8004318: JEP-171: Support Unsafe fences intrinsics
Summary: Add three memory-ordering intrinsics to the sun.misc.Unsafe class.
Reviewed-by: twisti, kvn
Contributed-by: Aleksey Shipilev <aleksey.shipilev@oracle.com>
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifndef CC_INTERP
#ifndef FAST_DISPATCH
#define FAST_DISPATCH 1
#endif
#undef FAST_DISPATCH
// Generation of Interpreter
//
// The InterpreterGenerator generates the interpreter into Interpreter::_code.
#define __ _masm->
//----------------------------------------------------------------------------------------------------
void InterpreterGenerator::save_native_result(void) {
// result potentially in O0/O1: save it across calls
const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
// result potentially in F0/F1: save it across calls
const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
// save and restore any potential method result value around the unlocking operation
__ stf(FloatRegisterImpl::D, F0, d_tmp);
#ifdef _LP64
__ stx(O0, l_tmp);
#else
__ std(O0, l_tmp);
#endif
}
void InterpreterGenerator::restore_native_result(void) {
const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
// Restore any method result value
__ ldf(FloatRegisterImpl::D, d_tmp, F0);
#ifdef _LP64
__ ldx(l_tmp, O0);
#else
__ ldd(l_tmp, O0);
#endif
}
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
assert(!pass_oop || message == NULL, "either oop or message but not both");
address entry = __ pc();
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
// load exception object
__ set((intptr_t)name, G3_scratch);
if (pass_oop) {
__ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
} else {
__ set((intptr_t)message, G4_scratch);
__ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
}
// throw exception
assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
AddressLiteral thrower(Interpreter::throw_exception_entry());
__ jump_to(thrower, G3_scratch);
__ delayed()->nop();
return entry;
}
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// expression stack must be empty before entering the VM if an exception
// happened
__ empty_expression_stack();
// load exception object
__ call_VM(Oexception,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_ClassCastException),
Otos_i);
__ should_not_reach_here();
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
address entry = __ pc();
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
// convention: expect aberrant index in register G3_scratch, then shuffle the
// index to G4_scratch for the VM call
__ mov(G3_scratch, G4_scratch);
__ set((intptr_t)name, G3_scratch);
__ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
__ should_not_reach_here();
return entry;
}
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
__ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
__ should_not_reach_here();
return entry;
}
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
TosState incoming_state = state;
Label cont;
address compiled_entry = __ pc();
address entry = __ pc();
#if !defined(_LP64) && defined(COMPILER2)
// All return values are where we want them, except for Longs. C2 returns
// longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
// Since the interpreter will return longs in G1 and O0/O1 in the 32bit
// build even if we are returning from interpreted we just do a little
// stupid shuffing.
// Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
// do this here. Unfortunately if we did a rethrow we'd see an machepilog node
// first which would move g1 -> O0/O1 and destroy the exception we were throwing.
if (incoming_state == ltos) {
__ srl (G1, 0, O1);
__ srlx(G1, 32, O0);
}
#endif // !_LP64 && COMPILER2
__ bind(cont);
// The callee returns with the stack possibly adjusted by adapter transition
// We remove that possible adjustment here.
// All interpreter local registers are untouched. Any result is passed back
// in the O0/O1 or float registers. Before continuing, the arguments must be
// popped from the java expression stack; i.e., Lesp must be adjusted.
__ mov(Llast_SP, SP); // Remove any adapter added stack space.
Label L_got_cache, L_giant_index;
const Register cache = G3_scratch;
const Register size = G1_scratch;
if (EnableInvokeDynamic) {
__ ldub(Address(Lbcp, 0), G1_scratch); // Load current bytecode.
__ cmp_and_br_short(G1_scratch, Bytecodes::_invokedynamic, Assembler::equal, Assembler::pn, L_giant_index);
}
__ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
__ bind(L_got_cache);
__ ld_ptr(cache, ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset(), size);
__ and3(size, 0xFF, size); // argument size in words
__ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
__ add(Lesp, size, Lesp); // pop arguments
__ dispatch_next(state, step);
// out of the main line of code...
if (EnableInvokeDynamic) {
__ bind(L_giant_index);
__ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
__ ba_short(L_got_cache);
}
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
address entry = __ pc();
__ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
{ Label L;
Address exception_addr(G2_thread, Thread::pending_exception_offset());
__ ld_ptr(exception_addr, Gtemp); // Load pending exception.
__ br_null_short(Gtemp, Assembler::pt, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
__ dispatch_next(state, step);
return entry;
}
// A result handler converts/unboxes a native call result into
// a java interpreter/compiler result. The current frame is an
// interpreter frame. The activation frame unwind code must be
// consistent with that of TemplateTable::_return(...). In the
// case of native methods, the caller's SP was not modified.
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
address entry = __ pc();
Register Itos_i = Otos_i ->after_save();
Register Itos_l = Otos_l ->after_save();
Register Itos_l1 = Otos_l1->after_save();
Register Itos_l2 = Otos_l2->after_save();
switch (type) {
case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value!
case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break;
case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break;
case T_LONG :
#ifndef _LP64
__ mov(O1, Itos_l2); // move other half of long
#endif // ifdef or no ifdef, fall through to the T_INT case
case T_INT : __ mov(O0, Itos_i); break;
case T_VOID : /* nothing to do */ break;
case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break;
case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break;
case T_OBJECT :
__ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
__ verify_oop(Itos_i);
break;
default : ShouldNotReachHere();
}
__ ret(); // return from interpreter activation
__ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
NOT_PRODUCT(__ emit_long(0);) // marker for disassembly
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ dispatch_via(vtos, Interpreter::normal_table(vtos));
return entry;
}
address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
address entry = __ pc();
__ dispatch_next(state);
return entry;
}
//
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// Lmethod: method
// ??: invocation counter
//
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
// Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
if (TieredCompilation) {
const int increment = InvocationCounter::count_increment;
const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
Label no_mdo, done;
if (ProfileInterpreter) {
// If no method data exists, go to profile_continue.
__ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
__ br_null_short(G4_scratch, Assembler::pn, no_mdo);
// Increment counter
Address mdo_invocation_counter(G4_scratch,
in_bytes(MethodData::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
__ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
G3_scratch, Lscratch,
Assembler::zero, overflow);
__ ba_short(done);
}
// Increment counter in Method*
__ bind(no_mdo);
Address invocation_counter(Lmethod,
in_bytes(Method::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
__ increment_mask_and_jump(invocation_counter, increment, mask,
G3_scratch, Lscratch,
Assembler::zero, overflow);
__ bind(done);
} else {
// Update standard invocation counters
__ increment_invocation_counter(O0, G3_scratch);
if (ProfileInterpreter) { // %%% Merge this into MethodData*
Address interpreter_invocation_counter(Lmethod,in_bytes(Method::interpreter_invocation_counter_offset()));
__ ld(interpreter_invocation_counter, G3_scratch);
__ inc(G3_scratch);
__ st(G3_scratch, interpreter_invocation_counter);
}
if (ProfileInterpreter && profile_method != NULL) {
// Test to see if we should create a method data oop
AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
__ load_contents(profile_limit, G3_scratch);
__ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
// if no method data exists, go to profile_method
__ test_method_data_pointer(*profile_method);
}
AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
__ load_contents(invocation_limit, G3_scratch);
__ cmp(O0, G3_scratch);
__ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
__ delayed()->nop();
}
}
// Allocate monitor and lock method (asm interpreter)
// ebx - Method*
//
void InterpreterGenerator::lock_method(void) {
__ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0); // Load access flags.
#ifdef ASSERT
{ Label ok;
__ btst(JVM_ACC_SYNCHRONIZED, O0);
__ br( Assembler::notZero, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("method doesn't need synchronization");
__ bind(ok);
}
#endif // ASSERT
// get synchronization object to O0
{ Label done;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ btst(JVM_ACC_STATIC, O0);
__ br( Assembler::zero, true, Assembler::pt, done);
__ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
__ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
__ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
__ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
// lock the mirror, not the Klass*
__ ld_ptr( O0, mirror_offset, O0);
#ifdef ASSERT
__ tst(O0);
__ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
#endif // ASSERT
__ bind(done);
}
__ add_monitor_to_stack(true, noreg, noreg); // allocate monitor elem
__ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes()); // store object
// __ untested("lock_object from method entry");
__ lock_object(Lmonitors, O0);
}
void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
Register Rscratch,
Register Rscratch2) {
const int page_size = os::vm_page_size();
Label after_frame_check;
assert_different_registers(Rframe_size, Rscratch, Rscratch2);
__ set(page_size, Rscratch);
__ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
// get the stack base, and in debug, verify it is non-zero
__ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
#ifdef ASSERT
Label base_not_zero;
__ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
__ stop("stack base is zero in generate_stack_overflow_check");
__ bind(base_not_zero);
#endif
// get the stack size, and in debug, verify it is non-zero
assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
__ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
#ifdef ASSERT
Label size_not_zero;
__ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
__ stop("stack size is zero in generate_stack_overflow_check");
__ bind(size_not_zero);
#endif
// compute the beginning of the protected zone minus the requested frame size
__ sub( Rscratch, Rscratch2, Rscratch );
__ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
__ add( Rscratch, Rscratch2, Rscratch );
// Add in the size of the frame (which is the same as subtracting it from the
// SP, which would take another register
__ add( Rscratch, Rframe_size, Rscratch );
// the frame is greater than one page in size, so check against
// the bottom of the stack
__ cmp_and_brx_short(SP, Rscratch, Assembler::greater, Assembler::pt, after_frame_check);
// the stack will overflow, throw an exception
// Note that SP is restored to sender's sp (in the delay slot). This
// is necessary if the sender's frame is an extended compiled frame
// (see gen_c2i_adapter()) and safer anyway in case of JSR292
// adaptations.
// Note also that the restored frame is not necessarily interpreted.
// Use the shared runtime version of the StackOverflowError.
assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
__ jump_to(stub, Rscratch);
__ delayed()->mov(O5_savedSP, SP);
// if you get to here, then there is enough stack space
__ bind( after_frame_check );
}
//
// Generate a fixed interpreter frame. This is identical setup for interpreted
// methods and for native methods hence the shared code.
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
//
//
// The entry code sets up a new interpreter frame in 4 steps:
//
// 1) Increase caller's SP by for the extra local space needed:
// (check for overflow)
// Efficient implementation of xload/xstore bytecodes requires
// that arguments and non-argument locals are in a contigously
// addressable memory block => non-argument locals must be
// allocated in the caller's frame.
//
// 2) Create a new stack frame and register window:
// The new stack frame must provide space for the standard
// register save area, the maximum java expression stack size,
// the monitor slots (0 slots initially), and some frame local
// scratch locations.
//
// 3) The following interpreter activation registers must be setup:
// Lesp : expression stack pointer
// Lbcp : bytecode pointer
// Lmethod : method
// Llocals : locals pointer
// Lmonitors : monitor pointer
// LcpoolCache: constant pool cache
//
// 4) Initialize the non-argument locals if necessary:
// Non-argument locals may need to be initialized to NULL
// for GC to work. If the oop-map information is accurate
// (in the absence of the JSR problem), no initialization
// is necessary.
//
// (gri - 2/25/2000)
const Address size_of_parameters(G5_method, Method::size_of_parameters_offset());
const Address size_of_locals (G5_method, Method::size_of_locals_offset());
const Address constMethod (G5_method, Method::const_offset());
int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
const int extra_space =
rounded_vm_local_words + // frame local scratch space
//6815692//Method::extra_stack_words() + // extra push slots for MH adapters
frame::memory_parameter_word_sp_offset + // register save area
(native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
const Register Glocals_size = G3;
const Register Otmp1 = O3;
const Register Otmp2 = O4;
// Lscratch can't be used as a temporary because the call_stub uses
// it to assert that the stack frame was setup correctly.
