/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/assembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "code/compiledIC.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/vm_version.hpp"
# include <sys/sysinfo.h>
bool VM_Version::_is_determine_features_test_running = false;
const char* VM_Version::_model_string;
unsigned long VM_Version::_features[_features_buffer_len] = {0, 0, 0, 0};
unsigned long VM_Version::_cipher_features[_features_buffer_len] = {0, 0, 0, 0};
unsigned long VM_Version::_msgdigest_features[_features_buffer_len] = {0, 0, 0, 0};
unsigned int VM_Version::_nfeatures = 0;
unsigned int VM_Version::_ncipher_features = 0;
unsigned int VM_Version::_nmsgdigest_features = 0;
unsigned int VM_Version::_Dcache_lineSize = DEFAULT_CACHE_LINE_SIZE;
unsigned int VM_Version::_Icache_lineSize = DEFAULT_CACHE_LINE_SIZE;
static const char* z_gen[] = {" ", "G1", "G2", "G3", "G4", "G5", "G6", "G7" };
static const char* z_machine[] = {" ", "2064", "2084", "2094", "2097", "2817", " ", "2964" };
static const char* z_name[] = {" ", "z900", "z990", "z9 EC", "z10 EC", "z196 EC", "ec12", "z13" };
void VM_Version::initialize() {
determine_features(); // Get processor capabilities.
set_features_string(); // Set a descriptive feature indication.
if (Verbose) {
print_features();
}
intx cache_line_size = Dcache_lineSize(0);
#ifdef COMPILER2
MaxVectorSize = 8;
#endif
if (has_PrefetchRaw()) {
if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) { // not preset
// 0 = no prefetch.
// 1 = Prefetch instructions for each allocation.
// 2 = Use TLAB watermark to gate allocation prefetch.
AllocatePrefetchStyle = 1;
}
if (AllocatePrefetchStyle > 0) { // Prefetching turned on at all?
// Distance to prefetch ahead of allocation pointer.
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance) || (AllocatePrefetchDistance < 0)) { // not preset
AllocatePrefetchDistance = 0;
}
// Number of lines to prefetch ahead of allocation pointer.
if (FLAG_IS_DEFAULT(AllocatePrefetchLines) || (AllocatePrefetchLines <= 0)) { // not preset
AllocatePrefetchLines = 3;
}
// Step size in bytes of sequential prefetch instructions.
if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) || (AllocatePrefetchStepSize <= 0)) { // not preset
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
} else if (AllocatePrefetchStepSize < cache_line_size) {
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
} else {
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
}
} else {
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
AllocatePrefetchDistance = 0;
AllocatePrefetchLines = 0;
// Can't be zero. Will SIGFPE during constraints checking.
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
}
} else {
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
AllocatePrefetchDistance = 0;
AllocatePrefetchLines = 0;
// Can't be zero. Will SIGFPE during constraints checking.
FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size);
}
// TODO:
// On z/Architecture, cache line size is significantly large (256 bytes). Do we really need
// to keep contended members that far apart? Performance tests are required.
if (FLAG_IS_DEFAULT(ContendedPaddingWidth) && (cache_line_size > ContendedPaddingWidth)) {
ContendedPaddingWidth = cache_line_size;
}
// On z/Architecture, the CRC32/CRC32C intrinsics are implemented "by hand".
// TODO: Provide implementation based on the vector instructions available from z13.
// Note: The CHECKSUM instruction, which has been there since the very beginning
// (of z/Architecture), computes "some kind of" a checksum.
// It has nothing to do with the CRC32 algorithm.
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
FLAG_SET_DEFAULT(UseCRC32Intrinsics, true);
}
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true);
}
// TODO: Provide implementation.
if (UseAdler32Intrinsics) {
warning("Adler32Intrinsics not available on this CPU.");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
// On z/Architecture, we take UseAES as the general switch to enable/disable the AES intrinsics.
// The specific, and yet to be defined, switches UseAESxxxIntrinsics will then be set
// depending on the actual machine capabilities.
// Explicitly setting them via CmdLine option takes precedence, of course.
// TODO: UseAESIntrinsics must be made keylength specific.
// As of March 2015 and Java8, only AES128 is supported by the Java Cryptographic Extensions.
// Therefore, UseAESIntrinsics is of minimal use at the moment.
if (FLAG_IS_DEFAULT(UseAES) && has_Crypto_AES()) {
FLAG_SET_DEFAULT(UseAES, true);
}
if (UseAES && !has_Crypto_AES()) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAES) {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
}
}
if (UseAESIntrinsics && !has_Crypto_AES()) {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
if (UseAESIntrinsics && !UseAES) {
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
// TODO: implement AES/CTR intrinsics
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics) && has_Crypto_GHASH()) {
FLAG_SET_DEFAULT(UseGHASHIntrinsics, true);
}
if (UseGHASHIntrinsics && !has_Crypto_GHASH()) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseFMA)) {
FLAG_SET_DEFAULT(UseFMA, true);
}
// On z/Architecture, we take UseSHA as the general switch to enable/disable the SHA intrinsics.
// The specific switches UseSHAxxxIntrinsics will then be set depending on the actual
// machine capabilities.
// Explicitly setting them via CmdLine option takes precedence, of course.
if (FLAG_IS_DEFAULT(UseSHA) && has_Crypto_SHA()) {
FLAG_SET_DEFAULT(UseSHA, true);
}
if (UseSHA && !has_Crypto_SHA()) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA && has_Crypto_SHA1()) {
if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
}
} else if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA && has_Crypto_SHA256()) {
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
}
} else if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA && has_Crypto_SHA512()) {
if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
}
} else if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA, false);
}
#ifdef COMPILER2
if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, true);
}
if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, true);
}
if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, true);
}
#endif
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
FLAG_SET_DEFAULT(UsePopCountInstruction, true);
}
// z/Architecture supports 8-byte compare-exchange operations
// (see Atomic::cmpxchg)
// and 'atomic long memory ops' (see Unsafe_GetLongVolatile).
