8048248: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/g1RemSetSummary.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "runtime/thread.inline.hpp"
class GetRSThreadVTimeClosure : public ThreadClosure {
private:
G1RemSetSummary* _summary;
uint _counter;
public:
GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
assert(_summary != NULL, "just checking");
}
virtual void do_thread(Thread* t) {
ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t;
_summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
_counter++;
}
};
void G1RemSetSummary::update() {
_num_refined_cards = remset()->conc_refine_cards();
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
_num_processed_buf_mutator = dcqs.processed_buffers_mut();
_num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
_num_coarsenings = HeapRegionRemSet::n_coarsenings();
ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
if (_rs_threads_vtimes != NULL) {
GetRSThreadVTimeClosure p(this);
cg1r->worker_threads_do(&p);
}
set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum());
}
void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
assert(_rs_threads_vtimes != NULL, "just checking");
assert(thread < _num_vtimes, "just checking");
_rs_threads_vtimes[thread] = value;
}
double G1RemSetSummary::rs_thread_vtime(uint thread) const {
assert(_rs_threads_vtimes != NULL, "just checking");
assert(thread < _num_vtimes, "just checking");
return _rs_threads_vtimes[thread];
}
void G1RemSetSummary::initialize(G1RemSet* remset) {
assert(_rs_threads_vtimes == NULL, "just checking");
assert(remset != NULL, "just checking");
_remset = remset;
_num_vtimes = ConcurrentG1Refine::thread_num();
_rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC);
memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
update();
}
void G1RemSetSummary::set(G1RemSetSummary* other) {
assert(other != NULL, "just checking");
assert(remset() == other->remset(), "just checking");
assert(_num_vtimes == other->_num_vtimes, "just checking");
_num_refined_cards = other->num_concurrent_refined_cards();
_num_processed_buf_mutator = other->num_processed_buf_mutator();
_num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
_num_coarsenings = other->_num_coarsenings;
memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
set_sampling_thread_vtime(other->sampling_thread_vtime());
}
void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
assert(other != NULL, "just checking");
assert(remset() == other->remset(), "just checking");
assert(_num_vtimes == other->_num_vtimes, "just checking");
_num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards;
_num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
_num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
_num_coarsenings = other->num_coarsenings() - _num_coarsenings;
for (uint i = 0; i < _num_vtimes; i++) {
set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
}
_sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
}
static double percent_of(size_t numerator, size_t denominator) {
if (denominator != 0) {
return (double)numerator / denominator * 100.0f;
} else {
return 0.0f;
}
}
static size_t round_to_K(size_t value) {
return value / K;
}
class RegionTypeCounter VALUE_OBJ_CLASS_SPEC {
private:
const char* _name;
size_t _rs_mem_size;
size_t _cards_occupied;
size_t _amount;
size_t _code_root_mem_size;
size_t _code_root_elems;
double rs_mem_size_percent_of(size_t total) {
return percent_of(_rs_mem_size, total);
}
double cards_occupied_percent_of(size_t total) {
return percent_of(_cards_occupied, total);
}
double code_root_mem_size_percent_of(size_t total) {
return percent_of(_code_root_mem_size, total);
}
double code_root_elems_percent_of(size_t total) {
return percent_of(_code_root_elems, total);
}
size_t amount() const { return _amount; }
public:
RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0),
_amount(0), _code_root_mem_size(0), _code_root_elems(0) { }
void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size,
size_t code_root_elems) {
_rs_mem_size += rs_mem_size;
_cards_occupied += cards_occupied;
_code_root_mem_size += code_root_mem_size;
_code_root_elems += code_root_elems;
_amount++;
}
size_t rs_mem_size() const { return _rs_mem_size; }
size_t cards_occupied() const { return _cards_occupied; }
size_t code_root_mem_size() const { return _code_root_mem_size; }
size_t code_root_elems() const { return _code_root_elems; }
void print_rs_mem_info_on(outputStream * out, size_t total) {
out->print_cr(" "SIZE_FORMAT_W(8)"K (%5.1f%%) by "SIZE_FORMAT" %s regions",
round_to_K(rs_mem_size()), rs_mem_size_percent_of(total), amount(), _name);
}
void print_cards_occupied_info_on(outputStream * out, size_t total) {