__ lduh( size_of_parameters, Glocals_size);
// Gargs points to first local + BytesPerWord
// Set the saved SP after the register window save
//
assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
__ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
__ add(Gargs, Otmp1, Gargs);
if (native_call) {
__ calc_mem_param_words( Glocals_size, Gframe_size );
__ add( Gframe_size, extra_space, Gframe_size);
__ round_to( Gframe_size, WordsPerLong );
__ sll( Gframe_size, LogBytesPerWord, Gframe_size );
} else {
//
// Compute number of locals in method apart from incoming parameters
//
__ lduh( size_of_locals, Otmp1 );
__ sub( Otmp1, Glocals_size, Glocals_size );
__ round_to( Glocals_size, WordsPerLong );
__ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
// see if the frame is greater than one page in size. If so,
// then we need to verify there is enough stack space remaining
// Frame_size = (max_stack + extra_space) * BytesPerWord;
__ ld_ptr( constMethod, Gframe_size );
__ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
__ add( Gframe_size, extra_space, Gframe_size );
__ round_to( Gframe_size, WordsPerLong );
__ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
// Add in java locals size for stack overflow check only
__ add( Gframe_size, Glocals_size, Gframe_size );
const Register Otmp2 = O4;
assert_different_registers(Otmp1, Otmp2, O5_savedSP);
generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
__ sub( Gframe_size, Glocals_size, Gframe_size);
//
// bump SP to accomodate the extra locals
//
__ sub( SP, Glocals_size, SP );
}
//
// now set up a stack frame with the size computed above
//
__ neg( Gframe_size );
__ save( SP, Gframe_size, SP );
//
// now set up all the local cache registers
//
// NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
// that all present references to Lbyte_code initialize the register
// immediately before use
if (native_call) {
__ mov(G0, Lbcp);
} else {
__ ld_ptr(G5_method, Method::const_offset(), Lbcp);
__ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
}
__ mov( G5_method, Lmethod); // set Lmethod
__ get_constant_pool_cache( LcpoolCache ); // set LcpoolCache
__ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
#ifdef _LP64
__ add( Lmonitors, STACK_BIAS, Lmonitors ); // Account for 64 bit stack bias
#endif
__ sub(Lmonitors, BytesPerWord, Lesp); // set Lesp
// setup interpreter activation registers
__ sub(Gargs, BytesPerWord, Llocals); // set Llocals
if (ProfileInterpreter) {
#ifdef FAST_DISPATCH
// FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
// they both use I2.
assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
#endif // FAST_DISPATCH
__ set_method_data_pointer();
}
}
// Empty method, generate a very fast return.
address InterpreterGenerator::generate_empty_entry(void) {
// A method that does nother but return...
address entry = __ pc();
Label slow_path;
// do nothing for empty methods (do not even increment invocation counter)
if ( UseFastEmptyMethods) {
// If we need a safepoint check, generate full interpreter entry.
AddressLiteral sync_state(SafepointSynchronize::address_of_state());
__ set(sync_state, G3_scratch);
__ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
// Code: _return
__ retl();
__ delayed()->mov(O5_savedSP, SP);
__ bind(slow_path);
(void) generate_normal_entry(false);
return entry;
}
return NULL;
}
// Call an accessor method (assuming it is resolved, otherwise drop into
// vanilla (slow path) entry
// Generates code to elide accessor methods
// Uses G3_scratch and G1_scratch as scratch
address InterpreterGenerator::generate_accessor_entry(void) {
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
// parameter size = 1
// Note: We can only use this code if the getfield has been resolved
// and if we don't have a null-pointer exception => check for
// these conditions first and use slow path if necessary.
address entry = __ pc();
Label slow_path;
// XXX: for compressed oops pointer loading and decoding doesn't fit in
// delay slot and damages G1
if ( UseFastAccessorMethods && !UseCompressedOops ) {
// Check if we need to reach a safepoint and generate full interpreter
// frame if so.
AddressLiteral sync_state(SafepointSynchronize::address_of_state());
__ load_contents(sync_state, G3_scratch);
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
__ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
// Check if local 0 != NULL
__ ld_ptr(Gargs, G0, Otos_i ); // get local 0
// check if local 0 == NULL and go the slow path
__ br_null_short(Otos_i, Assembler::pn, slow_path);
// read first instruction word and extract bytecode @ 1 and index @ 2
// get first 4 bytes of the bytecodes (big endian!)
__ ld_ptr(G5_method, Method::const_offset(), G1_scratch);
__ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch);
// move index @ 2 far left then to the right most two bytes.
__ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
__ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
// get constant pool cache
__ ld_ptr(G5_method, Method::const_offset(), G3_scratch);
__ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch);
__ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
// get specific constant pool cache entry
__ add(G3_scratch, G1_scratch, G3_scratch);
// Check the constant Pool cache entry to see if it has been resolved.
// If not, need the slow path.
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
__ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
__ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
__ and3(G1_scratch, 0xFF, G1_scratch);
__ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
// Get the type and return field offset from the constant pool cache
__ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
__ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
Label xreturn_path;
// Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes.
// Get the type from the constant pool cache
__ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
// Make sure we don't need to mask G1_scratch after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmp(G1_scratch, atos );
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
__ cmp(G1_scratch, itos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ld(Otos_i, G3_scratch, Otos_i);
__ cmp(G1_scratch, stos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
__ cmp(G1_scratch, ctos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
#ifdef ASSERT
__ cmp(G1_scratch, btos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
__ should_not_reach_here();
#endif
__ ldsb(Otos_i, G3_scratch, Otos_i);
__ bind(xreturn_path);
// _ireturn/_areturn
__ retl(); // return from leaf routine
__ delayed()->mov(O5_savedSP, SP);
// Generate regular method entry
__ bind(slow_path);
(void) generate_normal_entry(false);
return entry;
}
return NULL;
}
// Method entry for java.lang.ref.Reference.get.
address InterpreterGenerator::generate_Reference_get_entry(void) {
#ifndef SERIALGC
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. The "intrinsified" code for G1 (or any SATB based GC),
// 2. The slow path - which is an expansion of the regular method entry.
//
// Notes:-
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
//
// This code is based on generate_accessor_enty.
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
if (UseG1GC) {
Label slow_path;
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ld_ptr(Gargs, G0, Otos_i ); // get local 0
// check if local 0 == NULL and go the slow path
__ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
// Load the value of the referent field.
if (Assembler::is_simm13(referent_offset)) {
__ load_heap_oop(Otos_i, referent_offset, Otos_i);
} else {
__ set(referent_offset, G3_scratch);
__ load_heap_oop(Otos_i, G3_scratch, Otos_i);
}
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value
__ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
Otos_i /* pre_val */,
G3_scratch /* tmp */,
true /* preserve_o_regs */);
// _areturn
__ retl(); // return from leaf routine
__ delayed()->mov(O5_savedSP, SP);
// Generate regular method entry
__ bind(slow_path);
(void) generate_normal_entry(false);
return entry;
}
#endif // SERIALGC
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
//
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup.