_supports_cx8 = true;
_supports_atomic_getadd4 = VM_Version::has_LoadAndALUAtomicV1();
_supports_atomic_getadd8 = VM_Version::has_LoadAndALUAtomicV1();
// z/Architecture supports unaligned memory accesses.
// Performance penalty is negligible. An additional tick or so
// is lost if the accessed data spans a cache line boundary.
// Unaligned accesses are not atomic, of course.
if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
}
}
void VM_Version::set_features_string() {
unsigned int ambiguity = 0;
_model_string = z_name[0];
if (is_z13()) {
_features_string = "System z G7-z13 (LDISP_fast, ExtImm, PCrel Load/Store, CmpB, Cond Load/Store, Interlocked Update, TxM, VectorInstr)";
_model_string = z_name[7];
ambiguity++;
}
if (is_ec12()) {
_features_string = "System z G6-EC12 (LDISP_fast, ExtImm, PCrel Load/Store, CmpB, Cond Load/Store, Interlocked Update, TxM)";
_model_string = z_name[6];
ambiguity++;
}
if (is_z196()) {
_features_string = "System z G5-z196 (LDISP_fast, ExtImm, PCrel Load/Store, CmpB, Cond Load/Store, Interlocked Update)";
_model_string = z_name[5];
ambiguity++;
}
if (is_z10()) {
_features_string = "System z G4-z10 (LDISP_fast, ExtImm, PCrel Load/Store, CmpB)";
_model_string = z_name[4];
ambiguity++;
}
if (is_z9()) {
_features_string = "System z G3-z9 (LDISP_fast, ExtImm), out-of-support as of 2016-04-01";
_model_string = z_name[3];
ambiguity++;
}
if (is_z990()) {
_features_string = "System z G2-z990 (LDISP_fast), out-of-support as of 2014-07-01";
_model_string = z_name[2];
ambiguity++;
}
if (is_z900()) {
_features_string = "System z G1-z900 (LDISP), out-of-support as of 2014-07-01";
_model_string = z_name[1];
ambiguity++;
}
if (ambiguity == 0) {
_features_string = "z/Architecture (unknown generation)";
} else if (ambiguity > 1) {
tty->print_cr("*** WARNING *** Ambiguous z/Architecture detection, ambiguity = %d", ambiguity);
tty->print_cr(" oldest detected generation is %s", _features_string);
_features_string = "z/Architecture (ambiguous detection)";
}
if (has_Crypto_AES()) {
char buf[256];
assert(strlen(_features_string) + 4 + 3*4 + 1 < sizeof(buf), "increase buffer size");
jio_snprintf(buf, sizeof(buf), "%s aes%s%s%s", // String 'aes' must be surrounded by spaces so that jtreg tests recognize it.
_features_string,
has_Crypto_AES128() ? " 128" : "",
has_Crypto_AES192() ? " 192" : "",
has_Crypto_AES256() ? " 256" : "");
_features_string = os::strdup(buf);
}
if (has_Crypto_SHA()) {
char buf[256];
assert(strlen(_features_string) + 4 + 2 + 2*4 + 6 + 1 < sizeof(buf), "increase buffer size");
// String 'sha1' etc must be surrounded by spaces so that jtreg tests recognize it.
jio_snprintf(buf, sizeof(buf), "%s %s%s%s%s",
_features_string,
has_Crypto_SHA1() ? " sha1" : "",
has_Crypto_SHA256() ? " sha256" : "",
has_Crypto_SHA512() ? " sha512" : "",
has_Crypto_GHASH() ? " ghash" : "");
if (has_Crypto_AES()) { os::free((void *)_features_string); }
_features_string = os::strdup(buf);
}
}
// featureBuffer - bit array indicating availability of various features
// featureNum - bit index of feature to be tested
// Featurenum < 0 requests test for any nonzero bit in featureBuffer.
// bufLen - length of featureBuffer in bits
bool VM_Version::test_feature_bit(unsigned long* featureBuffer, int featureNum, unsigned int bufLen) {
assert(bufLen > 0, "buffer len must be positive");
assert((bufLen & 0x0007) == 0, "unaligned buffer len");
assert(((intptr_t)featureBuffer&0x0007) == 0, "unaligned feature buffer");
if (featureNum < 0) {
// Any bit set at all?
bool anyBit = false;
for (size_t i = 0; i < bufLen/(8*sizeof(long)); i++) {
anyBit = anyBit || (featureBuffer[i] != 0);
}
return anyBit;
} else {
assert((unsigned int)featureNum < bufLen, "feature index out of range");
unsigned char* byteBuffer = (unsigned char*)featureBuffer;
int byteIndex = featureNum/(8*sizeof(char));
int bitIndex = featureNum%(8*sizeof(char));
// Indexed bit set?
