8004318: JEP-171: Support Unsafe fences intrinsics
Summary: Add three memory-ordering intrinsics to the sun.misc.Unsafe class.
Reviewed-by: twisti, kvn
Contributed-by: Aleksey Shipilev <aleksey.shipilev@oracle.com>
/*
* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/cppInterpreter.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifdef SHARK
#include "shark/shark_globals.hpp"
#endif
#ifdef CC_INTERP
// Routine exists to make tracebacks look decent in debugger
// while "shadow" interpreter frames are on stack. It is also
// used to distinguish interpreter frames.
extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
ShouldNotReachHere();
}
bool CppInterpreter::contains(address pc) {
return ( _code->contains(pc) ||
( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
}
#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
#define __ _masm->
Label frame_manager_entry;
Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
// c++ interpreter entry point this holds that entry point label.
static address unctrap_frame_manager_entry = NULL;
static address interpreter_return_address = NULL;
static address deopt_frame_manager_return_atos = NULL;
static address deopt_frame_manager_return_btos = NULL;
static address deopt_frame_manager_return_itos = NULL;
static address deopt_frame_manager_return_ltos = NULL;
static address deopt_frame_manager_return_ftos = NULL;
static address deopt_frame_manager_return_dtos = NULL;
static address deopt_frame_manager_return_vtos = NULL;
const Register prevState = G1_scratch;
void InterpreterGenerator::save_native_result(void) {
// result potentially in O0/O1: save it across calls
__ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
#ifdef _LP64
__ stx(O0, STATE(_native_lresult));
#else
__ std(O0, STATE(_native_lresult));
#endif
}
void InterpreterGenerator::restore_native_result(void) {
// Restore any method result value
__ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
#ifdef _LP64
__ ldx(STATE(_native_lresult), O0);
#else
__ ldd(STATE(_native_lresult), O0);
#endif
}
// A result handler converts/unboxes a native call result into
// a java interpreter/compiler result. The current frame is an
// interpreter frame. The activation frame unwind code must be
// consistent with that of TemplateTable::_return(...). In the
// case of native methods, the caller's SP was not modified.
address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
address entry = __ pc();
Register Itos_i = Otos_i ->after_save();
Register Itos_l = Otos_l ->after_save();
Register Itos_l1 = Otos_l1->after_save();
Register Itos_l2 = Otos_l2->after_save();
switch (type) {
case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value!
case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break;
case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break;
case T_LONG :
#ifndef _LP64
__ mov(O1, Itos_l2); // move other half of long
#endif // ifdef or no ifdef, fall through to the T_INT case
case T_INT : __ mov(O0, Itos_i); break;
case T_VOID : /* nothing to do */ break;
case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break;
case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break;
case T_OBJECT :
__ ld_ptr(STATE(_oop_temp), Itos_i);
__ verify_oop(Itos_i);
break;
default : ShouldNotReachHere();
}
__ ret(); // return from interpreter activation
__ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
NOT_PRODUCT(__ emit_long(0);) // marker for disassembly
return entry;
}
// tosca based result to c++ interpreter stack based result.
// Result goes to address in L1_scratch
address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
// A result is in the native abi result register from a native method call.
// We need to return this result to the interpreter by pushing the result on the interpreter's
// stack. This is relatively simple the destination is in L1_scratch
// i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
// adjust L1_scratch
address entry = __ pc();
switch (type) {
case T_BOOLEAN:
// !0 => true; 0 => false
__ subcc(G0, O0, G0);
__ addc(G0, 0, O0);
__ st(O0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
// cannot use and3, 0xFFFF too big as immediate value!
case T_CHAR :
__ sll(O0, 16, O0);
__ srl(O0, 16, O0);
__ st(O0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
case T_BYTE :
__ sll(O0, 24, O0);
__ sra(O0, 24, O0);
__ st(O0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
case T_SHORT :
__ sll(O0, 16, O0);
__ sra(O0, 16, O0);
__ st(O0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
case T_LONG :
#ifndef _LP64
#if defined(COMPILER2)
// All return values are where we want them, except for Longs. C2 returns
// longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
// Since the interpreter will return longs in G1 and O0/O1 in the 32bit
// build even if we are returning from interpreted we just do a little
// stupid shuffing.
// Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
// do this here. Unfortunately if we did a rethrow we'd see an machepilog node
// first which would move g1 -> O0/O1 and destroy the exception we were throwing.
__ stx(G1, L1_scratch, -wordSize);
#else
// native result is in O0, O1
__ st(O1, L1_scratch, 0); // Low order
__ st(O0, L1_scratch, -wordSize); // High order
#endif /* COMPILER2 */
#else
__ stx(O0, L1_scratch, -wordSize);
#endif
__ sub(L1_scratch, 2*wordSize, L1_scratch);
break;
case T_INT :
__ st(O0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
case T_VOID : /* nothing to do */
break;
case T_FLOAT :
__ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
case T_DOUBLE :
// Every stack slot is aligned on 64 bit, However is this
// the correct stack slot on 64bit?? QQQ
__ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
__ sub(L1_scratch, 2*wordSize, L1_scratch);
break;
case T_OBJECT :
__ verify_oop(O0);
__ st_ptr(O0, L1_scratch, 0);
__ sub(L1_scratch, wordSize, L1_scratch);
break;
default : ShouldNotReachHere();
}
__ retl(); // return from interpreter activation
__ delayed()->nop(); // schedule this better
NOT_PRODUCT(__ emit_long(0);) // marker for disassembly
return entry;
}
address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
// A result is in the java expression stack of the interpreted method that has just
// returned. Place this result on the java expression stack of the caller.
//
// The current interpreter activation in Lstate is for the method just returning its
// result. So we know that the result of this method is on the top of the current
// execution stack (which is pre-pushed) and will be return to the top of the caller
// stack. The top of the callers stack is the bottom of the locals of the current
// activation.
// Because of the way activation are managed by the frame manager the value of esp is
// below both the stack top of the current activation and naturally the stack top
// of the calling activation. This enable this routine to leave the return address
// to the frame manager on the stack and do a vanilla return.
//
// On entry: O0 - points to source (callee stack top)
// O1 - points to destination (caller stack top [i.e. free location])
// destroys O2, O3
//
address entry = __ pc();
switch (type) {
case T_VOID: break;
break;
case T_FLOAT :
case T_BOOLEAN:
case T_CHAR :
case T_BYTE :
case T_SHORT :
case T_INT :
// 1 word result
__ ld(O0, 0, O2);
__ st(O2, O1, 0);
__ sub(O1, wordSize, O1);
break;
case T_DOUBLE :
case T_LONG :
// return top two words on current expression stack to caller's expression stack
// The caller's expression stack is adjacent to the current frame manager's intepretState
// except we allocated one extra word for this intepretState so we won't overwrite it
// when we return a two word result.
#ifdef _LP64
__ ld_ptr(O0, 0, O2);
__ st_ptr(O2, O1, -wordSize);
#else
__ ld(O0, 0, O2);
__ ld(O0, wordSize, O3);
__ st(O3, O1, 0);
__ st(O2, O1, -wordSize);
#endif
__ sub(O1, 2*wordSize, O1);
break;
case T_OBJECT :
__ ld_ptr(O0, 0, O2);
__ verify_oop(O2); // verify it
__ st_ptr(O2, O1, 0);
__ sub(O1, wordSize, O1);
break;
default : ShouldNotReachHere();
}
__ retl();
__ delayed()->nop(); // QQ schedule this better
return entry;
}
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
// A result is in the java expression stack of the interpreted method that has just
// returned. Place this result in the native abi that the caller expects.
// We are in a new frame registers we set must be in caller (i.e. callstub) frame.
//
// Similar to generate_stack_to_stack_converter above. Called at a similar time from the
// frame manager execept in this situation the caller is native code (c1/c2/call_stub)
// and so rather than return result onto caller's java expression stack we return the
// result in the expected location based on the native abi.
