print_on(st);
}
class VerifyLiveClosure: public OopClosure {
private:
G1CollectedHeap* _g1h;
CardTableModRefBS* _bs;
oop _containing_obj;
bool _failures;
int _n_failures;
VerifyOption _vo;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
_g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
_containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo)
{ }
void set_containing_obj(oop obj) {
_containing_obj = obj;
}
bool failures() { return _failures; }
int n_failures() { return _n_failures; }
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
virtual void do_oop( oop* p) { do_oop_work(p); }
void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
Klass* k = obj->klass();
const char* class_name = k->external_name();
out->print_cr("class name %s", class_name);
#else // PRODUCT
obj->print_on(out);
#endif // PRODUCT
}
template <class T>
void do_oop_work(T* p) {
assert(_containing_obj != NULL, "Precondition");
assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
"Precondition");
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
bool failed = false;
if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
MutexLockerEx x(ParGCRareEvent_lock,
Mutex::_no_safepoint_check_flag);
if (!_failures) {
gclog_or_tty->cr();
gclog_or_tty->print_cr("----------");
}
if (!_g1h->is_in_closed_subset(obj)) {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
gclog_or_tty->print_cr("Field " PTR_FORMAT
" of live obj " PTR_FORMAT " in region "
"[" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(_containing_obj),
p2i(from->bottom()), p2i(from->end()));
print_object(gclog_or_tty, _containing_obj);
gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
p2i(obj));
} else {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
gclog_or_tty->print_cr("Field " PTR_FORMAT
" of live obj " PTR_FORMAT " in region "
"[" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(_containing_obj),
p2i(from->bottom()), p2i(from->end()));
print_object(gclog_or_tty, _containing_obj);
gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
"[" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(obj), p2i(to->bottom()), p2i(to->end()));
print_object(gclog_or_tty, obj);
}
gclog_or_tty->print_cr("----------");
gclog_or_tty->flush();
_failures = true;
failed = true;
_n_failures++;
}
if (!_g1h->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
HeapRegion* to = _g1h->heap_region_containing(obj);
if (from != NULL && to != NULL &&
from != to &&
!to->is_pinned()) {
jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
jbyte cv_field = *_bs->byte_for_const(p);
const jbyte dirty = CardTableModRefBS::dirty_card_val();
bool is_bad = !(from->is_young()
|| to->rem_set()->contains_reference(p)
|| !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
(_containing_obj->is_objArray() ?
cv_field == dirty
: cv_obj == dirty || cv_field == dirty));
if (is_bad) {
MutexLockerEx x(ParGCRareEvent_lock,
Mutex::_no_safepoint_check_flag);
if (!_failures) {
gclog_or_tty->cr();
gclog_or_tty->print_cr("----------");
}
gclog_or_tty->print_cr("Missing rem set entry:");
gclog_or_tty->print_cr("Field " PTR_FORMAT " "
"of obj " PTR_FORMAT ", "
"in region " HR_FORMAT,
p2i(p), p2i(_containing_obj),
HR_FORMAT_PARAMS(from));
_containing_obj->print_on(gclog_or_tty);
gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
"in region " HR_FORMAT,
p2i(obj),
HR_FORMAT_PARAMS(to));
obj->print_on(gclog_or_tty);
gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
cv_obj, cv_field);
gclog_or_tty->print_cr("----------");
gclog_or_tty->flush();
_failures = true;
if (!failed) _n_failures++;
}
}
}
}
}
};
// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.
void HeapRegion::verify(VerifyOption vo,
bool* failures) const {
G1CollectedHeap* g1 = G1CollectedHeap::heap();
*failures = false;
HeapWord* p = bottom();
HeapWord* prev_p = NULL;
VerifyLiveClosure vl_cl(g1, vo);
bool is_region_humongous = is_humongous();
size_t object_num = 0;
while (p < top()) {
oop obj = oop(p);
size_t obj_size = block_size(p);
object_num += 1;
if (!g1->is_obj_dead_cond(obj, this, vo)) {
if (obj->is_oop()) {
Klass* klass = obj->klass();
bool is_metaspace_object = Metaspace::contains(klass) ||
(vo == VerifyOption_G1UsePrevMarking &&
ClassLoaderDataGraph::unload_list_contains(klass));
if (!is_metaspace_object) {
gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
"not metadata", p2i(klass), p2i(obj));
*failures = true;
return;
} else if (!klass->is_klass()) {
gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
"not a klass", p2i(klass), p2i(obj));
*failures = true;
return;
} else {
vl_cl.set_containing_obj(obj);
obj->oop_iterate_no_header(&vl_cl);
if (vl_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vl_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
}
} else {
gclog_or_tty->print_cr(PTR_FORMAT " no an oop", p2i(obj));
*failures = true;
return;
}
}
prev_p = p;
p += obj_size;
}
if (!is_young() && !is_empty()) {
_offsets.verify();
}
if (is_region_humongous) {
oop obj = oop(this->humongous_start_region()->bottom());
if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
gclog_or_tty->print_cr("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
}
}
if (!is_region_humongous && p != top()) {
gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
"does not match top " PTR_FORMAT, p2i(p), p2i(top()));
*failures = true;
return;
}
HeapWord* the_end = end();
// Do some extra BOT consistency checking for addresses in the
// range [top, end). BOT look-ups in this range should yield
// top. No point in doing that if top == end (there's nothing there).