return (byteBuffer[byteIndex] & (1U<<(7-bitIndex))) != 0;
}
}
void VM_Version::print_features_internal(const char* text, bool print_anyway) {
tty->print_cr("%s %s", text, features_string());
tty->print("%s", text);
for (unsigned int i = 0; i < _nfeatures; i++) {
tty->print(" 0x%16.16lx", _features[i]);
}
tty->cr();
if (Verbose || print_anyway) {
// z900
if (has_long_displacement() ) tty->print_cr("available: %s", "LongDispFacility");
// z990
if (has_long_displacement_fast() ) tty->print_cr("available: %s", "LongDispFacilityHighPerf");
if (has_ETF2() && has_ETF3() ) tty->print_cr("available: %s", "ETF2 and ETF3");
if (has_Crypto() ) tty->print_cr("available: %s", "CryptoFacility");
// z9
if (has_extended_immediate() ) tty->print_cr("available: %s", "ExtImmedFacility");
if (has_StoreFacilityListExtended()) tty->print_cr("available: %s", "StoreFacilityListExtended");
if (has_StoreClockFast() ) tty->print_cr("available: %s", "StoreClockFast");
if (has_ETF2Enhancements() ) tty->print_cr("available: %s", "ETF2 Enhancements");
if (has_ETF3Enhancements() ) tty->print_cr("available: %s", "ETF3 Enhancements");
if (has_HFPUnnormalized() ) tty->print_cr("available: %s", "HFPUnnormalizedFacility");
if (has_HFPMultiplyAndAdd() ) tty->print_cr("available: %s", "HFPMultiplyAndAddFacility");
// z10
if (has_ParsingEnhancements() ) tty->print_cr("available: %s", "Parsing Enhancements");
if (has_ExtractCPUtime() ) tty->print_cr("available: %s", "ExtractCPUTime");
if (has_CompareSwapStore() ) tty->print_cr("available: %s", "CompareSwapStore");
if (has_GnrlInstrExtensions() ) tty->print_cr("available: %s", "General Instruction Extensions");
if (has_CompareBranch() ) tty->print_cr(" available: %s", "Compare and Branch");
if (has_CompareTrap() ) tty->print_cr(" available: %s", "Compare and Trap");
if (has_RelativeLoadStore() ) tty->print_cr(" available: %s", "Relative Load/Store");
if (has_MultiplySingleImm32() ) tty->print_cr(" available: %s", "MultiplySingleImm32");
if (has_Prefetch() ) tty->print_cr(" available: %s", "Prefetch");
if (has_MoveImmToMem() ) tty->print_cr(" available: %s", "Direct Moves Immediate to Memory");
if (has_MemWithImmALUOps() ) tty->print_cr(" available: %s", "Direct ALU Ops Memory .op. Immediate");
if (has_ExtractCPUAttributes() ) tty->print_cr(" available: %s", "Extract CPU Atributes");
if (has_ExecuteExtensions() ) tty->print_cr("available: %s", "ExecuteExtensions");
if (has_FPSupportEnhancements() ) tty->print_cr("available: %s", "FPSupportEnhancements");
if (has_DecimalFloatingPoint() ) tty->print_cr("available: %s", "DecimalFloatingPoint");
// z196
if (has_DistinctOpnds() ) tty->print_cr("available: %s", "Distinct Operands");
if (has_InterlockedAccessV1() ) tty->print_cr(" available: %s", "InterlockedAccess V1 (fast)");
if (has_PopCount() ) tty->print_cr(" available: %s", "PopCount");
if (has_LoadStoreConditional() ) tty->print_cr(" available: %s", "LoadStoreConditional");
if (has_HighWordInstr() ) tty->print_cr(" available: %s", "HighWord Instructions");
if (has_FastSync() ) tty->print_cr(" available: %s", "FastSync (bcr 14,0)");
if (has_AtomicMemWithImmALUOps() ) tty->print_cr("available: %s", "Atomic Direct ALU Ops Memory .op. Immediate");
if (has_FPExtensions() ) tty->print_cr("available: %s", "Floatingpoint Extensions");
if (has_CryptoExt3() ) tty->print_cr("available: %s", "Crypto Extensions 3");
if (has_CryptoExt4() ) tty->print_cr("available: %s", "Crypto Extensions 4");
// EC12
if (has_MiscInstrExt() ) tty->print_cr("available: %s", "Miscelaneous Instruction Extensions");
if (has_ExecutionHint() ) tty->print_cr(" available: %s", "Execution Hints (branch prediction)");
if (has_ProcessorAssist() ) tty->print_cr(" available: %s", "Processor Assists");
if (has_LoadAndTrap() ) tty->print_cr(" available: %s", "Load and Trap");
if (has_TxMem() ) tty->print_cr("available: %s", "Transactional Memory");
if (has_InterlockedAccessV2() ) tty->print_cr(" available: %s", "InterlockedAccess V2 (fast)");
if (has_DFPZonedConversion() ) tty->print_cr(" available: %s", "DFP Zoned Conversions");
// z13
if (has_LoadStoreConditional2() ) tty->print_cr("available: %s", "Load/Store Conditional 2");
if (has_CryptoExt5() ) tty->print_cr("available: %s", "Crypto Extensions 5");
if (has_DFPPackedConversion() ) tty->print_cr("available: %s", "DFP Packed Conversions");
if (has_VectorFacility() ) tty->print_cr("available: %s", "Vector Facility");
// test switches
if (has_TestFeature1Impl() ) tty->print_cr("available: %s", "TestFeature1Impl");
if (has_TestFeature2Impl() ) tty->print_cr("available: %s", "TestFeature2Impl");
if (has_TestFeature4Impl() ) tty->print_cr("available: %s", "TestFeature4Impl");
if (has_TestFeature8Impl() ) tty->print_cr("available: %s", "TestFeature8Impl");
if (has_Crypto()) {
tty->cr();
tty->print_cr("detailed availability of %s capabilities:", "CryptoFacility");
if (test_feature_bit(&_cipher_features[0], -1, 2*Cipher::_featureBits)) {
tty->cr();
tty->print_cr(" available: %s", "Message Cipher Functions");
}
if (test_feature_bit(&_cipher_features[0], -1, (int)Cipher::_featureBits)) {
tty->print_cr(" available Crypto Features of KM (Cipher Message):");
for (unsigned int i = 0; i < Cipher::_featureBits; i++) {
if (test_feature_bit(&_cipher_features[0], i, (int)Cipher::_featureBits)) {
switch (i) {
case Cipher::_Query: tty->print_cr(" available: KM Query"); break;
case Cipher::_DEA: tty->print_cr(" available: KM DEA"); break;
case Cipher::_TDEA128: tty->print_cr(" available: KM TDEA-128"); break;
case Cipher::_TDEA192: tty->print_cr(" available: KM TDEA-192"); break;