// On entry: O0 - source (stack top)
// On exit result in expected output register
// QQQ schedule this better
address entry = __ pc();
switch (type) {
case T_VOID: break;
break;
case T_FLOAT :
__ ldf(FloatRegisterImpl::S, O0, 0, F0);
break;
case T_BOOLEAN:
case T_CHAR :
case T_BYTE :
case T_SHORT :
case T_INT :
// 1 word result
__ ld(O0, 0, O0->after_save());
break;
case T_DOUBLE :
__ ldf(FloatRegisterImpl::D, O0, 0, F0);
break;
case T_LONG :
// return top two words on current expression stack to caller's expression stack
// The caller's expression stack is adjacent to the current frame manager's interpretState
// except we allocated one extra word for this intepretState so we won't overwrite it
// when we return a two word result.
#ifdef _LP64
__ ld_ptr(O0, 0, O0->after_save());
#else
__ ld(O0, wordSize, O1->after_save());
__ ld(O0, 0, O0->after_save());
#endif
#if defined(COMPILER2) && !defined(_LP64)
// C2 expects long results in G1 we can't tell if we're returning to interpreted
// or compiled so just be safe use G1 and O0/O1
// Shift bits into high (msb) of G1
__ sllx(Otos_l1->after_save(), 32, G1);
// Zero extend low bits
__ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
__ or3 (Otos_l2->after_save(), G1, G1);
#endif /* COMPILER2 */
break;
case T_OBJECT :
__ ld_ptr(O0, 0, O0->after_save());
__ verify_oop(O0->after_save()); // verify it
break;
default : ShouldNotReachHere();
}
__ retl();
__ delayed()->nop();
return entry;
}
address CppInterpreter::return_entry(TosState state, int length) {
// make it look good in the debugger
return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
}
address CppInterpreter::deopt_entry(TosState state, int length) {
address ret = NULL;
if (length != 0) {
switch (state) {
case atos: ret = deopt_frame_manager_return_atos; break;
case btos: ret = deopt_frame_manager_return_btos; break;
case ctos:
case stos:
case itos: ret = deopt_frame_manager_return_itos; break;
case ltos: ret = deopt_frame_manager_return_ltos; break;
case ftos: ret = deopt_frame_manager_return_ftos; break;
case dtos: ret = deopt_frame_manager_return_dtos; break;
case vtos: ret = deopt_frame_manager_return_vtos; break;
}
} else {
ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
}
assert(ret != NULL, "Not initialized");
return ret;
}
//
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// Lmethod: method
// ??: invocation counter
//
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
// Update standard invocation counters
__ increment_invocation_counter(O0, G3_scratch);
if (ProfileInterpreter) { // %%% Merge this into MethodData*
__ ld_ptr(STATE(_method), G3_scratch);
Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(Method::interpreter_invocation_counter_offset()));
__ ld(interpreter_invocation_counter, G3_scratch);
__ inc(G3_scratch);
__ st(G3_scratch, interpreter_invocation_counter);
}
Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
__ sethi(invocation_limit);
__ ld(invocation_limit, G3_scratch);
__ cmp(O0, G3_scratch);
__ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
__ delayed()->nop();
}
address InterpreterGenerator::generate_empty_entry(void) {
// A method that does nothing but return...
address entry = __ pc();
Label slow_path;
// do nothing for empty methods (do not even increment invocation counter)
if ( UseFastEmptyMethods) {
// If we need a safepoint check, generate full interpreter entry.
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
__ load_contents(sync_state, G3_scratch);
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
__ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
__ delayed()->nop();
// Code: _return
__ retl();
__ delayed()->mov(O5_savedSP, SP);
return entry;
}
return NULL;
}
// Call an accessor method (assuming it is resolved, otherwise drop into
// vanilla (slow path) entry
// Generates code to elide accessor methods
// Uses G3_scratch and G1_scratch as scratch
address InterpreterGenerator::generate_accessor_entry(void) {
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
// parameter size = 1
// Note: We can only use this code if the getfield has been resolved
// and if we don't have a null-pointer exception => check for
// these conditions first and use slow path if necessary.
address entry = __ pc();
Label slow_path;
if ( UseFastAccessorMethods) {
// Check if we need to reach a safepoint and generate full interpreter
// frame if so.
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
__ load_contents(sync_state, G3_scratch);
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
__ br(Assembler::notEqual, false, Assembler::pn, slow_path);
__ delayed()->nop();
// Check if local 0 != NULL
__ ld_ptr(Gargs, G0, Otos_i ); // get local 0
__ tst(Otos_i); // check if local 0 == NULL and go the slow path
__ brx(Assembler::zero, false, Assembler::pn, slow_path);
__ delayed()->nop();
// read first instruction word and extract bytecode @ 1 and index @ 2
// get first 4 bytes of the bytecodes (big endian!)
__ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
__ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
// move index @ 2 far left then to the right most two bytes.
__ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
__ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
// get constant pool cache
__ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
__ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
__ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
// get specific constant pool cache entry
__ add(G3_scratch, G1_scratch, G3_scratch);
// Check the constant Pool cache entry to see if it has been resolved.
// If not, need the slow path.
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
__ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
__ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
__ and3(G1_scratch, 0xFF, G1_scratch);
__ cmp(G1_scratch, Bytecodes::_getfield);
__ br(Assembler::notEqual, false, Assembler::pn, slow_path);
__ delayed()->nop();
// Get the type and return field offset from the constant pool cache
__ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
__ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
Label xreturn_path;
// Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes.
// Get the type from the constant pool cache
__ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
// Make sure we don't need to mask G1_scratch after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmp(G1_scratch, atos );
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
__ cmp(G1_scratch, itos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ld(Otos_i, G3_scratch, Otos_i);
__ cmp(G1_scratch, stos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
__ cmp(G1_scratch, ctos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
#ifdef ASSERT
__ cmp(G1_scratch, btos);
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
__ should_not_reach_here();
#endif
__ ldsb(Otos_i, G3_scratch, Otos_i);
__ bind(xreturn_path);
// _ireturn/_areturn
__ retl(); // return from leaf routine
__ delayed()->mov(O5_savedSP, SP);
// Generate regular method entry
__ bind(slow_path);
__ ba(fast_accessor_slow_entry_path);
__ delayed()->nop();
return entry;
}
return NULL;
}
address InterpreterGenerator::generate_Reference_get_entry(void) {
#ifndef SERIALGC
if (UseG1GC) {
// We need to generate have a routine that generates code to:
// * load the value in the referent field
// * passes that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
Unimplemented();
}
#endif // SERIALGC
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
//
// Interpreter stub for calling a native method. (C++ interpreter)
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup.
//
address InterpreterGenerator::generate_native_entry(bool synchronized) {
address entry = __ pc();
// the following temporary registers are used during frame creation
const Register Gtmp1 = G3_scratch ;
const Register Gtmp2 = G1_scratch;
const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
bool inc_counter = UseCompiler || CountCompiledCalls;
// make sure registers are different!
assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
const Address access_flags (G5_method, 0, in_bytes(Method::access_flags_offset()));
Label Lentry;
__ bind(Lentry);
const Register Glocals_size = G3;
assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
// make sure method is native & not abstract
// rethink these assertions - they can be simplified and shared (gri 2/25/2000)
#ifdef ASSERT
__ ld(access_flags, Gtmp1);
{
Label L;
__ btst(JVM_ACC_NATIVE, Gtmp1);
__ br(Assembler::notZero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{ Label L;
__ btst(JVM_ACC_ABSTRACT, Gtmp1);
__ br(Assembler::zero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("tried to execute abstract method as non-abstract");
__ bind(L);
}
#endif // ASSERT
__ lduh(size_of_parameters, Gtmp1);
__ sll(Gtmp1, LogBytesPerWord, Gtmp2); // parameter size in bytes
__ add(Gargs, Gtmp2, Gargs); // points to first local + BytesPerWord
// NEW
__ add(Gargs, -wordSize, Gargs); // points to first local[0]
// generate the code to allocate the interpreter stack frame
// NEW FRAME ALLOCATED HERE
// save callers original sp
// __ mov(SP, I5_savedSP->after_restore());
generate_compute_interpreter_state(Lstate, G0, true);
// At this point Lstate points to new interpreter state
//
const Address do_not_unlock_if_synchronized(G2_thread, 0,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
// This flag has two effects, one is to force an unwind in the topmost
// interpreter frame and not perform an unlock while doing so.