//
address InterpreterGenerator::generate_native_entry(bool synchronized) {
address entry = __ pc();
// the following temporary registers are used during frame creation
const Register Gtmp1 = G3_scratch ;
const Register Gtmp2 = G1_scratch;
bool inc_counter = UseCompiler || CountCompiledCalls;
// make sure registers are different!
assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
const Address Laccess_flags(Lmethod, Method::access_flags_offset());
const Register Glocals_size = G3;
assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
// make sure method is native & not abstract
// rethink these assertions - they can be simplified and shared (gri 2/25/2000)
#ifdef ASSERT
__ ld(G5_method, Method::access_flags_offset(), Gtmp1);
{
Label L;
__ btst(JVM_ACC_NATIVE, Gtmp1);
__ br(Assembler::notZero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{ Label L;
__ btst(JVM_ACC_ABSTRACT, Gtmp1);
__ br(Assembler::zero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("tried to execute abstract method as non-abstract");
__ bind(L);
}
#endif // ASSERT
// generate the code to allocate the interpreter stack frame
generate_fixed_frame(true);
//
// No locals to initialize for native method
//
// this slot will be set later, we initialize it to null here just in
// case we get a GC before the actual value is stored later
__ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
const Address do_not_unlock_if_synchronized(G2_thread,
JavaThread::do_not_unlock_if_synchronized_offset());
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
// This flag has two effects, one is to force an unwind in the topmost
// interpreter frame and not perform an unlock while doing so.
__ movbool(true, G3_scratch);
__ stbool(G3_scratch, do_not_unlock_if_synchronized);
// increment invocation counter and check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test (may be of
// importance as soon as we have true MT/MP)
Label invocation_counter_overflow;
Label Lcontinue;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
__ bind(Lcontinue);
bang_stack_shadow_pages(true);
// reset the _do_not_unlock_if_synchronized flag
__ stbool(G0, do_not_unlock_if_synchronized);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
lock_method();
} else {
#ifdef ASSERT
{ Label ok;
__ ld(Laccess_flags, O0);
__ btst(JVM_ACC_SYNCHRONIZED, O0);
__ br( Assembler::zero, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("method needs synchronization");
__ bind(ok);
}
#endif // ASSERT
}
// start execution
__ verify_thread();
// JVMTI support
__ notify_method_entry();
// native call
// (note that O0 is never an oop--at most it is a handle)
// It is important not to smash any handles created by this call,
// until any oop handle in O0 is dereferenced.
// (note that the space for outgoing params is preallocated)
// get signature handler
{ Label L;
Address signature_handler(Lmethod, Method::signature_handler_offset());
__ ld_ptr(signature_handler, G3_scratch);
__ br_notnull_short(G3_scratch, Assembler::pt, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
__ ld_ptr(signature_handler, G3_scratch);
__ bind(L);
}
// Push a new frame so that the args will really be stored in
// Copy a few locals across so the new frame has the variables
// we need but these values will be dead at the jni call and
// therefore not gc volatile like the values in the current
// frame (Lmethod in particular)
// Flush the method pointer to the register save area
__ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
__ mov(Llocals, O1);
// calculate where the mirror handle body is allocated in the interpreter frame:
__ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
// Calculate current frame size
__ sub(SP, FP, O3); // Calculate negative of current frame size
__ save(SP, O3, SP); // Allocate an identical sized frame
// Note I7 has leftover trash. Slow signature handler will fill it in
// should we get there. Normal jni call will set reasonable last_Java_pc
// below (and fix I7 so the stack trace doesn't have a meaningless frame
// in it).
// Load interpreter frame's Lmethod into same register here
__ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
__ mov(I1, Llocals);
__ mov(I2, Lscratch2); // save the address of the mirror
// ONLY Lmethod and Llocals are valid here!
// call signature handler, It will move the arg properly since Llocals in current frame
// matches that in outer frame
__ callr(G3_scratch, 0);
__ delayed()->nop();
// Result handler is in Lscratch
// Reload interpreter frame's Lmethod since slow signature handler may block
__ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
{ Label not_static;
__ ld(Laccess_flags, O0);
__ btst(JVM_ACC_STATIC, O0);
__ br( Assembler::zero, false, Assembler::pt, not_static);
// get native function entry point(O0 is a good temp until the very end)
__ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
// for static methods insert the mirror argument
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ ld_ptr(Lmethod, Method:: const_offset(), O1);
__ ld_ptr(O1, ConstMethod::constants_offset(), O1);
__ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
__ ld_ptr(O1, mirror_offset, O1);
#ifdef ASSERT
if (!PrintSignatureHandlers) // do not dirty the output with this
{ Label L;
__ br_notnull_short(O1, Assembler::pt, L);
__ stop("mirror is missing");
__ bind(L);
}
#endif // ASSERT
__ st_ptr(O1, Lscratch2, 0);
__ mov(Lscratch2, O1);
__ bind(not_static);
}
// At this point, arguments have been copied off of stack into
// their JNI positions, which are O1..O5 and SP[68..].
// Oops are boxed in-place on the stack, with handles copied to arguments.
// The result handler is in Lscratch. O0 will shortly hold the JNIEnv*.
#ifdef ASSERT
{ Label L;
__ br_notnull_short(O0, Assembler::pt, L);
__ stop("native entry point is missing");
__ bind(L);
}
#endif // ASSERT
//
// setup the frame anchor
//
// The scavenge function only needs to know that the PC of this frame is
// in the interpreter method entry code, it doesn't need to know the exact
// PC and hence we can use O7 which points to the return address from the
// previous call in the code stream (signature handler function)
//
// The other trick is we set last_Java_sp to FP instead of the usual SP because
// we have pushed the extra frame in order to protect the volatile register(s)
// in that frame when we return from the jni call
//
__ set_last_Java_frame(FP, O7);
__ mov(O7, I7); // make dummy interpreter frame look like one above,
// not meaningless information that'll confuse me.
// flush the windows now. We don't care about the current (protection) frame
// only the outer frames
__ flush_windows();
// mark windows as flushed
Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
__ set(JavaFrameAnchor::flushed, G3_scratch);
__ st(G3_scratch, flags);
// Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
Address thread_state(G2_thread, JavaThread::thread_state_offset());
#ifdef ASSERT
{ Label L;
__ ld(thread_state, G3_scratch);
__ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
__ stop("Wrong thread state in native stub");
__ bind(L);
}
#endif // ASSERT
__ set(_thread_in_native, G3_scratch);
__ st(G3_scratch, thread_state);
// Call the jni method, using the delay slot to set the JNIEnv* argument.