case Cipher::_EncryptedDEA: tty->print_cr(" available: KM Encrypted DEA"); break;
case Cipher::_EncryptedDEA128: tty->print_cr(" available: KM Encrypted DEA-128"); break;
case Cipher::_EncryptedDEA192: tty->print_cr(" available: KM Encrypted DEA-192"); break;
case Cipher::_AES128: tty->print_cr(" available: KM AES-128"); break;
case Cipher::_AES192: tty->print_cr(" available: KM AES-192"); break;
case Cipher::_AES256: tty->print_cr(" available: KM AES-256"); break;
case Cipher::_EnccryptedAES128: tty->print_cr(" available: KM Encrypted-AES-128"); break;
case Cipher::_EnccryptedAES192: tty->print_cr(" available: KM Encrypted-AES-192"); break;
case Cipher::_EnccryptedAES256: tty->print_cr(" available: KM Encrypted-AES-256"); break;
case Cipher::_XTSAES128: tty->print_cr(" available: KM XTS-AES-128"); break;
case Cipher::_XTSAES256: tty->print_cr(" available: KM XTS-AES-256"); break;
case Cipher::_EncryptedXTSAES128: tty->print_cr(" available: KM XTS-Encrypted-AES-128"); break;
case Cipher::_EncryptedXTSAES256: tty->print_cr(" available: KM XTS-Encrypted-AES-256"); break;
default: tty->print_cr(" available: unknown KM code %d", i); break;
}
}
}
}
if (test_feature_bit(&_cipher_features[2], -1, (int)Cipher::_featureBits)) {
tty->print_cr(" available Crypto Features of KMC (Cipher Message with Chaining):");
for (unsigned int i = 0; i < Cipher::_featureBits; i++) {
if (test_feature_bit(&_cipher_features[2], i, (int)Cipher::_featureBits)) {
switch (i) {
case Cipher::_Query: tty->print_cr(" available: KMC Query"); break;
case Cipher::_DEA: tty->print_cr(" available: KMC DEA"); break;
case Cipher::_TDEA128: tty->print_cr(" available: KMC TDEA-128"); break;
case Cipher::_TDEA192: tty->print_cr(" available: KMC TDEA-192"); break;
case Cipher::_EncryptedDEA: tty->print_cr(" available: KMC Encrypted DEA"); break;
case Cipher::_EncryptedDEA128: tty->print_cr(" available: KMC Encrypted DEA-128"); break;
case Cipher::_EncryptedDEA192: tty->print_cr(" available: KMC Encrypted DEA-192"); break;
case Cipher::_AES128: tty->print_cr(" available: KMC AES-128"); break;
case Cipher::_AES192: tty->print_cr(" available: KMC AES-192"); break;
case Cipher::_AES256: tty->print_cr(" available: KMC AES-256"); break;
case Cipher::_EnccryptedAES128: tty->print_cr(" available: KMC Encrypted-AES-128"); break;
case Cipher::_EnccryptedAES192: tty->print_cr(" available: KMC Encrypted-AES-192"); break;
case Cipher::_EnccryptedAES256: tty->print_cr(" available: KMC Encrypted-AES-256"); break;
case Cipher::_PRNG: tty->print_cr(" available: KMC PRNG"); break;
default: tty->print_cr(" available: unknown KMC code %d", i); break;
}
}
}
}
if (test_feature_bit(&_msgdigest_features[0], -1, 2*MsgDigest::_featureBits)) {
tty->cr();
tty->print_cr(" available: %s", "Message Digest Functions for SHA");
}
if (test_feature_bit(&_msgdigest_features[0], -1, (int)MsgDigest::_featureBits)) {
tty->print_cr(" available Features of KIMD (Msg Digest):");
for (unsigned int i = 0; i < MsgDigest::_featureBits; i++) {
if (test_feature_bit(&_msgdigest_features[0], i, (int)MsgDigest::_featureBits)) {
switch (i) {
case MsgDigest::_Query: tty->print_cr(" available: KIMD Query"); break;
case MsgDigest::_SHA1: tty->print_cr(" available: KIMD SHA-1"); break;
case MsgDigest::_SHA256: tty->print_cr(" available: KIMD SHA-256"); break;
case MsgDigest::_SHA512: tty->print_cr(" available: KIMD SHA-512"); break;
case MsgDigest::_GHASH: tty->print_cr(" available: KIMD GHASH"); break;
default: tty->print_cr(" available: unknown code %d", i); break;
}
}
}
}
if (test_feature_bit(&_msgdigest_features[2], -1, (int)MsgDigest::_featureBits)) {
tty->print_cr(" available Features of KLMD (Msg Digest):");
for (unsigned int i = 0; i < MsgDigest::_featureBits; i++) {
if (test_feature_bit(&_msgdigest_features[2], i, (int)MsgDigest::_featureBits)) {
switch (i) {
case MsgDigest::_Query: tty->print_cr(" available: KLMD Query"); break;
case MsgDigest::_SHA1: tty->print_cr(" available: KLMD SHA-1"); break;
case MsgDigest::_SHA256: tty->print_cr(" available: KLMD SHA-256"); break;
case MsgDigest::_SHA512: tty->print_cr(" available: KLMD SHA-512"); break;
default: tty->print_cr(" available: unknown code %d", i); break;
}
}
}
}
}
if (ContendedPaddingWidth > 0) {
tty->cr();
tty->print_cr("ContendedPaddingWidth " INTX_FORMAT, ContendedPaddingWidth);
}
}
}
void VM_Version::print_platform_virtualization_info(outputStream* st) {
// /proc/sysinfo contains interesting information about
// - LPAR
// - whole "Box" (CPUs )
// - z/VM / KVM (VM<nn>); this is not available in an LPAR-only setup
const char* kw[] = { "LPAR", "CPUs", "VM", NULL };
const char* info_file = "/proc/sysinfo";
if (!print_matching_lines_from_file(info_file, st, kw)) {
st->print_cr(" <%s Not Available>", info_file);
}
}
void VM_Version::print_features() {
print_features_internal("Version:");
}
void VM_Version::reset_features(bool reset) {
if (reset) {
for (unsigned int i = 0; i < _features_buffer_len; i++) {
VM_Version::_features[i] = 0;
}
}
}
void VM_Version::set_features_z900(bool reset) {
reset_features(reset);
set_has_long_displacement();
set_has_ETF2();
}
void VM_Version::set_features_z990(bool reset) {
reset_features(reset);
set_features_z900(false);
set_has_ETF3();
set_has_long_displacement_fast();
set_has_HFPMultiplyAndAdd();
}
void VM_Version::set_features_z9(bool reset) {
reset_features(reset);
set_features_z990(false);
set_has_StoreFacilityListExtended();
// set_has_Crypto(); // Do not set, crypto features must be retrieved separately.