__ movbool(true, G3_scratch);
__ stbool(G3_scratch, do_not_unlock_if_synchronized);
// increment invocation counter and check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test (may be of
// importance as soon as we have true MT/MP)
Label invocation_counter_overflow;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label Lcontinue;
__ bind(Lcontinue);
bang_stack_shadow_pages(true);
// reset the _do_not_unlock_if_synchronized flag
__ stbool(G0, do_not_unlock_if_synchronized);
// check for synchronized methods
// Must happen AFTER invocation_counter check, so method is not locked
// if counter overflows.
if (synchronized) {
lock_method();
// Don't see how G2_thread is preserved here...
// __ verify_thread(); QQQ destroys L0,L1 can't use
} else {
#ifdef ASSERT
{ Label ok;
__ ld_ptr(STATE(_method), G5_method);
__ ld(access_flags, O0);
__ btst(JVM_ACC_SYNCHRONIZED, O0);
__ br( Assembler::zero, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("method needs synchronization");
__ bind(ok);
}
#endif // ASSERT
}
// start execution
// __ verify_thread(); kills L1,L2 can't use at the moment
// jvmti/jvmpi support
__ notify_method_entry();
// native call
// (note that O0 is never an oop--at most it is a handle)
// It is important not to smash any handles created by this call,
// until any oop handle in O0 is dereferenced.
// (note that the space for outgoing params is preallocated)
// get signature handler
Label pending_exception_present;
{ Label L;
__ ld_ptr(STATE(_method), G5_method);
__ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
__ tst(G3_scratch);
__ brx(Assembler::notZero, false, Assembler::pt, L);
__ delayed()->nop();
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
__ ld_ptr(STATE(_method), G5_method);
Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
__ ld_ptr(exception_addr, G3_scratch);
__ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
__ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
__ bind(L);
}
// Push a new frame so that the args will really be stored in
// Copy a few locals across so the new frame has the variables
// we need but these values will be dead at the jni call and
// therefore not gc volatile like the values in the current
// frame (Lstate in particular)
// Flush the state pointer to the register save area
// Which is the only register we need for a stack walk.
__ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
__ mov(Lstate, O1); // Need to pass the state pointer across the frame
// Calculate current frame size
__ sub(SP, FP, O3); // Calculate negative of current frame size
__ save(SP, O3, SP); // Allocate an identical sized frame
__ mov(I1, Lstate); // In the "natural" register.
// Note I7 has leftover trash. Slow signature handler will fill it in
// should we get there. Normal jni call will set reasonable last_Java_pc
// below (and fix I7 so the stack trace doesn't have a meaningless frame
// in it).
// call signature handler
__ ld_ptr(STATE(_method), Lmethod);
__ ld_ptr(STATE(_locals), Llocals);
__ callr(G3_scratch, 0);
__ delayed()->nop();
__ ld_ptr(STATE(_thread), G2_thread); // restore thread (shouldn't be needed)
{ Label not_static;
__ ld_ptr(STATE(_method), G5_method);
__ ld(access_flags, O0);
__ btst(JVM_ACC_STATIC, O0);
__ br( Assembler::zero, false, Assembler::pt, not_static);
__ delayed()->
// get native function entry point(O0 is a good temp until the very end)
ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
// for static methods insert the mirror argument
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
__ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
__ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
__ ld_ptr(O1, mirror_offset, O1);
// where the mirror handle body is allocated:
#ifdef ASSERT
if (!PrintSignatureHandlers) // do not dirty the output with this
{ Label L;
__ tst(O1);
__ brx(Assembler::notZero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("mirror is missing");
__ bind(L);
}
#endif // ASSERT
__ st_ptr(O1, STATE(_oop_temp));
__ add(STATE(_oop_temp), O1); // this is really an LEA not an add
__ bind(not_static);
}
// At this point, arguments have been copied off of stack into
// their JNI positions, which are O1..O5 and SP[68..].
// Oops are boxed in-place on the stack, with handles copied to arguments.
// The result handler is in Lscratch. O0 will shortly hold the JNIEnv*.
#ifdef ASSERT
{ Label L;
__ tst(O0);
__ brx(Assembler::notZero, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("native entry point is missing");
__ bind(L);
}
#endif // ASSERT
//
// setup the java frame anchor
//
// The scavenge function only needs to know that the PC of this frame is
// in the interpreter method entry code, it doesn't need to know the exact
// PC and hence we can use O7 which points to the return address from the
// previous call in the code stream (signature handler function)
//
// The other trick is we set last_Java_sp to FP instead of the usual SP because
// we have pushed the extra frame in order to protect the volatile register(s)
// in that frame when we return from the jni call
//
__ set_last_Java_frame(FP, O7);
__ mov(O7, I7); // make dummy interpreter frame look like one above,
// not meaningless information that'll confuse me.
// flush the windows now. We don't care about the current (protection) frame
// only the outer frames
__ flush_windows();
// mark windows as flushed
Address flags(G2_thread,
0,
in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
__ set(JavaFrameAnchor::flushed, G3_scratch);
__ st(G3_scratch, flags);
// Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
#ifdef ASSERT
{ Label L;
__ ld(thread_state, G3_scratch);
__ cmp(G3_scratch, _thread_in_Java);
__ br(Assembler::equal, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("Wrong thread state in native stub");
__ bind(L);
}
#endif // ASSERT
__ set(_thread_in_native, G3_scratch);
__ st(G3_scratch, thread_state);
// Call the jni method, using the delay slot to set the JNIEnv* argument.
__ callr(O0, 0);
__ delayed()->
add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
__ ld_ptr(STATE(_thread), G2_thread); // restore thread
// must we block?
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after blocking.
{ Label no_block;
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
// Switch thread to "native transition" state before reading the synchronization state.
// This additional state is necessary because reading and testing the synchronization
// state is not atomic w.r.t. GC, as this scenario demonstrates:
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
// VM thread changes sync state to synchronizing and suspends threads for GC.
// Thread A is resumed to finish this native method, but doesn't block here since it
// didn't see any synchronization is progress, and escapes.
__ set(_thread_in_native_trans, G3_scratch);
__ st(G3_scratch, thread_state);
if(os::is_MP()) {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(G2_thread, G1_scratch, G3_scratch);
}
__ load_contents(sync_state, G3_scratch);
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
Label L;
Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
__ br(Assembler::notEqual, false, Assembler::pn, L);
__ delayed()->
ld(suspend_state, G3_scratch);
__ cmp(G3_scratch, 0);
__ br(Assembler::equal, false, Assembler::pt, no_block);
__ delayed()->nop();
__ bind(L);
// Block. Save any potential method result value before the operation and
// use a leaf call to leave the last_Java_frame setup undisturbed.
save_native_result();
__ call_VM_leaf(noreg,
CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
G2_thread);
__ ld_ptr(STATE(_thread), G2_thread); // restore thread
// Restore any method result value
restore_native_result();
__ bind(no_block);
}
// Clear the frame anchor now
__ reset_last_Java_frame();
// Move the result handler address
__ mov(Lscratch, G3_scratch);
// return possible result to the outer frame
#ifndef __LP64
__ mov(O0, I0);
__ restore(O1, G0, O1);
#else
__ restore(O0, G0, O0);
#endif /* __LP64 */
// Move result handler to expected register
__ mov(G3_scratch, Lscratch);
// thread state is thread_in_native_trans. Any safepoint blocking has
// happened in the trampoline we are ready to switch to thread_in_Java.