__ save_thread(L7_thread_cache); // save Gthread
__ callr(O0, 0);
__ delayed()->
add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
// Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
__ restore_thread(L7_thread_cache); // restore G2_thread
__ reinit_heapbase();
// must we block?
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after blocking.
{ Label no_block;
AddressLiteral sync_state(SafepointSynchronize::address_of_state());
// Switch thread to "native transition" state before reading the synchronization state.
// This additional state is necessary because reading and testing the synchronization
// state is not atomic w.r.t. GC, as this scenario demonstrates:
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
// VM thread changes sync state to synchronizing and suspends threads for GC.
// Thread A is resumed to finish this native method, but doesn't block here since it
// didn't see any synchronization is progress, and escapes.
__ set(_thread_in_native_trans, G3_scratch);
__ st(G3_scratch, thread_state);
if(os::is_MP()) {
if (UseMembar) {
// Force this write out before the read below
__ membar(Assembler::StoreLoad);
} else {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(G2_thread, G1_scratch, G3_scratch);
}
}
__ load_contents(sync_state, G3_scratch);
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
Label L;
__ br(Assembler::notEqual, false, Assembler::pn, L);
__ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
__ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
__ bind(L);
// Block. Save any potential method result value before the operation and
// use a leaf call to leave the last_Java_frame setup undisturbed.
save_native_result();
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
G2_thread);
// Restore any method result value
restore_native_result();
__ bind(no_block);
}
// Clear the frame anchor now
__ reset_last_Java_frame();
// Move the result handler address
__ mov(Lscratch, G3_scratch);
// return possible result to the outer frame
#ifndef __LP64
__ mov(O0, I0);
__ restore(O1, G0, O1);
#else
__ restore(O0, G0, O0);
#endif /* __LP64 */
// Move result handler to expected register
__ mov(G3_scratch, Lscratch);
// Back in normal (native) interpreter frame. State is thread_in_native_trans
// switch to thread_in_Java.
__ set(_thread_in_Java, G3_scratch);
__ st(G3_scratch, thread_state);
// reset handle block
__ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
__ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
// If we have an oop result store it where it will be safe for any further gc
// until we return now that we've released the handle it might be protected by
{
Label no_oop, store_result;
__ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
__ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
__ addcc(G0, O0, O0);
__ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL:
__ delayed()->ld_ptr(O0, 0, O0); // unbox it
__ mov(G0, O0);
__ bind(store_result);
// Store it where gc will look for it and result handler expects it.
__ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
__ bind(no_oop);
}
// handle exceptions (exception handling will handle unlocking!)
{ Label L;
Address exception_addr(G2_thread, Thread::pending_exception_offset());
__ ld_ptr(exception_addr, Gtemp);
__ br_null_short(Gtemp, Assembler::pt, L);
// Note: This could be handled more efficiently since we know that the native
// method doesn't have an exception handler. We could directly return
// to the exception handler for the caller.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
// JVMTI support (preserves thread register)
__ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
if (synchronized) {
// save and restore any potential method result value around the unlocking operation
save_native_result();
__ add( __ top_most_monitor(), O1);
__ unlock_object(O1);
restore_native_result();
}
#if defined(COMPILER2) && !defined(_LP64)
// C2 expects long results in G1 we can't tell if we're returning to interpreted
// or compiled so just be safe.
__ sllx(O0, 32, G1); // Shift bits into high G1
__ srl (O1, 0, O1); // Zero extend O1
__ or3 (O1, G1, G1); // OR 64 bits into G1
#endif /* COMPILER2 && !_LP64 */
// dispose of return address and remove activation
#ifdef ASSERT
{
Label ok;
__ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
__ stop("bad I5_savedSP value");
__ should_not_reach_here();
__ bind(ok);
}
#endif
if (TraceJumps) {
// Move target to register that is recordable
__ mov(Lscratch, G3_scratch);
__ JMP(G3_scratch, 0);
} else {
__ jmp(Lscratch, 0);
}
__ delayed()->nop();
if (inc_counter) {
// handle invocation counter overflow
__ bind(invocation_counter_overflow);
generate_counter_overflow(Lcontinue);
}
return entry;
}
// Generic method entry to (asm) interpreter
//------------------------------------------------------------------------------------------------------------------------
//
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
address entry = __ pc();
bool inc_counter = UseCompiler || CountCompiledCalls;
// the following temporary registers are used during frame creation
const Register Gtmp1 = G3_scratch ;
const Register Gtmp2 = G1_scratch;
// make sure registers are different!
assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
const Address size_of_parameters(G5_method, Method::size_of_parameters_offset());
const Address size_of_locals (G5_method, Method::size_of_locals_offset());
// Seems like G5_method is live at the point this is used. So we could make this look consistent
// and use in the asserts.
const Address access_flags (Lmethod, Method::access_flags_offset());
const Register Glocals_size = G3;
assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
// make sure method is not native & not abstract
// rethink these assertions - they can be simplified and shared (gri 2/25/2000)
#ifdef ASSERT
__ ld(G5_method, Method::access_flags_offset(), Gtmp1);
{
Label L;
__ btst(JVM_ACC_NATIVE, Gtmp1);
__ br(Assembler::zero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("tried to execute native method as non-native");
__ bind(L);
}
{ Label L;
__ btst(JVM_ACC_ABSTRACT, Gtmp1);
__ br(Assembler::zero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("tried to execute abstract method as non-abstract");
__ bind(L);
}
#endif // ASSERT
// generate the code to allocate the interpreter stack frame
generate_fixed_frame(false);
#ifdef FAST_DISPATCH
__ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
// set bytecode dispatch table base
#endif
//
// Code to initialize the extra (i.e. non-parm) locals
//
Register init_value = noreg; // will be G0 if we must clear locals
// The way the code was setup before zerolocals was always true for vanilla java entries.
// It could only be false for the specialized entries like accessor or empty which have
// no extra locals so the testing was a waste of time and the extra locals were always
// initialized. We removed this extra complication to already over complicated code.
init_value = G0;
Label clear_loop;
// NOTE: If you change the frame layout, this code will need to
// be updated!