set_has_ETF2Enhancements();
set_has_ETF3Enhancements();
set_has_extended_immediate();
set_has_StoreClockFast();
set_has_HFPUnnormalized();
}
void VM_Version::set_features_z10(bool reset) {
reset_features(reset);
set_features_z9(false);
set_has_CompareSwapStore();
set_has_RelativeLoadStore();
set_has_CompareBranch();
set_has_CompareTrap();
set_has_MultiplySingleImm32();
set_has_Prefetch();
set_has_MoveImmToMem();
set_has_MemWithImmALUOps();
set_has_ExecuteExtensions();
set_has_FPSupportEnhancements();
set_has_DecimalFloatingPoint();
set_has_ExtractCPUtime();
set_has_CryptoExt3();
}
void VM_Version::set_features_z196(bool reset) {
reset_features(reset);
set_features_z10(false);
set_has_InterlockedAccessV1();
set_has_PopCount();
set_has_LoadStoreConditional();
set_has_HighWordInstr();
set_has_FastSync();
set_has_FPExtensions();
set_has_DistinctOpnds();
set_has_CryptoExt4();
}
void VM_Version::set_features_ec12(bool reset) {
reset_features(reset);
set_features_z196(false);
set_has_MiscInstrExt();
set_has_InterlockedAccessV2();
set_has_LoadAndALUAtomicV2();
set_has_TxMem();
}
void VM_Version::set_features_z13(bool reset) {
reset_features(reset);
set_features_ec12(false);
set_has_LoadStoreConditional2();
set_has_CryptoExt5();
set_has_VectorFacility();
}
void VM_Version::set_features_from(const char* march) {
bool err = false;
bool prt = false;
if ((march != NULL) && (march[0] != '\0')) {
const int buf_len = 16;
const int hdr_len = 5;
char buf[buf_len];
if (strlen(march) >= hdr_len) {
memcpy(buf, march, hdr_len);
buf[hdr_len] = '\00';
} else {
buf[0] = '\00';
}
if (!strcmp(march, "z900")) {
set_features_z900();
} else if (!strcmp(march, "z990")) {
set_features_z990();
} else if (!strcmp(march, "z9")) {
set_features_z9();
} else if (!strcmp(march, "z10")) {
set_features_z10();
} else if (!strcmp(march, "z196")) {
set_features_z196();
} else if (!strcmp(march, "ec12")) {
set_features_ec12();
} else if (!strcmp(march, "z13")) {
set_features_z13();
} else if (!strcmp(buf, "ztest")) {
assert(!has_TestFeaturesImpl(), "possible facility list flag conflict");
if (strlen(march) > hdr_len) {
int itest = 0;
if ((strlen(march)-hdr_len) >= buf_len) err = true;
if (!err) {
memcpy(buf, &march[hdr_len], strlen(march)-hdr_len);
buf[strlen(march)-hdr_len] = '\00';
for (size_t i = 0; !err && (i < strlen(buf)); i++) {
itest = itest*10 + buf[i]-'0';
err = err || ((buf[i]-'0') < 0) || ((buf[i]-'0') > 9) || (itest > 15);
}
}
if (!err) {
prt = true;
if (itest & 0x01) { set_has_TestFeature1Impl(); }
if (itest & 0x02) { set_has_TestFeature2Impl(); }
if (itest & 0x04) { set_has_TestFeature4Impl(); }
if (itest & 0x08) { set_has_TestFeature8Impl(); }
}
} else {
prt = true;
set_has_TestFeature1Impl();
set_has_TestFeature2Impl();
set_has_TestFeature4Impl();
set_has_TestFeature8Impl();
}
} else {
err = true;
}
if (!err) {
set_features_string();
if (prt || PrintAssembly) {
print_features_internal("CPU Version as set by cmdline option:", prt);
}
} else {
tty->print_cr("***Warning: Unsupported ProcessorArchitecture: %s, internal settings left undisturbed.", march);
}
}
}
static long (*getFeatures)(unsigned long*, int, int) = NULL;
void VM_Version::set_getFeatures(address entryPoint) {
if (getFeatures == NULL) {
getFeatures = (long(*)(unsigned long*, int, int))entryPoint;
}
}
long VM_Version::call_getFeatures(unsigned long* buffer, int buflen, int functionCode) {
VM_Version::_is_determine_features_test_running = true;
long functionResult = (*getFeatures)(buffer, buflen, functionCode);
VM_Version::_is_determine_features_test_running = false;
return functionResult;
}
// Helper function for "extract cache attribute" instruction.
int VM_Version::calculate_ECAG_functionCode(unsigned int attributeIndication,
unsigned int levelIndication,
unsigned int typeIndication) {
return (attributeIndication<<4) | (levelIndication<<1) | typeIndication;
}
void VM_Version::determine_features() {
const int cbuf_size = _code_buffer_len;
const int buf_len = _features_buffer_len;
// Allocate code buffer space for the detection code.
ResourceMark rm;
CodeBuffer cbuf("determine CPU features", cbuf_size, 0);
MacroAssembler* a = new MacroAssembler(&cbuf);
// Emit code.
set_getFeatures(a->pc());
address code = a->pc();
// Try STFLE. Possible INVOP will cause defaults to be used.