__ set(_thread_in_Java, G3_scratch);
__ st(G3_scratch, thread_state);
// If we have an oop result store it where it will be safe for any further gc
// until we return now that we've released the handle it might be protected by
{
Label no_oop, store_result;
__ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
__ cmp(G3_scratch, Lscratch);
__ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
__ delayed()->nop();
__ addcc(G0, O0, O0);
__ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL:
__ delayed()->ld_ptr(O0, 0, O0); // unbox it
__ mov(G0, O0);
__ bind(store_result);
// Store it where gc will look for it and result handler expects it.
__ st_ptr(O0, STATE(_oop_temp));
__ bind(no_oop);
}
// reset handle block
__ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
__ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
// handle exceptions (exception handling will handle unlocking!)
{ Label L;
Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
__ ld_ptr(exception_addr, Gtemp);
__ tst(Gtemp);
__ brx(Assembler::equal, false, Assembler::pt, L);
__ delayed()->nop();
__ bind(pending_exception_present);
// With c++ interpreter we just leave it pending caller will do the correct thing. However...
// Like x86 we ignore the result of the native call and leave the method locked. This
// seems wrong to leave things locked.
__ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
__ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
__ bind(L);
}
// jvmdi/jvmpi support (preserves thread register)
__ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
if (synchronized) {
// save and restore any potential method result value around the unlocking operation
save_native_result();
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// Get the initial monitor we allocated
__ sub(Lstate, entry_size, O1); // initial monitor
__ unlock_object(O1);
restore_native_result();
}
#if defined(COMPILER2) && !defined(_LP64)
// C2 expects long results in G1 we can't tell if we're returning to interpreted
// or compiled so just be safe.
__ sllx(O0, 32, G1); // Shift bits into high G1
__ srl (O1, 0, O1); // Zero extend O1
__ or3 (O1, G1, G1); // OR 64 bits into G1
#endif /* COMPILER2 && !_LP64 */
#ifdef ASSERT
{
Label ok;
__ cmp(I5_savedSP, FP);
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("bad I5_savedSP value");
__ should_not_reach_here();
__ bind(ok);
}
#endif
// Calls result handler which POPS FRAME
if (TraceJumps) {
// Move target to register that is recordable
__ mov(Lscratch, G3_scratch);
__ JMP(G3_scratch, 0);
} else {
__ jmp(Lscratch, 0);
}
__ delayed()->nop();
if (inc_counter) {
// handle invocation counter overflow
__ bind(invocation_counter_overflow);
generate_counter_overflow(Lcontinue);
}
return entry;
}
void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
const Register prev_state,
bool native) {
// On entry
// G5_method - caller's method
// Gargs - points to initial parameters (i.e. locals[0])
// G2_thread - valid? (C1 only??)
// "prev_state" - contains any previous frame manager state which we must save a link
//
// On return
// "state" is a pointer to the newly allocated state object. We must allocate and initialize
// a new interpretState object and the method expression stack.
assert_different_registers(state, prev_state);
assert_different_registers(prev_state, G3_scratch);
const Register Gtmp = G3_scratch;
const Address constMethod (G5_method, 0, in_bytes(Method::const_offset()));
const Address access_flags (G5_method, 0, in_bytes(Method::access_flags_offset()));
const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
const Address size_of_locals (G5_method, 0, in_bytes(Method::size_of_locals_offset()));
// slop factor is two extra slots on the expression stack so that
// we always have room to store a result when returning from a call without parameters
// that returns a result.
const int slop_factor = 2*wordSize;
const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
//6815692//Method::extra_stack_words() + // extra push slots for MH adapters
frame::memory_parameter_word_sp_offset + // register save area + param window
(native ? frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
// XXX G5_method valid
// Now compute new frame size
if (native) {
__ lduh( size_of_parameters, Gtmp );
__ calc_mem_param_words(Gtmp, Gtmp); // space for native call parameters passed on the stack in words
} else {
// Full size expression stack
__ ld_ptr(constMethod, Gtmp);
__ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
}
__ add(Gtmp, fixed_size, Gtmp); // plus the fixed portion
__ neg(Gtmp); // negative space for stack/parameters in words
__ and3(Gtmp, -WordsPerLong, Gtmp); // make multiple of 2 (SP must be 2-word aligned)
__ sll(Gtmp, LogBytesPerWord, Gtmp); // negative space for frame in bytes
// Need to do stack size check here before we fault on large frames
Label stack_ok;
const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
(StackRedPages+StackYellowPages);
__ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
__ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
// compute stack bottom
__ sub(O0, O1, O0);
// Avoid touching the guard pages
// Also a fudge for frame size of BytecodeInterpreter::run
// It varies from 1k->4k depending on build type
const int fudge = 6 * K;
__ set(fudge + (max_pages * os::vm_page_size()), O1);
__ add(O0, O1, O0);
__ sub(O0, Gtmp, O0);
__ cmp(SP, O0);
__ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
__ delayed()->nop();
// throw exception return address becomes throwing pc
__ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
__ stop("never reached");
__ bind(stack_ok);
__ save(SP, Gtmp, SP); // setup new frame and register window
// New window I7 call_stub or previous activation
// O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
//
__ sub(FP, sizeof(BytecodeInterpreter), state); // Point to new Interpreter state
__ add(state, STACK_BIAS, state ); // Account for 64bit bias
#define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
// Initialize a new Interpreter state
// orig_sp - caller's original sp
// G2_thread - thread
// Gargs - &locals[0] (unbiased?)
// G5_method - method
// SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
__ set(0xdead0004, O1);
__ st_ptr(Gargs, XXX_STATE(_locals));
__ st_ptr(G0, XXX_STATE(_oop_temp));
__ st_ptr(state, XXX_STATE(_self_link)); // point to self
__ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
__ st_ptr(G2_thread, XXX_STATE(_thread)); // Store javathread
if (native) {
__ st_ptr(G0, XXX_STATE(_bcp));
} else {
__ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
__ add(O2, in_bytes(ConstMethod::codes_offset()), O2); // get bcp
__ st_ptr(O2, XXX_STATE(_bcp));
}
__ st_ptr(G0, XXX_STATE(_mdx));
__ st_ptr(G5_method, XXX_STATE(_method));
__ set((int) BytecodeInterpreter::method_entry, O1);
__ st(O1, XXX_STATE(_msg));
__ ld_ptr(constMethod, O3);
__ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
__ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
__ st_ptr(O2, XXX_STATE(_constants));
__ st_ptr(G0, XXX_STATE(_result._to_call._callee));
// Monitor base is just start of BytecodeInterpreter object;
__ mov(state, O2);
__ st_ptr(O2, XXX_STATE(_monitor_base));
// Do we need a monitor for synchonized method?
{
__ ld(access_flags, O1);
Label done;
Label got_obj;
__ btst(JVM_ACC_SYNCHRONIZED, O1);
__ br( Assembler::zero, false, Assembler::pt, done);
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ delayed()->btst(JVM_ACC_STATIC, O1);
__ ld_ptr(XXX_STATE(_locals), O1);
__ br( Assembler::zero, true, Assembler::pt, got_obj);
__ delayed()->ld_ptr(O1, 0, O1); // get receiver for not-static case
__ ld_ptr(constMethod, O1);
__ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
__ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
// lock the mirror, not the Klass*
__ ld_ptr( O1, mirror_offset, O1);
__ bind(got_obj);
#ifdef ASSERT
__ tst(O1);
__ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
#endif // ASSERT
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
__ sub(SP, entry_size, SP); // account for initial monitor
__ sub(O2, entry_size, O2); // initial monitor
__ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
__ bind(done);
}
// Remember initial frame bottom
__ st_ptr(SP, XXX_STATE(_frame_bottom));
__ st_ptr(O2, XXX_STATE(_stack_base));
__ sub(O2, wordSize, O2); // prepush
__ st_ptr(O2, XXX_STATE(_stack)); // PREPUSH
// Full size expression stack
__ ld_ptr(constMethod, O3);
__ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
guarantee(!EnableInvokeDynamic, "no support yet for java.lang.invoke.MethodHandle"); //6815692
//6815692//if (EnableInvokeDynamic)
//6815692// __ inc(O3, Method::extra_stack_entries());
__ sll(O3, LogBytesPerWord, O3);
__ sub(O2, O3, O3);
// __ sub(O3, wordSize, O3); // so prepush doesn't look out of bounds
__ st_ptr(O3, XXX_STATE(_stack_limit));
if (!native) {
//
// Code to initialize locals
//
Register init_value = noreg; // will be G0 if we must clear locals
// Now zero locals
if (true /* zerolocals */ || ClearInterpreterLocals) {
// explicitly initialize locals
init_value = G0;
} else {
#ifdef ASSERT
// initialize locals to a garbage pattern for better debugging
init_value = O3;
__ set( 0x0F0F0F0F, init_value );
#endif // ASSERT
}
if (init_value != noreg) {
Label clear_loop;
// NOTE: If you change the frame layout, this code will need to
// be updated!