__ lduh( size_of_locals, O2 );
__ lduh( size_of_parameters, O1 );
__ sll( O2, Interpreter::logStackElementSize, O2);
__ sll( O1, Interpreter::logStackElementSize, O1 );
__ sub( Llocals, O2, O2 );
__ sub( Llocals, O1, O1 );
__ bind( clear_loop );
__ inc( O2, wordSize );
__ cmp( O2, O1 );
__ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
__ delayed()->st_ptr( init_value, O2, 0 );
const Address do_not_unlock_if_synchronized(G2_thread,
JavaThread::do_not_unlock_if_synchronized_offset());
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
__ movbool(true, G3_scratch);
__ stbool(G3_scratch, do_not_unlock_if_synchronized);
// increment invocation counter and check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test (may be of
// importance as soon as we have true MT/MP)
Label invocation_counter_overflow;
Label profile_method;
Label profile_method_continue;
Label Lcontinue;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
if (ProfileInterpreter) {
__ bind(profile_method_continue);
}
}
__ bind(Lcontinue);
bang_stack_shadow_pages(false);
// reset the _do_not_unlock_if_synchronized flag
__ stbool(G0, do_not_unlock_if_synchronized);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
lock_method();
} else {
#ifdef ASSERT
{ Label ok;
__ ld(access_flags, O0);
__ btst(JVM_ACC_SYNCHRONIZED, O0);
__ br( Assembler::zero, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("method needs synchronization");
__ bind(ok);
}
#endif // ASSERT
}
// start execution
__ verify_thread();
// jvmti support
__ notify_method_entry();
// start executing instructions
__ dispatch_next(vtos);
if (inc_counter) {
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ ba_short(profile_method_continue);
}
// handle invocation counter overflow
__ bind(invocation_counter_overflow);
generate_counter_overflow(Lcontinue);
}
return entry;
}
//----------------------------------------------------------------------------------------------------
// Entry points & stack frame layout
//
// Here we generate the various kind of entries into the interpreter.
// The two main entry type are generic bytecode methods and native call method.
// These both come in synchronized and non-synchronized versions but the
// frame layout they create is very similar. The other method entry
// types are really just special purpose entries that are really entry
// and interpretation all in one. These are for trivial methods like
// accessor, empty, or special math methods.
//
// When control flow reaches any of the entry types for the interpreter
// the following holds ->
//
// C2 Calling Conventions:
//
// The entry code below assumes that the following registers are set
// when coming in:
// G5_method: holds the Method* of the method to call
// Lesp: points to the TOS of the callers expression stack
// after having pushed all the parameters
//
// The entry code does the following to setup an interpreter frame
// pop parameters from the callers stack by adjusting Lesp
// set O0 to Lesp
// compute X = (max_locals - num_parameters)
// bump SP up by X to accomadate the extra locals
// compute X = max_expression_stack
// + vm_local_words
// + 16 words of register save area
// save frame doing a save sp, -X, sp growing towards lower addresses
// set Lbcp, Lmethod, LcpoolCache
// set Llocals to i0
// set Lmonitors to FP - rounded_vm_local_words
// set Lesp to Lmonitors - 4
//
// The frame has now been setup to do the rest of the entry code
// Try this optimization: Most method entries could live in a
// "one size fits all" stack frame without all the dynamic size
// calculations. It might be profitable to do all this calculation
// statically and approximately for "small enough" methods.
//-----------------------------------------------------------------------------------------------
// C1 Calling conventions
//
// Upon method entry, the following registers are setup:
//
// g2 G2_thread: current thread
// g5 G5_method: method to activate
// g4 Gargs : pointer to last argument
//
//
// Stack:
//
// +---------------+ <--- sp
// | |
// : reg save area :
// | |
// +---------------+ <--- sp + 0x40
// | |
// : extra 7 slots : note: these slots are not really needed for the interpreter (fix later)
// | |
// +---------------+ <--- sp + 0x5c
// | |
// : free :
// | |
// +---------------+ <--- Gargs
// | |
// : arguments :
// | |
// +---------------+
// | |
//
//
//
// AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
//
// +---------------+ <--- sp
// | |
// : reg save area :
// | |
// +---------------+ <--- sp + 0x40
// | |
// : extra 7 slots : note: these slots are not really needed for the interpreter (fix later)
// | |
// +---------------+ <--- sp + 0x5c
// | |
// : :
// | | <--- Lesp
// +---------------+ <--- Lmonitors (fp - 0x18)
// | VM locals |
// +---------------+ <--- fp
// | |
// : reg save area :
// | |
// +---------------+ <--- fp + 0x40
// | |
// : extra 7 slots : note: these slots are not really needed for the interpreter (fix later)
// | |
// +---------------+ <--- fp + 0x5c
// | |
// : free :
// | |
// +---------------+
// | |
// : nonarg locals :
// | |
// +---------------+
// | |
// : arguments :
// | | <--- Llocals
// +---------------+ <--- Gargs
// | |
static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
// Figure out the size of an interpreter frame (in words) given that we have a fully allocated
// expression stack, the callee will have callee_extra_locals (so we can account for
// frame extension) and monitor_size for monitors. Basically we need to calculate
// this exactly like generate_fixed_frame/generate_compute_interpreter_state.
//
//
// The big complicating thing here is that we must ensure that the stack stays properly
// aligned. This would be even uglier if monitor size wasn't modulo what the stack
// needs to be aligned for). We are given that the sp (fp) is already aligned by
// the caller so we must ensure that it is properly aligned for our callee.
//
const int rounded_vm_local_words =
round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
// callee_locals and max_stack are counts, not the size in frame.
const int locals_size =
round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
const int max_stack_words = max_stack * Interpreter::stackElementWords;
return (round_to((max_stack_words
//6815692//+ Method::extra_stack_words()
+ rounded_vm_local_words
+ frame::memory_parameter_word_sp_offset), WordsPerLong)
// already rounded
+ locals_size + monitor_size);
}
// How much stack a method top interpreter activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
// See call_stub code
int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset,
WordsPerLong); // 7 + register save area
// Save space for one monitor to get into the interpreted method in case
// the method is synchronized
int monitor_size = method->is_synchronized() ?
1*frame::interpreter_frame_monitor_size() : 0;
return size_activation_helper(method->max_locals(), method->max_stack(),
monitor_size) + call_stub_size;
}
int AbstractInterpreter::layout_activation(Method* method,
int tempcount,
int popframe_extra_args,
int moncount,
int caller_actual_parameters,
int callee_param_count,
int callee_local_count,
frame* caller,
frame* interpreter_frame,
bool is_top_frame) {
// Note: This calculation must exactly parallel the frame setup
// in InterpreterGenerator::generate_fixed_frame.