Label getFEATURES;
Label getCPUFEATURES; // fcode = -1 (cache)
Label getCIPHERFEATURES; // fcode = -2 (cipher)
Label getMSGDIGESTFEATURES; // fcode = -3 (SHA)
Label getVECTORFEATURES; // fcode = -4 (OS support for vector instructions)
Label errRTN;
a->z_ltgfr(Z_R0, Z_ARG2); // Buf len to r0 and test.
a->z_brl(getFEATURES); // negative -> Get machine features not covered by facility list.
a->z_lghi(Z_R1,0);
a->z_brz(errRTN); // zero -> Function code currently not used, indicate "aborted".
a->z_aghi(Z_R0, -1);
a->z_stfle(0, Z_ARG1);
a->z_lg(Z_R1, 0, Z_ARG1); // Get first DW of facility list.
a->z_lgr(Z_RET, Z_R0); // Calculate rtn value for success.
a->z_la(Z_RET, 1, Z_RET);
a->z_brnz(errRTN); // Instr failed if non-zero CC.
a->z_ltgr(Z_R1, Z_R1); // Instr failed if first DW == 0.
a->z_bcr(Assembler::bcondNotZero, Z_R14); // Successful return.
a->bind(errRTN);
a->z_lngr(Z_RET, Z_RET);
a->z_ltgr(Z_R1, Z_R1);
a->z_bcr(Assembler::bcondNotZero, Z_R14); // Return "buffer too small".
a->z_xgr(Z_RET, Z_RET);
a->z_br(Z_R14); // Return "operation aborted".
a->bind(getFEATURES);
a->z_cghi(Z_R0, -1); // -1: Extract CPU attributes, currently: cache layout only.
a->z_bre(getCPUFEATURES);
a->z_cghi(Z_R0, -2); // -2: Extract detailed crypto capabilities (cipher instructions).
a->z_bre(getCIPHERFEATURES);
a->z_cghi(Z_R0, -3); // -3: Extract detailed crypto capabilities (msg digest instructions).
a->z_bre(getMSGDIGESTFEATURES);
a->z_cghi(Z_R0, -4); // -4: Verify vector instruction availability (OS support).
a->z_bre(getVECTORFEATURES);
a->z_xgr(Z_RET, Z_RET); // Not a valid function code.
a->z_br(Z_R14); // Return "operation aborted".
// Try KIMD/KLMD query function to get details about msg digest (secure hash, SHA) instructions.
a->bind(getMSGDIGESTFEATURES);
a->z_lghi(Z_R0,(int)MsgDigest::_Query); // query function code
a->z_lgr(Z_R1,Z_R2); // param block addr, 2*16 bytes min size
a->z_kimd(Z_R2,Z_R2); // Get available KIMD functions (bit pattern in param blk).
a->z_la(Z_R1,16,Z_R1); // next param block addr
a->z_klmd(Z_R2,Z_R2); // Get available KLMD functions (bit pattern in param blk).
a->z_lghi(Z_RET,4);
a->z_br(Z_R14);
// Try KM/KMC query function to get details about crypto instructions.
a->bind(getCIPHERFEATURES);
a->z_lghi(Z_R0,(int)Cipher::_Query); // query function code
a->z_lgr(Z_R1,Z_R2); // param block addr, 2*16 bytes min size (KIMD/KLMD output)
a->z_km(Z_R2,Z_R2); // get available KM functions
a->z_la(Z_R1,16,Z_R1); // next param block addr
a->z_kmc(Z_R2,Z_R2); // get available KMC functions
a->z_lghi(Z_RET,4);
a->z_br(Z_R14);
// Use EXTRACT CPU ATTRIBUTE instruction to get information about cache layout.
a->bind(getCPUFEATURES);
a->z_xgr(Z_R0,Z_R0); // as recommended in instruction documentation
a->z_ecag(Z_RET,Z_R0,0,Z_ARG3); // Extract information as requested by Z_ARG1 contents.
a->z_br(Z_R14);
// Use a vector instruction to verify OS support. Will fail with SIGFPE if OS support is missing.
a->bind(getVECTORFEATURES);
a->z_vtm(Z_V0,Z_V0); // non-destructive vector instruction. Will cause SIGFPE if not supported.
a->z_br(Z_R14);
address code_end = a->pc();
a->flush();
cbuf.insts()->set_end(code_end);
// Print the detection code.
bool printVerbose = Verbose || PrintAssembly || PrintStubCode;
if (printVerbose) {
ttyLocker ttyl;
tty->print_cr("Decoding CPU feature detection stub at " INTPTR_FORMAT " before execution:", p2i(code));
tty->print_cr("Stub length is %ld bytes, codebuffer reserves %d bytes, %ld bytes spare.",
code_end-code, cbuf_size, cbuf_size-(code_end-code));
// Use existing decode function. This enables the [MachCode] format which is needed to DecodeErrorFile.
Disassembler::decode(&cbuf, code, code_end, tty);
}
// Prepare for detection code execution and clear work buffer.
_nfeatures = 0;
_ncipher_features = 0;
unsigned long buffer[buf_len];
for (int i = 0; i < buf_len; i++) {
buffer[i] = 0L;
}
// execute code
// Illegal instructions will be replaced by 0 in signal handler.
// In case of problems, call_getFeatures will return a not-positive result.