__ lduh( size_of_locals, O2 );
__ lduh( size_of_parameters, O1 );
__ sll( O2, LogBytesPerWord, O2);
__ sll( O1, LogBytesPerWord, O1 );
__ ld_ptr(XXX_STATE(_locals), L2_scratch);
__ sub( L2_scratch, O2, O2 );
__ sub( L2_scratch, O1, O1 );
__ bind( clear_loop );
__ inc( O2, wordSize );
__ cmp( O2, O1 );
__ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
__ delayed()->st_ptr( init_value, O2, 0 );
}
}
}
// Find preallocated monitor and lock method (C++ interpreter)
//
void InterpreterGenerator::lock_method(void) {
// Lock the current method.
// Destroys registers L2_scratch, L3_scratch, O0
//
// Find everything relative to Lstate
#ifdef ASSERT
__ ld_ptr(STATE(_method), L2_scratch);
__ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
{ Label ok;
__ btst(JVM_ACC_SYNCHRONIZED, O0);
__ br( Assembler::notZero, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("method doesn't need synchronization");
__ bind(ok);
}
#endif // ASSERT
// monitor is already allocated at stack base
// and the lockee is already present
__ ld_ptr(STATE(_stack_base), L2_scratch);
__ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0); // get object
__ lock_object(L2_scratch, O0);
}
// Generate code for handling resuming a deopted method
void CppInterpreterGenerator::generate_deopt_handling() {
Label return_from_deopt_common;
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_atos = __ pc();
// O0/O1 live
__ ba(return_from_deopt_common);
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch); // Result stub address array index
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_btos = __ pc();
// O0/O1 live
__ ba(return_from_deopt_common);
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch); // Result stub address array index
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_itos = __ pc();
// O0/O1 live
__ ba(return_from_deopt_common);
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch); // Result stub address array index
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_ltos = __ pc();
#if !defined(_LP64) && defined(COMPILER2)
// All return values are where we want them, except for Longs. C2 returns
// longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
// Since the interpreter will return longs in G1 and O0/O1 in the 32bit
// build even if we are returning from interpreted we just do a little
// stupid shuffing.
// Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
// do this here. Unfortunately if we did a rethrow we'd see an machepilog node
// first which would move g1 -> O0/O1 and destroy the exception we were throwing.
__ srl (G1, 0,O1);
__ srlx(G1,32,O0);
#endif /* !_LP64 && COMPILER2 */
// O0/O1 live
__ ba(return_from_deopt_common);
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch); // Result stub address array index
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_ftos = __ pc();
// O0/O1 live
__ ba(return_from_deopt_common);
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch); // Result stub address array index
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_dtos = __ pc();
// O0/O1 live
__ ba(return_from_deopt_common);
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch); // Result stub address array index
// deopt needs to jump to here to enter the interpreter (return a result)
deopt_frame_manager_return_vtos = __ pc();
// O0/O1 live
__ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
// Deopt return common
// an index is present that lets us move any possible result being
// return to the interpreter's stack
//
__ bind(return_from_deopt_common);
// Result if any is in native abi result (O0..O1/F0..F1). The java expression
// stack is in the state that the calling convention left it.
// Copy the result from native abi result and place it on java expression stack.
// Current interpreter state is present in Lstate
// Get current pre-pushed top of interpreter stack
// Any result (if any) is in native abi
// result type index is in L3_scratch
__ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack
__ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
__ sll(L3_scratch, LogBytesPerWord, L3_scratch);
__ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address
__ jmpl(Lscratch, G0, O7); // and convert it
__ delayed()->nop();
// L1_scratch points to top of stack (prepushed)
__ st_ptr(L1_scratch, STATE(_stack));
}
// Generate the code to handle a more_monitors message from the c++ interpreter
void CppInterpreterGenerator::generate_more_monitors() {
Label entry, loop;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// 1. compute new pointers // esp: old expression stack top
__ delayed()->ld_ptr(STATE(_stack_base), L4_scratch); // current expression stack bottom
__ sub(L4_scratch, entry_size, L4_scratch);
__ st_ptr(L4_scratch, STATE(_stack_base));
__ sub(SP, entry_size, SP); // Grow stack
__ st_ptr(SP, STATE(_frame_bottom));
__ ld_ptr(STATE(_stack_limit), L2_scratch);
__ sub(L2_scratch, entry_size, L2_scratch);
__ st_ptr(L2_scratch, STATE(_stack_limit));
__ ld_ptr(STATE(_stack), L1_scratch); // Get current stack top
__ sub(L1_scratch, entry_size, L1_scratch);
__ st_ptr(L1_scratch, STATE(_stack));
__ ba(entry);
__ delayed()->add(L1_scratch, wordSize, L1_scratch); // first real entry (undo prepush)
// 2. move expression stack
__ bind(loop);
__ st_ptr(L3_scratch, Address(L1_scratch, 0));
__ add(L1_scratch, wordSize, L1_scratch);
__ bind(entry);
__ cmp(L1_scratch, L4_scratch);
__ br(Assembler::notEqual, false, Assembler::pt, loop);
__ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
// now zero the slot so we can find it.
__ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
}
// Initial entry to C++ interpreter from the call_stub.
// This entry point is called the frame manager since it handles the generation
// of interpreter activation frames via requests directly from the vm (via call_stub)
// and via requests from the interpreter. The requests from the call_stub happen
// directly thru the entry point. Requests from the interpreter happen via returning
// from the interpreter and examining the message the interpreter has returned to
// the frame manager. The frame manager can take the following requests:
// NO_REQUEST - error, should never happen.
// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
// allocate a new monitor.
// CALL_METHOD - setup a new activation to call a new method. Very similar to what
// happens during entry during the entry via the call stub.
// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
//
// Arguments:
//
// ebx: Method*
// ecx: receiver - unused (retrieved from stack as needed)
// esi: previous frame manager state (NULL from the call_stub/c1/c2)
//
//
// Stack layout at entry
//
// [ return address ] <--- esp
// [ parameter n ]
// ...
// [ parameter 1 ]
// [ expression stack ]
//
//
// We are free to blow any registers we like because the call_stub which brought us here
// initially has preserved the callee save registers already.
//
//
static address interpreter_frame_manager = NULL;
#ifdef ASSERT
#define VALIDATE_STATE(scratch, marker) \
{ \
Label skip; \
__ ld_ptr(STATE(_self_link), scratch); \
__ cmp(Lstate, scratch); \
__ brx(Assembler::equal, false, Assembler::pt, skip); \
__ delayed()->nop(); \
__ breakpoint_trap(); \
__ emit_long(marker); \
__ bind(skip); \
}
#else
#define VALIDATE_STATE(scratch, marker)
#endif /* ASSERT */
void CppInterpreterGenerator::adjust_callers_stack(Register args) {
//
// Adjust caller's stack so that all the locals can be contiguous with
// the parameters.
// Worries about stack overflow make this a pain.
