8004318: JEP-171: Support Unsafe fences intrinsics
Summary: Add three memory-ordering intrinsics to the sun.misc.Unsafe class.
Reviewed-by: twisti, kvn
Contributed-by: Aleksey Shipilev <aleksey.shipilev@oracle.com>
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2010 Red Hat, Inc.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_ZERO_VM_STACK_ZERO_INLINE_HPP
#define CPU_ZERO_VM_STACK_ZERO_INLINE_HPP
#include "runtime/thread.hpp"
#include "stack_zero.hpp"
// This function should match SharkStack::CreateStackOverflowCheck
inline void ZeroStack::overflow_check(int required_words, TRAPS) {
// Check the Zero stack
if (available_words() < required_words) {
handle_overflow(THREAD);
return;
}
// Check the ABI stack
if (abi_stack_available(THREAD) < 0) {
handle_overflow(THREAD);
return;
}
}
// This method returns the amount of ABI stack available for us
// to use under normal circumstances. Note that the returned
// value can be negative.
inline int ZeroStack::abi_stack_available(Thread *thread) const {
int stack_used = thread->stack_base() - (address) &stack_used;
int stack_free = thread->stack_size() - stack_used;
return stack_free - shadow_pages_size();
}
#endif // CPU_ZERO_VM_STACK_ZERO_INLINE_HPP