long used_len = call_getFeatures(buffer, buf_len, 0);
bool ok;
if (used_len == 1) {
ok = true;
} else if (used_len > 1) {
unsigned int used_lenU = (unsigned int)used_len;
ok = true;
for (unsigned int i = 1; i < used_lenU; i++) {
ok = ok && (buffer[i] == 0L);
}
if (printVerbose && !ok) {
bool compact = false;
tty->print_cr("Note: feature list has %d (i.e. more than one) array elements.", used_lenU);
if (compact) {
tty->print("non-zero feature list elements:");
for (unsigned int i = 0; i < used_lenU; i++) {
tty->print(" [%d]: 0x%16.16lx", i, buffer[i]);
}
tty->cr();
} else {
for (unsigned int i = 0; i < used_lenU; i++) {
tty->print_cr("non-zero feature list[%d]: 0x%16.16lx", i, buffer[i]);
}
}
if (compact) {
tty->print_cr("Active features (compact view):");
for (unsigned int k = 0; k < used_lenU; k++) {
tty->print_cr(" buffer[%d]:", k);
for (unsigned int j = k*sizeof(long); j < (k+1)*sizeof(long); j++) {
bool line = false;
for (unsigned int i = j*8; i < (j+1)*8; i++) {
bool bit = test_feature_bit(buffer, i, used_lenU*sizeof(long)*8);
if (bit) {
if (!line) {
tty->print(" byte[%d]:", j);
line = true;
}
tty->print(" [%3.3d]", i);
}
}
if (line) {
tty->cr();
}
}
}
} else {
tty->print_cr("Active features (full view):");
for (unsigned int k = 0; k < used_lenU; k++) {
tty->print_cr(" buffer[%d]:", k);
for (unsigned int j = k*sizeof(long); j < (k+1)*sizeof(long); j++) {
tty->print(" byte[%d]:", j);
for (unsigned int i = j*8; i < (j+1)*8; i++) {
bool bit = test_feature_bit(buffer, i, used_lenU*sizeof(long)*8);
if (bit) {
tty->print(" [%3.3d]", i);
} else {
tty->print(" ");
}
}
tty->cr();
}
}
}
}
ok = true;
} else { // No features retrieved if we reach here. Buffer too short or instr not available.
if (used_len < 0) {
ok = false;
if (printVerbose) {
tty->print_cr("feature list buffer[%d] too short, required: buffer[%ld]", buf_len, -used_len);
}
} else {
if (printVerbose) {
tty->print_cr("feature list could not be retrieved. Running on z900 or z990? Trying to find out...");
}
used_len = call_getFeatures(buffer, 0, 0); // Must provide at least two DW buffer elements!!!!
ok = used_len > 0;
if (ok) {
if (buffer[1]*10 < buffer[0]) {
set_features_z900();
} else {
set_features_z990();
}
if (printVerbose) {
tty->print_cr("Note: high-speed long displacement test used %ld iterations.", used_len);
tty->print_cr(" Positive displacement loads took %8.8lu microseconds.", buffer[1]);
tty->print_cr(" Negative displacement loads took %8.8lu microseconds.", buffer[0]);
if (has_long_displacement_fast()) {
tty->print_cr(" assuming high-speed long displacement IS available.");
} else {
tty->print_cr(" assuming high-speed long displacement is NOT available.");
}
}
} else {
if (printVerbose) {
tty->print_cr("Note: high-speed long displacement test was not successful.");
tty->print_cr(" assuming long displacement is NOT available.");
}
}
return; // Do not copy buffer to _features, no test for cipher features.
}
}
if (ok) {
// Fill features buffer.
// Clear work buffer.
for (int i = 0; i < buf_len; i++) {
_features[i] = buffer[i];
_cipher_features[i] = 0;
_msgdigest_features[i] = 0;
buffer[i] = 0L;
}
_nfeatures = used_len;
} else {
for (int i = 0; i < buf_len; i++) {
_features[i] = 0;
_cipher_features[i] = 0;
_msgdigest_features[i] = 0;
buffer[i] = 0L;
}
_nfeatures = 0;
}
if (has_VectorFacility()) {
// Verify that feature can actually be used. OS support required.
call_getFeatures(buffer, -4, 0);
if (printVerbose) {
ttyLocker ttyl;
if (has_VectorFacility()) {
tty->print_cr(" Vector Facility has been verified to be supported by OS");
} else {
tty->print_cr(" Vector Facility has been disabled - not supported by OS");
}
}
}
// Extract Crypto Facility details.
if (has_Crypto()) {
// Get cipher features.
used_len = call_getFeatures(buffer, -2, 0);
for (int i = 0; i < buf_len; i++) {
_cipher_features[i] = buffer[i];
}
_ncipher_features = used_len;
// Get msg digest features.
used_len = call_getFeatures(buffer, -3, 0);
for (int i = 0; i < buf_len; i++) {
_msgdigest_features[i] = buffer[i];
}
_nmsgdigest_features = used_len;
}
static int levelProperties[_max_cache_levels]; // All property indications per level.
static int levelScope[_max_cache_levels]; // private/shared
static const char* levelScopeText[4] = {"No cache ",
"CPU private",
"shared ",
"reserved "};
static int levelType[_max_cache_levels]; // D/I/mixed
static const char* levelTypeText[4] = {"separate D and I caches",
"I cache only ",
"D-cache only ",
"combined D/I cache "};
static unsigned int levelReserved[_max_cache_levels]; // reserved property bits
static unsigned int levelLineSize[_max_cache_levels];
static unsigned int levelTotalSize[_max_cache_levels];
static unsigned int levelAssociativity[_max_cache_levels];
// Extract Cache Layout details.
if (has_ExtractCPUAttributes() && printVerbose) { // For information only, as of now.
bool lineSize_mismatch;
bool print_something;
long functionResult;
unsigned int attributeIndication = 0; // 0..15
unsigned int levelIndication = 0; // 0..8
unsigned int typeIndication = 0; // 0..1 (D-Cache, I-Cache)
int functionCode = calculate_ECAG_functionCode(attributeIndication, levelIndication, typeIndication);
// Get cache topology.
functionResult = call_getFeatures(buffer, -1, functionCode);
for (unsigned int i = 0; i < _max_cache_levels; i++) {
if (functionResult > 0) {
int shiftVal = 8*(_max_cache_levels-(i+1));
levelProperties[i] = (functionResult & (0xffUL<<shiftVal)) >> shiftVal;
levelReserved[i] = (levelProperties[i] & 0xf0) >> 4;
levelScope[i] = (levelProperties[i] & 0x0c) >> 2;
levelType[i] = (levelProperties[i] & 0x03);
} else {
levelProperties[i] = 0;
levelReserved[i] = 0;
levelScope[i] = 0;
levelType[i] = 0;
}
levelLineSize[i] = 0;
levelTotalSize[i] = 0;
levelAssociativity[i] = 0;
}
tty->cr();
tty->print_cr("------------------------------------");
tty->print_cr("--- Cache Topology Information ---");
tty->print_cr("------------------------------------");
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
tty->print_cr(" Cache Level %d: <scope> %s | <type> %s",
i+1, levelScopeText[levelScope[i]], levelTypeText[levelType[i]]);
}
// Get D-cache details per level.