//
// Destroys args, G3_scratch, G3_scratch
// In/Out O5_savedSP (sender's original SP)
//
// assert_different_registers(state, prev_state);
const Register Gtmp = G3_scratch;
const Register tmp = O2;
const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
const Address size_of_locals (G5_method, 0, in_bytes(Method::size_of_locals_offset()));
__ lduh(size_of_parameters, tmp);
__ sll(tmp, LogBytesPerWord, Gtmp); // parameter size in bytes
__ add(args, Gtmp, Gargs); // points to first local + BytesPerWord
// NEW
__ add(Gargs, -wordSize, Gargs); // points to first local[0]
// determine extra space for non-argument locals & adjust caller's SP
// Gtmp1: parameter size in words
__ lduh(size_of_locals, Gtmp);
__ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
#if 1
// c2i adapters place the final interpreter argument in the register save area for O0/I0
// the call_stub will place the final interpreter argument at
// frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
// or c++ interpreter. However with the c++ interpreter when we do a recursive call
// and try to make it look good in the debugger we will store the argument to
// RecursiveInterpreterActivation in the register argument save area. Without allocating
// extra space for the compiler this will overwrite locals in the local array of the
// interpreter.
// QQQ still needed with frameless adapters???
const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
__ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
#endif // 1
__ sub(SP, Gtmp, SP); // just caller's frame for the additional space we need.
}
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
// G5_method: Method*
// G2_thread: thread (unused)
// Gargs: bottom of args (sender_sp)
// O5: sender's sp
// A single frame manager is plenty as we don't specialize for synchronized. We could and
// the code is pretty much ready. Would need to change the test below and for good measure
// modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
// routines. Not clear this is worth it yet.
if (interpreter_frame_manager) {
return interpreter_frame_manager;
}
__ bind(frame_manager_entry);
// the following temporary registers are used during frame creation
const Register Gtmp1 = G3_scratch;
// const Register Lmirror = L1; // native mirror (native calls only)
const Address constMethod (G5_method, 0, in_bytes(Method::const_offset()));
const Address access_flags (G5_method, 0, in_bytes(Method::access_flags_offset()));
const Address size_of_parameters(G5_method, 0, in_bytes(Method::size_of_parameters_offset()));
const Address size_of_locals (G5_method, 0, in_bytes(Method::size_of_locals_offset()));
address entry_point = __ pc();
__ mov(G0, prevState); // no current activation
Label re_dispatch;
__ bind(re_dispatch);
// Interpreter needs to have locals completely contiguous. In order to do that
// We must adjust the caller's stack pointer for any locals beyond just the
// parameters
adjust_callers_stack(Gargs);
// O5_savedSP still contains sender's sp
// NEW FRAME
generate_compute_interpreter_state(Lstate, prevState, false);
// At this point a new interpreter frame and state object are created and initialized
// Lstate has the pointer to the new activation
// Any stack banging or limit check should already be done.
Label call_interpreter;
__ bind(call_interpreter);
#if 1
__ set(0xdead002, Lmirror);
__ set(0xdead002, L2_scratch);
__ set(0xdead003, L3_scratch);
__ set(0xdead004, L4_scratch);
__ set(0xdead005, Lscratch);
__ set(0xdead006, Lscratch2);
__ set(0xdead007, L7_scratch);
__ set(0xdeaf002, O2);
__ set(0xdeaf003, O3);
__ set(0xdeaf004, O4);
__ set(0xdeaf005, O5);
#endif
// Call interpreter (stack bang complete) enter here if message is
// set and we know stack size is valid
Label call_interpreter_2;
__ bind(call_interpreter_2);
#ifdef ASSERT
{
Label skip;
__ ld_ptr(STATE(_frame_bottom), G3_scratch);
__ cmp(G3_scratch, SP);
__ brx(Assembler::equal, false, Assembler::pt, skip);
__ delayed()->nop();
__ stop("SP not restored to frame bottom");
__ bind(skip);
}
#endif
VALIDATE_STATE(G3_scratch, 4);
__ set_last_Java_frame(SP, noreg);
__ mov(Lstate, O0); // (arg) pointer to current state
__ call(CAST_FROM_FN_PTR(address,
JvmtiExport::can_post_interpreter_events() ?
BytecodeInterpreter::runWithChecks
: BytecodeInterpreter::run),
relocInfo::runtime_call_type);
__ delayed()->nop();
__ ld_ptr(STATE(_thread), G2_thread);
__ reset_last_Java_frame();
// examine msg from interpreter to determine next action
__ ld_ptr(STATE(_thread), G2_thread); // restore G2_thread
__ ld(STATE(_msg), L1_scratch); // Get new message
Label call_method;
Label return_from_interpreted_method;
Label throw_exception;
Label do_OSR;
Label bad_msg;
Label resume_interpreter;
__ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
__ br(Assembler::equal, false, Assembler::pt, call_method);
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
__ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
__ br(Assembler::equal, false, Assembler::pt, throw_exception);
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
__ br(Assembler::equal, false, Assembler::pt, do_OSR);
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
__ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
// Allocate more monitor space, shuffle expression stack....
generate_more_monitors();
// new monitor slot allocated, resume the interpreter.
__ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
VALIDATE_STATE(G3_scratch, 5);
__ ba(call_interpreter);
__ delayed()->st(L1_scratch, STATE(_msg));
// uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
unctrap_frame_manager_entry = __ pc();
// QQQ what message do we send
__ ba(call_interpreter);
__ delayed()->ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
//=============================================================================
// Returning from a compiled method into a deopted method. The bytecode at the
// bcp has completed. The result of the bytecode is in the native abi (the tosca
// for the template based interpreter). Any stack space that was used by the
// bytecode that has completed has been removed (e.g. parameters for an invoke)
// so all that we have to do is place any pending result on the expression stack
// and resume execution on the next bytecode.
generate_deopt_handling();
// ready to resume the interpreter
__ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
__ ba(call_interpreter);
__ delayed()->st(L1_scratch, STATE(_msg));
// Current frame has caught an exception we need to dispatch to the
// handler. We can get here because a native interpreter frame caught
// an exception in which case there is no handler and we must rethrow
// If it is a vanilla interpreted frame the we simply drop into the
// interpreter and let it do the lookup.
Interpreter::_rethrow_exception_entry = __ pc();
Label return_with_exception;
Label unwind_and_forward;
// O0: exception
// O7: throwing pc
// We want exception in the thread no matter what we ultimately decide about frame type.
Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
__ verify_thread();
__ st_ptr(O0, exception_addr);
// get the Method*
__ ld_ptr(STATE(_method), G5_method);
// if this current frame vanilla or native?
__ ld(access_flags, Gtmp1);
__ btst(JVM_ACC_NATIVE, Gtmp1);
__ br(Assembler::zero, false, Assembler::pt, return_with_exception); // vanilla interpreted frame handle directly
__ delayed()->nop();
// We drop thru to unwind a native interpreted frame with a pending exception
// We jump here for the initial interpreter frame with exception pending
// We unwind the current acivation and forward it to our caller.
__ bind(unwind_and_forward);
// Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
// as expected by forward_exception.
__ restore(FP, G0, SP); // unwind interpreter state frame
__ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
__ delayed()->mov(I5_savedSP->after_restore(), SP);
// Return point from a call which returns a result in the native abi
// (c1/c2/jni-native). This result must be processed onto the java
// expression stack.
//
// A pending exception may be present in which case there is no result present
address return_from_native_method = __ pc();
VALIDATE_STATE(G3_scratch, 6);
// Result if any is in native abi result (O0..O1/F0..F1). The java expression
// stack is in the state that the calling convention left it.
// Copy the result from native abi result and place it on java expression stack.
// Current interpreter state is present in Lstate
// Exception pending?
__ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
__ ld_ptr(exception_addr, Lscratch); // get any pending exception
__ tst(Lscratch); // exception pending?
__ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
__ delayed()->nop();
// Process the native abi result to java expression stack
__ ld_ptr(STATE(_result._to_call._callee), L4_scratch); // called method
__ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack
__ lduh(L4_scratch, in_bytes(Method::size_of_parameters_offset()), L2_scratch); // get parameter size
__ sll(L2_scratch, LogBytesPerWord, L2_scratch ); // parameter size in bytes
__ add(L1_scratch, L2_scratch, L1_scratch); // stack destination for result
__ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
// tosca is really just native abi
__ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
__ sll(L3_scratch, LogBytesPerWord, L3_scratch);
__ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address
__ jmpl(Lscratch, G0, O7); // and convert it
__ delayed()->nop();
// L1_scratch points to top of stack (prepushed)
__ ba(resume_interpreter);
__ delayed()->mov(L1_scratch, O1);
// An exception is being caught on return to a vanilla interpreter frame.
// Empty the stack and resume interpreter
__ bind(return_with_exception);
__ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
__ ld_ptr(STATE(_stack_base), O1); // empty java expression stack
__ ba(resume_interpreter);
__ delayed()->sub(O1, wordSize, O1); // account for prepush
// Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
// interpreter call, or native) and unwind this interpreter activation.
// All monitors should be unlocked.
__ bind(return_from_interpreted_method);
VALIDATE_STATE(G3_scratch, 7);
Label return_to_initial_caller;
// Interpreted result is on the top of the completed activation expression stack.
// We must return it to the top of the callers stack if caller was interpreted
// otherwise we convert to native abi result and return to call_stub/c1/c2
// The caller's expression stack was truncated by the call however the current activation
// has enough stuff on the stack that we have usable space there no matter what. The
// other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
// for the current activation
__ ld_ptr(STATE(_prev_link), L1_scratch);
__ ld_ptr(STATE(_method), L2_scratch); // get method just executed
__ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
__ tst(L1_scratch);
__ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
__ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
// Copy result to callers java stack
__ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
__ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address
__ ld_ptr(STATE(_stack), O0); // current top (prepushed)
__ ld_ptr(STATE(_locals), O1); // stack destination
// O0 - will be source, O1 - will be destination (preserved)
__ jmpl(Lscratch, G0, O7); // and convert it
__ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack)
// O1 == &locals[0]
// Result is now on caller's stack. Just unwind current activation and resume
Label unwind_recursive_activation;
__ bind(unwind_recursive_activation);
// O1 == &locals[0] (really callers stacktop) for activation now returning
// returning to interpreter method from "recursive" interpreter call
// result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
// to. Now all we must do is unwind the state from the completed call
// Must restore stack
VALIDATE_STATE(G3_scratch, 8);
// Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
// Result if any is already on the caller's stack. All we must do now is remove the now dead
// frame and tell interpreter to resume.
__ mov(O1, I1); // pass back new stack top across activation
// POP FRAME HERE ==================================
__ restore(FP, G0, SP); // unwind interpreter state frame
__ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
// Resume the interpreter. The current frame contains the current interpreter
// state object.
//
// O1 == new java stack pointer
__ bind(resume_interpreter);
VALIDATE_STATE(G3_scratch, 10);
// A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
__ set((int)BytecodeInterpreter::method_resume, L1_scratch);
__ st(L1_scratch, STATE(_msg));
__ ba(call_interpreter_2);
__ delayed()->st_ptr(O1, STATE(_stack));
// Fast accessor methods share this entry point.
// This works because frame manager is in the same codelet
// This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
// we need to do a little register fixup here once we distinguish the two of them
if (UseFastAccessorMethods && !synchronized) {
// Call stub_return address still in O7
__ bind(fast_accessor_slow_entry_path);
__ set((intptr_t)return_from_native_method - 8, Gtmp1);
__ cmp(Gtmp1, O7); // returning to interpreter?
__ brx(Assembler::equal, true, Assembler::pt, re_dispatch); // yep
__ delayed()->nop();
__ ba(re_dispatch);
__ delayed()->mov(G0, prevState); // initial entry
}
// interpreter returning to native code (call_stub/c1/c2)
// convert result and unwind initial activation
// L2_scratch - scaled result type index
__ bind(return_to_initial_caller);
__ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
__ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address
__ ld_ptr(STATE(_stack), O0); // current top (prepushed)
__ jmpl(Lscratch, G0, O7); // and convert it
__ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack)
Label unwind_initial_activation;
__ bind(unwind_initial_activation);
// RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
// we can return here with an exception that wasn't handled by interpreted code
// how does c1/c2 see it on return?
// compute resulting sp before/after args popped depending upon calling convention
// __ ld_ptr(STATE(_saved_sp), Gtmp1);
//
// POP FRAME HERE ==================================
__ restore(FP, G0, SP);
__ retl();
__ delayed()->mov(I5_savedSP->after_restore(), SP);
// OSR request, unwind the current frame and transfer to the OSR entry
// and enter OSR nmethod
__ bind(do_OSR);
Label remove_initial_frame;
__ ld_ptr(STATE(_prev_link), L1_scratch);
__ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
// We are going to pop this frame. Is there another interpreter frame underneath
// it or is it callstub/compiled?
__ tst(L1_scratch);
__ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
__ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
// Frame underneath is an interpreter frame simply unwind
// POP FRAME HERE ==================================
__ restore(FP, G0, SP); // unwind interpreter state frame
__ mov(I5_savedSP->after_restore(), SP);
// Since we are now calling native need to change our "return address" from the
// dummy RecursiveInterpreterActivation to a return from native
__ set((intptr_t)return_from_native_method - 8, O7);
__ jmpl(G3_scratch, G0, G0);
__ delayed()->mov(G1_scratch, O0);
__ bind(remove_initial_frame);
// POP FRAME HERE ==================================
__ restore(FP, G0, SP);
__ mov(I5_savedSP->after_restore(), SP);
__ jmpl(G3_scratch, G0, G0);
__ delayed()->mov(G1_scratch, O0);
// Call a new method. All we do is (temporarily) trim the expression stack
// push a return address to bring us back to here and leap to the new entry.
// At this point we have a topmost frame that was allocated by the frame manager
// which contains the current method interpreted state. We trim this frame
// of excess java expression stack entries and then recurse.
__ bind(call_method);
// stack points to next free location and not top element on expression stack
// method expects sp to be pointing to topmost element
__ ld_ptr(STATE(_thread), G2_thread);
__ ld_ptr(STATE(_result._to_call._callee), G5_method);
// SP already takes in to account the 2 extra words we use for slop
// when we call a "static long no_params()" method. So if
// we trim back sp by the amount of unused java expression stack
// there will be automagically the 2 extra words we need.
// We also have to worry about keeping SP aligned.
__ ld_ptr(STATE(_stack), Gargs);
__ ld_ptr(STATE(_stack_limit), L1_scratch);
// compute the unused java stack size
__ sub(Gargs, L1_scratch, L2_scratch); // compute unused space
// Round down the unused space to that stack is always 16-byte aligned
// by making the unused space a multiple of the size of two longs.
__ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
// Now trim the stack
__ add(SP, L2_scratch, SP);
// Now point to the final argument (account for prepush)
__ add(Gargs, wordSize, Gargs);
#ifdef ASSERT
// Make sure we have space for the window
__ sub(Gargs, SP, L1_scratch);
__ cmp(L1_scratch, 16*wordSize);
{
Label skip;
__ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
__ delayed()->nop();
__ stop("killed stack");
__ bind(skip);
}
#endif // ASSERT
// Create a new frame where we can store values that make it look like the interpreter
// really recursed.
// prepare to recurse or call specialized entry
// First link the registers we need
// make the pc look good in debugger
__ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
// argument too
__ mov(Lstate, I0);
// Record our sending SP
__ mov(SP, O5_savedSP);
__ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
__ set((intptr_t) entry_point, L1_scratch);
__ cmp(L1_scratch, L2_scratch);
__ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
__ delayed()->mov(Lstate, prevState); // link activations
// method uses specialized entry, push a return so we look like call stub setup
// this path will handle fact that result is returned in registers and not
// on the java stack.