if (p < the_end) {
// Look up top
HeapWord* addr_1 = p;
HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
if (b_start_1 != p) {
gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_1), p2i(b_start_1), p2i(p));
*failures = true;
return;
}
// Look up top + 1
HeapWord* addr_2 = p + 1;
if (addr_2 < the_end) {
HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
if (b_start_2 != p) {
gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_2), p2i(b_start_2), p2i(p));
*failures = true;
return;
}
}
// Look up an address between top and end
size_t diff = pointer_delta(the_end, p) / 2;
HeapWord* addr_3 = p + diff;
if (addr_3 < the_end) {
HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
if (b_start_3 != p) {
gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_3), p2i(b_start_3), p2i(p));
*failures = true;
return;
}
}
// Look up end - 1
HeapWord* addr_4 = the_end - 1;
HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
if (b_start_4 != p) {
gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_4), p2i(b_start_4), p2i(p));
*failures = true;
return;
}
}
verify_strong_code_roots(vo, failures);
}
void HeapRegion::verify() const {
bool dummy = false;
verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
}
void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
scan_and_forward(this, cp);
}
// G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go
// away eventually.
void G1OffsetTableContigSpace::clear(bool mangle_space) {
set_top(bottom());
_scan_top = bottom();
CompactibleSpace::clear(mangle_space);
reset_bot();
}
void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
Space::set_bottom(new_bottom);
_offsets.set_bottom(new_bottom);
}
void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
assert(new_end == _bottom + HeapRegion::GrainWords, "set_end should only ever be set to _bottom + HeapRegion::GrainWords");
Space::set_end(new_end);
_offsets.resize(new_end - bottom());
}
#ifndef PRODUCT
void G1OffsetTableContigSpace::mangle_unused_area() {
mangle_unused_area_complete();
}
void G1OffsetTableContigSpace::mangle_unused_area_complete() {
SpaceMangler::mangle_region(MemRegion(top(), end()));
}
#endif
void G1OffsetTableContigSpace::print() const {
print_short();
gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
INTPTR_FORMAT ", " INTPTR_FORMAT ")",
p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
}
HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
return _offsets.initialize_threshold();
}
HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
HeapWord* end) {
_offsets.alloc_block(start, end);
return _offsets.threshold();
}
HeapWord* G1OffsetTableContigSpace::scan_top() const {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* local_top = top();
OrderAccess::loadload();
const unsigned local_time_stamp = _gc_time_stamp;
assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
if (local_time_stamp < g1h->get_gc_time_stamp()) {
return local_top;
} else {
return _scan_top;
}
}
void G1OffsetTableContigSpace::record_timestamp() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
if (_gc_time_stamp < curr_gc_time_stamp) {
// Setting the time stamp here tells concurrent readers to look at
// scan_top to know the maximum allowed address to look at.
// scan_top should be bottom for all regions except for the
// retained old alloc region which should have scan_top == top
HeapWord* st = _scan_top;
guarantee(st == _bottom || st == _top, "invariant");
_gc_time_stamp = curr_gc_time_stamp;
}
}
void G1OffsetTableContigSpace::record_retained_region() {
// scan_top is the maximum address where it's safe for the next gc to
// scan this region.
_scan_top = top();
}
void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
object_iterate(blk);
}
void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
HeapWord* p = bottom();
while (p < top()) {
if (block_is_obj(p)) {
blk->do_object(oop(p));
}
p += block_size(p);
}
}
G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) :
_offsets(sharedOffsetArray, mr),
_par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
_gc_time_stamp(0)
{
_offsets.set_space(this);
}
void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
CompactibleSpace::initialize(mr, clear_space, mangle_space);
_top = bottom();
_scan_top = bottom();
set_saved_mark_word(NULL);
reset_bot();
}