_Dcache_lineSize = 0;
lineSize_mismatch = false;
print_something = false;
typeIndication = 0; // 0..1 (D-Cache, I-Cache)
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
if ((levelType[i] == 0) || (levelType[i] == 2)) {
print_something = true;
// Get cache line size of level i.
attributeIndication = 1;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelLineSize[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
// Get cache total size of level i.
attributeIndication = 2;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelTotalSize[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
// Get cache associativity of level i.
attributeIndication = 3;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelAssociativity[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
_Dcache_lineSize = _Dcache_lineSize == 0 ? levelLineSize[i] : _Dcache_lineSize;
lineSize_mismatch = lineSize_mismatch || (_Dcache_lineSize != levelLineSize[i]);
} else {
levelLineSize[i] = 0;
}
}
if (print_something) {
tty->cr();
tty->print_cr("------------------------------------");
tty->print_cr("--- D-Cache Detail Information ---");
tty->print_cr("------------------------------------");
if (lineSize_mismatch) {
tty->print_cr("WARNING: D-Cache line size mismatch!");
}
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
if (levelLineSize[i] > 0) {
tty->print_cr(" D-Cache Level %d: line size = %4d, total size = %6dKB, associativity = %2d",
i+1, levelLineSize[i], levelTotalSize[i]/(int)K, levelAssociativity[i]);
}
}
}
// Get I-cache details per level.
_Icache_lineSize = 0;
lineSize_mismatch = false;
print_something = false;
typeIndication = 1; // 0..1 (D-Cache, I-Cache)
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
if ((levelType[i] == 0) || (levelType[i] == 1)) {
print_something = true;
// Get cache line size of level i.
attributeIndication = 1;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelLineSize[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
// Get cache total size of level i.
attributeIndication = 2;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelTotalSize[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
// Get cache associativity of level i.
attributeIndication = 3;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelAssociativity[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
_Icache_lineSize = _Icache_lineSize == 0 ? levelLineSize[i] : _Icache_lineSize;
lineSize_mismatch = lineSize_mismatch || (_Icache_lineSize != levelLineSize[i]);
} else {
levelLineSize[i] = 0;
}
}
if (print_something) {
tty->cr();
tty->print_cr("------------------------------------");
tty->print_cr("--- I-Cache Detail Information ---");
tty->print_cr("------------------------------------");
if (lineSize_mismatch) {
tty->print_cr("WARNING: I-Cache line size mismatch!");
}
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
if (levelLineSize[i] > 0) {
tty->print_cr(" I-Cache Level %d: line size = %4d, total size = %6dKB, associativity = %2d",
i+1, levelLineSize[i], levelTotalSize[i]/(int)K, levelAssociativity[i]);
}
}
}
// Get D/I-cache details per level.
lineSize_mismatch = false;
print_something = false;
typeIndication = 0; // 0..1 (D-Cache, I-Cache)
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
if (levelType[i] == 3) {
print_something = true;
// Get cache line size of level i.
attributeIndication = 1;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelLineSize[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
// Get cache total size of level i.
attributeIndication = 2;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelTotalSize[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
// Get cache associativity of level i.
attributeIndication = 3;
functionCode = calculate_ECAG_functionCode(attributeIndication, i, typeIndication);
levelAssociativity[i] = (unsigned int)call_getFeatures(buffer, -1, functionCode);
_Dcache_lineSize = _Dcache_lineSize == 0 ? levelLineSize[i] : _Dcache_lineSize;
_Icache_lineSize = _Icache_lineSize == 0 ? levelLineSize[i] : _Icache_lineSize;
lineSize_mismatch = lineSize_mismatch || (_Dcache_lineSize != levelLineSize[i])
|| (_Icache_lineSize != levelLineSize[i]);
} else {
levelLineSize[i] = 0;
}
}
if (print_something) {
tty->cr();
tty->print_cr("--------------------------------------");
tty->print_cr("--- D/I-Cache Detail Information ---");
tty->print_cr("--------------------------------------");
if (lineSize_mismatch) {
tty->print_cr("WARNING: D/I-Cache line size mismatch!");
}
for (unsigned int i = 0; (i < _max_cache_levels) && (levelProperties[i] != 0); i++) {
if (levelLineSize[i] > 0) {
tty->print_cr(" D/I-Cache Level %d: line size = %4d, total size = %6dKB, associativity = %2d",
i+1, levelLineSize[i], levelTotalSize[i]/(int)K, levelAssociativity[i]);
}
}
}
tty->cr();
}
return;
}
unsigned long VM_Version::z_SIGILL() {
unsigned long ZeroBuffer = 0;
unsigned long work;
asm(
" LA %[work],%[buffer] \n\t" // Load address of buffer.
" LARL 14,+6 \n\t" // Load address of faulting instruction.
" BCR 15,%[work] \n\t" // Branch into buffer, execute whatever is in there.
: [buffer] "+Q" (ZeroBuffer) /* outputs */
, [work] "=&a" (work) /* outputs */
: /* inputs */
: "cc" /* clobbered */
);
return ZeroBuffer;
}
unsigned long VM_Version::z_SIGSEGV() {
unsigned long ZeroBuffer = 0;
unsigned long work;
asm(
" LG %[work],%[buffer] \n\t" // Load zero address.
" STG %[work],0(,%[work])\n\t" // Store to address zero.
: [buffer] "+Q" (ZeroBuffer) /* outputs */
, [work] "=&a" (work) /* outputs */
: /* inputs */
: "cc" /* clobbered */
);
return ZeroBuffer;
}