__ set((intptr_t)return_from_native_method - 8, O7);
__ jmpl(L2_scratch, G0, G0); // Do specialized entry
__ delayed()->nop();
//
// Bad Message from interpreter
//
__ bind(bad_msg);
__ stop("Bad message from interpreter");
// Interpreted method "returned" with an exception pass it on...
// Pass result, unwind activation and continue/return to interpreter/call_stub
// We handle result (if any) differently based on return to interpreter or call_stub
__ bind(throw_exception);
__ ld_ptr(STATE(_prev_link), L1_scratch);
__ tst(L1_scratch);
__ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
__ delayed()->nop();
__ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
__ ba(unwind_recursive_activation);
__ delayed()->nop();
interpreter_frame_manager = entry_point;
return entry_point;
}
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: CppInterpreterGenerator(code) {
generate_all(); // down here so it can be "virtual"
}
static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
// Figure out the size of an interpreter frame (in words) given that we have a fully allocated
// expression stack, the callee will have callee_extra_locals (so we can account for
// frame extension) and monitor_size for monitors. Basically we need to calculate
// this exactly like generate_fixed_frame/generate_compute_interpreter_state.
//
//
// The big complicating thing here is that we must ensure that the stack stays properly
// aligned. This would be even uglier if monitor size wasn't modulo what the stack
// needs to be aligned for). We are given that the sp (fp) is already aligned by
// the caller so we must ensure that it is properly aligned for our callee.
//
// Ths c++ interpreter always makes sure that we have a enough extra space on the
// stack at all times to deal with the "stack long no_params()" method issue. This
// is "slop_factor" here.
const int slop_factor = 2;
const int fixed_size = sizeof(BytecodeInterpreter)/wordSize + // interpreter state object
frame::memory_parameter_word_sp_offset; // register save area + param window
const int extra_stack = 0; //6815692//Method::extra_stack_entries();
return (round_to(max_stack +
extra_stack +
slop_factor +
fixed_size +
monitor_size +
(callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
}
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
// See call_stub code
int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset,
WordsPerLong); // 7 + register save area
// Save space for one monitor to get into the interpreted method in case
// the method is synchronized
int monitor_size = method->is_synchronized() ?
1*frame::interpreter_frame_monitor_size() : 0;
return size_activation_helper(method->max_locals(), method->max_stack(),
monitor_size) + call_stub_size;
}
void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
frame* caller,
frame* current,
Method* method,
intptr_t* locals,
intptr_t* stack,
intptr_t* stack_base,
intptr_t* monitor_base,
intptr_t* frame_bottom,
bool is_top_frame
)
{
// What about any vtable?
//
to_fill->_thread = JavaThread::current();
// This gets filled in later but make it something recognizable for now
to_fill->_bcp = method->code_base();
to_fill->_locals = locals;
to_fill->_constants = method->constants()->cache();
to_fill->_method = method;
to_fill->_mdx = NULL;
to_fill->_stack = stack;
if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
to_fill->_msg = deopt_resume2;
} else {
to_fill->_msg = method_resume;
}
to_fill->_result._to_call._bcp_advance = 0;
to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
to_fill->_prev_link = NULL;
// Fill in the registers for the frame
// Need to install _sender_sp. Actually not too hard in C++!
// When the skeletal frames are layed out we fill in a value
// for _sender_sp. That value is only correct for the oldest
// skeletal frame constructed (because there is only a single
// entry for "caller_adjustment". While the skeletal frames
// exist that is good enough. We correct that calculation
// here and get all the frames correct.
// to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
*current->register_addr(Lstate) = (intptr_t) to_fill;
// skeletal already places a useful value here and this doesn't account
// for alignment so don't bother.
// *current->register_addr(I5_savedSP) = (intptr_t) locals - (method->size_of_parameters() - 1);
if (caller->is_interpreted_frame()) {
interpreterState prev = caller->get_interpreterState();
to_fill->_prev_link = prev;
// Make the prev callee look proper
prev->_result._to_call._callee = method;
if (*prev->_bcp == Bytecodes::_invokeinterface) {
prev->_result._to_call._bcp_advance = 5;
} else {
prev->_result._to_call._bcp_advance = 3;
}
}
to_fill->_oop_temp = NULL;
to_fill->_stack_base = stack_base;
// Need +1 here because stack_base points to the word just above the first expr stack entry
// and stack_limit is supposed to point to the word just below the last expr stack entry.
// See generate_compute_interpreter_state.
int extra_stack = 0; //6815692//Method::extra_stack_entries();
to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
// sparc specific
to_fill->_frame_bottom = frame_bottom;
to_fill->_self_link = to_fill;
#ifdef ASSERT
to_fill->_native_fresult = 123456.789;
to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
#endif
}
void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
istate->_last_Java_pc = (intptr_t*) last_Java_pc;
}
int AbstractInterpreter::layout_activation(Method* method,
int tempcount, // Number of slots on java expression stack in use
int popframe_extra_args,
int moncount, // Number of active monitors
int caller_actual_parameters,
int callee_param_size,
int callee_locals_size,
frame* caller,
frame* interpreter_frame,
bool is_top_frame) {
assert(popframe_extra_args == 0, "NEED TO FIX");
// NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
// does as far as allocating an interpreter frame.
// If interpreter_frame!=NULL, set up the method, locals, and monitors.
// The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
// as determined by a previous call to this method.
// It is also guaranteed to be walkable even though it is in a skeletal state
// NOTE: return size is in words not bytes
// NOTE: tempcount is the current size of the java expression stack. For top most
// frames we will allocate a full sized expression stack and not the curback
// version that non-top frames have.
// Calculate the amount our frame will be adjust by the callee. For top frame
// this is zero.
// NOTE: ia64 seems to do this wrong (or at least backwards) in that it
// calculates the extra locals based on itself. Not what the callee does
// to it. So it ignores last_frame_adjust value. Seems suspicious as far
// as getting sender_sp correct.
int extra_locals_size = callee_locals_size - callee_param_size;
int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
int frame_words = is_top_frame ? full_frame_words : short_frame_words;
/*
if we actually have a frame to layout we must now fill in all the pieces. This means both
the interpreterState and the registers.
*/
if (interpreter_frame != NULL) {
// MUCHO HACK
intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
// 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
/* Now fillin the interpreterState object */
interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
intptr_t* locals;
// Calculate the postion of locals[0]. This is painful because of
// stack alignment (same as ia64). The problem is that we can
// not compute the location of locals from fp(). fp() will account
// for the extra locals but it also accounts for aligning the stack
// and we can't determine if the locals[0] was misaligned but max_locals
// was enough to have the
// calculate postion of locals. fp already accounts for extra locals.
// +2 for the static long no_params() issue.
if (caller->is_interpreted_frame()) {
// locals must agree with the caller because it will be used to set the
// caller's tos when we return.
interpreterState prev = caller->get_interpreterState();
// stack() is prepushed.
locals = prev->stack() + method->size_of_parameters();
} else {
// Lay out locals block in the caller adjacent to the register window save area.
//
// Compiled frames do not allocate a varargs area which is why this if
// statement is needed.
//
intptr_t* fp = interpreter_frame->fp();
int local_words = method->max_locals() * Interpreter::stackElementWords;
if (caller->is_compiled_frame()) {
locals = fp + frame::register_save_words + local_words - 1;
} else {
locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
}
}
// END MUCHO HACK
intptr_t* monitor_base = (intptr_t*) cur_state;
intptr_t* stack_base = monitor_base - monitor_size;
/* +1 because stack is always prepushed */
intptr_t* stack = stack_base - (tempcount + 1);
BytecodeInterpreter::layout_interpreterState(cur_state,
caller,
interpreter_frame,
method,
locals,
stack,
stack_base,
monitor_base,
frame_bottom,
is_top_frame);
BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
}
return frame_words;
}
#endif // CC_INTERP