// If f!=NULL, set up the following variables:
// - Lmethod
// - Llocals
// - Lmonitors (to the indicated number of monitors)
// - Lesp (to the indicated number of temps)
// The frame f (if not NULL) on entry is a description of the caller of the frame
// we are about to layout. We are guaranteed that we will be able to fill in a
// new interpreter frame as its callee (i.e. the stack space is allocated and
// the amount was determined by an earlier call to this method with f == NULL).
// On return f (if not NULL) while describe the interpreter frame we just layed out.
int monitor_size = moncount * frame::interpreter_frame_monitor_size();
int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
//
// Note: if you look closely this appears to be doing something much different
// than generate_fixed_frame. What is happening is this. On sparc we have to do
// this dance with interpreter_sp_adjustment because the window save area would
// appear just below the bottom (tos) of the caller's java expression stack. Because
// the interpreter want to have the locals completely contiguous generate_fixed_frame
// will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
// Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
// In this code the opposite occurs the caller adjusts it's own stack base on the callee.
// This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
// because the oldest frame would have adjust its callers frame and yet that frame
// already exists and isn't part of this array of frames we are unpacking. So at first
// glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
// will after it calculates all of the frame's on_stack_size()'s will then figure out the
// amount to adjust the caller of the initial (oldest) frame and the calculation will all
// add up. It does seem like it simpler to account for the adjustment here (and remove the
// callee... parameters here). However this would mean that this routine would have to take
// the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
// and run the calling loop in the reverse order. This would also would appear to mean making
// this code aware of what the interactions are when that initial caller fram was an osr or
// other adapter frame. deoptimization is complicated enough and hard enough to debug that
// there is no sense in messing working code.
//
int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
monitor_size);
if (interpreter_frame != NULL) {
// The skeleton frame must already look like an interpreter frame
// even if not fully filled out.
assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
intptr_t* fp = interpreter_frame->fp();
JavaThread* thread = JavaThread::current();
RegisterMap map(thread, false);
// More verification that skeleton frame is properly walkable
assert(fp == caller->sp(), "fp must match");
intptr_t* montop = fp - rounded_vm_local_words;
// preallocate monitors (cf. __ add_monitor_to_stack)
intptr_t* monitors = montop - monitor_size;
// preallocate stack space
intptr_t* esp = monitors - 1 -
(tempcount * Interpreter::stackElementWords) -
popframe_extra_args;
int local_words = method->max_locals() * Interpreter::stackElementWords;
NEEDS_CLEANUP;
intptr_t* locals;
if (caller->is_interpreted_frame()) {
// Can force the locals area to end up properly overlapping the top of the expression stack.
intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
// Note that this computation means we replace size_of_parameters() values from the caller
// interpreter frame's expression stack with our argument locals
int parm_words = caller_actual_parameters * Interpreter::stackElementWords;
locals = Lesp_ptr + parm_words;
int delta = local_words - parm_words;
int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
*interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
} else {
assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
// Don't have Lesp available; lay out locals block in the caller
// adjacent to the register window save area.
//
// Compiled frames do not allocate a varargs area which is why this if
// statement is needed.
//
if (caller->is_compiled_frame()) {
locals = fp + frame::register_save_words + local_words - 1;
} else {
locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
}
if (!caller->is_entry_frame()) {
// Caller wants his own SP back
int caller_frame_size = caller->cb()->frame_size();
*interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
}
}
if (TraceDeoptimization) {
if (caller->is_entry_frame()) {
// make sure I5_savedSP and the entry frames notion of saved SP
// agree. This assertion duplicate a check in entry frame code
// but catches the failure earlier.
assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
"would change callers SP");
}
if (caller->is_entry_frame()) {
tty->print("entry ");
}
if (caller->is_compiled_frame()) {
tty->print("compiled ");
if (caller->is_deoptimized_frame()) {
tty->print("(deopt) ");
}
}
if (caller->is_interpreted_frame()) {
tty->print("interpreted ");
}
tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
tty->print_cr("Llocals = 0x%x", locals);
tty->print_cr("Lesp = 0x%x", esp);
tty->print_cr("Lmonitors = 0x%x", monitors);
}
if (method->max_locals() > 0) {
assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
}
#ifdef _LP64
assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
#endif
*interpreter_frame->register_addr(Lmethod) = (intptr_t) method;
*interpreter_frame->register_addr(Llocals) = (intptr_t) locals;
*interpreter_frame->register_addr(Lmonitors) = (intptr_t) monitors;
*interpreter_frame->register_addr(Lesp) = (intptr_t) esp;
// Llast_SP will be same as SP as there is no adapter space
*interpreter_frame->register_addr(Llast_SP) = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
*interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
#ifdef FAST_DISPATCH
*interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
#endif
#ifdef ASSERT
BasicObjectLock* mp = (BasicObjectLock*)monitors;
assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
assert(interpreter_frame->interpreter_frame_monitor_end() == mp, "monitor_end matches");
assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
// check bounds
intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
assert(lo < monitors && montop <= hi, "monitors in bounds");
assert(lo <= esp && esp < monitors, "esp in bounds");
#endif // ASSERT
}
return raw_frame_size;
}
//----------------------------------------------------------------------------------------------------
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
// Entry point in previous activation (i.e., if the caller was interpreted)
Interpreter::_rethrow_exception_entry = __ pc();
// O0: exception
// entry point for exceptions thrown within interpreter code
Interpreter::_throw_exception_entry = __ pc();
__ verify_thread();
// expression stack is undefined here
// O0: exception, i.e. Oexception
// Lbcp: exception bcx
__ verify_oop(Oexception);
// expression stack must be empty before entering the VM in case of an exception
__ empty_expression_stack();
// find exception handler address and preserve exception oop
// call C routine to find handler and jump to it
__ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
__ push_ptr(O1); // push exception for exception handler bytecodes
__ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
__ delayed()->nop();
// if the exception is not handled in the current frame
// the frame is removed and the exception is rethrown
// (i.e. exception continuation is _rethrow_exception)
//
// Note: At this point the bci is still the bxi for the instruction which caused
// the exception and the expression stack is empty. Thus, for any VM calls
// at this point, GC will find a legal oop map (with empty expression stack).
// in current activation
// tos: exception
// Lbcp: exception bcp
//
// JVMTI PopFrame support
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
// Set the popframe_processing bit in popframe_condition indicating that we are
// currently handling popframe, so that call_VMs that may happen later do not trigger new
// popframe handling cycles.
__ ld(popframe_condition_addr, G3_scratch);
__ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
__ stw(G3_scratch, popframe_condition_addr);
// Empty the expression stack, as in normal exception handling
__ empty_expression_stack();
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
{
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
//
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label caller_not_deoptimized;
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
__ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
const Register Gtmp1 = G3_scratch;
const Register Gtmp2 = G1_scratch;
// Compute size of arguments for saving when returning to deoptimized caller
__ lduh(Lmethod, in_bytes(Method::size_of_parameters_offset()), Gtmp1);
__ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
__ sub(Llocals, Gtmp1, Gtmp2);
__ add(Gtmp2, wordSize, Gtmp2);
// Save these arguments
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
// Inform deoptimization that it is responsible for restoring these arguments
__ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
__ st(Gtmp1, popframe_condition_addr);
// Return from the current method
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ ret();
__ delayed()->restore(I5_savedSP, G0, SP);
__ bind(caller_not_deoptimized);
}
// Clear the popframe condition flag
__ stw(G0 /* popframe_inactive */, popframe_condition_addr);
// Get out of the current method (how this is done depends on the particular compiler calling
// convention that the interpreter currently follows)
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ restore(I5_savedSP, G0, SP);
// The method data pointer was incremented already during
// call profiling. We have to restore the mdp for the current bcp.
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
// Resume bytecode interpretation at the current bcp
__ dispatch_next(vtos);
// end of JVMTI PopFrame support
Interpreter::_remove_activation_entry = __ pc();
// preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
__ pop_ptr(Oexception); // get exception
// Intel has the following comment:
//// remove the activation (without doing throws on illegalMonitorExceptions)
// They remove the activation without checking for bad monitor state.
// %%% We should make sure this is the right semantics before implementing.
__ set_vm_result(Oexception);
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
__ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
__ get_vm_result(Oexception);
__ verify_oop(Oexception);
const int return_reg_adjustment = frame::pc_return_offset;
Address issuing_pc_addr(I7, return_reg_adjustment);
// We are done with this activation frame; find out where to go next.
// The continuation point will be an exception handler, which expects
// the following registers set up:
//
// Oexception: exception
// Oissuing_pc: the local call that threw exception
// Other On: garbage
// In/Ln: the contents of the caller's register window
//
// We do the required restore at the last possible moment, because we
// need to preserve some state across a runtime call.
// (Remember that the caller activation is unknown--it might not be
// interpreted, so things like Lscratch are useless in the caller.)
// Although the Intel version uses call_C, we can use the more
// compact call_VM. (The only real difference on SPARC is a
// harmlessly ignored [re]set_last_Java_frame, compared with
// the Intel code which lacks this.)
__ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore
__ add(issuing_pc_addr, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller
__ super_call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
G2_thread, Oissuing_pc->after_save());
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ JMP(O0, 0); // return exception handler in caller
__ delayed()->restore(I5_savedSP, G0, SP);
// (same old exception object is already in Oexception; see above)
// Note that an "issuing PC" is actually the next PC after the call
}
//
// JVMTI ForceEarlyReturn support
//
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
address entry = __ pc();
__ empty_expression_stack();
__ load_earlyret_value(state);
__ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
// Clear the earlyret state
__ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
__ remove_activation(state,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false);
// The caller's SP was adjusted upon method entry to accomodate
// the callee's non-argument locals. Undo that adjustment.
__ ret(); // return to caller
__ delayed()->restore(I5_savedSP, G0, SP);
return entry;
} // end of JVMTI ForceEarlyReturn support
//------------------------------------------------------------------------------------------------------------------------
// Helper for vtos entry point generation
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
aep = __ pc(); __ push_ptr(); __ ba_short(L);
fep = __ pc(); __ push_f(); __ ba_short(L);
dep = __ pc(); __ push_d(); __ ba_short(L);
lep = __ pc(); __ push_l(); __ ba_short(L);
iep = __ pc(); __ push_i();
bep = cep = sep = iep; // there aren't any
vep = __ pc(); __ bind(L); // fall through
generate_and_dispatch(t);
}
// --------------------------------------------------------------------------------
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: TemplateInterpreterGenerator(code) {
generate_all(); // down here so it can be "virtual"
}
// --------------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
address entry = __ pc();
__ push(state);
__ mov(O7, Lscratch); // protect return address within interpreter
// Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
__ mov( Otos_l2, G3_scratch );
__ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
__ mov(Lscratch, O7); // restore return address
__ pop(state);
__ retl();
__ delayed()->nop();
return entry;
}
// helpers for generate_and_dispatch
void TemplateInterpreterGenerator::count_bytecode() {
__ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
}
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
__ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
}
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
AddressLiteral index (&BytecodePairHistogram::_index);
AddressLiteral counters((address) &BytecodePairHistogram::_counters);
// get index, shift out old bytecode, bring in new bytecode, and store it
// _index = (_index >> log2_number_of_codes) |
// (bytecode << log2_number_of_codes);
__ load_contents(index, G4_scratch);
__ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
__ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes, G3_scratch );
__ or3( G3_scratch, G4_scratch, G4_scratch );
__ store_contents(G4_scratch, index, G3_scratch);
// bump bucket contents
// _counters[_index] ++;
__ set(counters, G3_scratch); // loads into G3_scratch
__ sll( G4_scratch, LogBytesPerWord, G4_scratch ); // Index is word address
__ add (G3_scratch, G4_scratch, G3_scratch); // Add in index
__ ld (G3_scratch, 0, G4_scratch);
__ inc (G4_scratch);
__ st (G4_scratch, 0, G3_scratch);
}
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
address entry = Interpreter::trace_code(t->tos_in());
guarantee(entry != NULL, "entry must have been generated");
__ call(entry, relocInfo::none);
__ delayed()->nop();
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
AddressLiteral counter(&BytecodeCounter::_counter_value);
__ load_contents(counter, G3_scratch);
AddressLiteral stop_at(&StopInterpreterAt);
__ load_ptr_contents(stop_at, G4_scratch);
__ cmp(G3_scratch, G4_scratch);
__ breakpoint_trap(Assembler::equal, Assembler::icc);
}
#endif // not PRODUCT
#endif // !CC_INTERP