out->print_cr(" "SIZE_FORMAT_W(8)" (%5.1f%%) entries by "SIZE_FORMAT" %s regions",
cards_occupied(), cards_occupied_percent_of(total), amount(), _name);
}
void print_code_root_mem_info_on(outputStream * out, size_t total) {
out->print_cr(" "SIZE_FORMAT_W(8)"K (%5.1f%%) by "SIZE_FORMAT" %s regions",
round_to_K(code_root_mem_size()), code_root_mem_size_percent_of(total), amount(), _name);
}
void print_code_root_elems_info_on(outputStream * out, size_t total) {
out->print_cr(" "SIZE_FORMAT_W(8)" (%5.1f%%) elements by "SIZE_FORMAT" %s regions",
code_root_elems(), code_root_elems_percent_of(total), amount(), _name);
}
};
class HRRSStatsIter: public HeapRegionClosure {
private:
RegionTypeCounter _young;
RegionTypeCounter _humonguous;
RegionTypeCounter _free;
RegionTypeCounter _old;
RegionTypeCounter _all;
size_t _max_rs_mem_sz;
HeapRegion* _max_rs_mem_sz_region;
size_t total_rs_mem_sz() const { return _all.rs_mem_size(); }
size_t total_cards_occupied() const { return _all.cards_occupied(); }
size_t max_rs_mem_sz() const { return _max_rs_mem_sz; }
HeapRegion* max_rs_mem_sz_region() const { return _max_rs_mem_sz_region; }
size_t _max_code_root_mem_sz;
HeapRegion* _max_code_root_mem_sz_region;
size_t total_code_root_mem_sz() const { return _all.code_root_mem_size(); }
size_t total_code_root_elems() const { return _all.code_root_elems(); }
size_t max_code_root_mem_sz() const { return _max_code_root_mem_sz; }
HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; }
public:
HRRSStatsIter() : _all("All"), _young("Young"), _humonguous("Humonguous"),
_free("Free"), _old("Old"), _max_code_root_mem_sz_region(NULL), _max_rs_mem_sz_region(NULL),
_max_rs_mem_sz(0), _max_code_root_mem_sz(0)
{}
bool doHeapRegion(HeapRegion* r) {
HeapRegionRemSet* hrrs = r->rem_set();
// HeapRegionRemSet::mem_size() includes the
// size of the strong code roots
size_t rs_mem_sz = hrrs->mem_size();
if (rs_mem_sz > _max_rs_mem_sz) {
_max_rs_mem_sz = rs_mem_sz;
_max_rs_mem_sz_region = r;
}
size_t occupied_cards = hrrs->occupied();
size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
if (code_root_mem_sz > max_code_root_mem_sz()) {
_max_code_root_mem_sz_region = r;
}
size_t code_root_elems = hrrs->strong_code_roots_list_length();
RegionTypeCounter* current = NULL;
if (r->is_young()) {
current = &_young;
} else if (r->isHumongous()) {
current = &_humonguous;
} else if (r->is_empty()) {
current = &_free;
} else {
current = &_old;
}
current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
_all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
return false;
}
void print_summary_on(outputStream* out) {
RegionTypeCounter* counters[] = { &_young, &_humonguous, &_free, &_old, NULL };
out->print_cr("\n Current rem set statistics");
out->print_cr(" Total per region rem sets sizes = "SIZE_FORMAT"K."
" Max = "SIZE_FORMAT"K.",
round_to_K(total_rs_mem_sz()), round_to_K(max_rs_mem_sz()));
for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
(*current)->print_rs_mem_info_on(out, total_rs_mem_sz());
}
out->print_cr(" Static structures = "SIZE_FORMAT"K,"
" free_lists = "SIZE_FORMAT"K.",
round_to_K(HeapRegionRemSet::static_mem_size()),
round_to_K(HeapRegionRemSet::fl_mem_size()));
out->print_cr(" "SIZE_FORMAT" occupied cards represented.",
total_cards_occupied());
for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
(*current)->print_cards_occupied_info_on(out, total_cards_occupied());
}
// Largest sized rem set region statistics
HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set();
out->print_cr(" Region with largest rem set = "HR_FORMAT", "
"size = "SIZE_FORMAT "K, occupied = "SIZE_FORMAT"K.",
HR_FORMAT_PARAMS(max_rs_mem_sz_region()),
round_to_K(rem_set->mem_size()),
round_to_K(rem_set->occupied()));
// Strong code root statistics
HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set();
out->print_cr(" Total heap region code root sets sizes = "SIZE_FORMAT"K."
" Max = "SIZE_FORMAT"K.",
round_to_K(total_code_root_mem_sz()),
round_to_K(max_code_root_rem_set->strong_code_roots_mem_size()));
for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
(*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz());
}
out->print_cr(" "SIZE_FORMAT" code roots represented.",
total_code_root_elems());
for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
(*current)->print_code_root_elems_info_on(out, total_code_root_elems());
}
out->print_cr(" Region with largest amount of code roots = "HR_FORMAT", "
"size = "SIZE_FORMAT "K, num_elems = "SIZE_FORMAT".",
HR_FORMAT_PARAMS(max_code_root_mem_sz_region()),
round_to_K(max_code_root_rem_set->strong_code_roots_mem_size()),
round_to_K(max_code_root_rem_set->strong_code_roots_list_length()));
}
};
void G1RemSetSummary::print_on(outputStream* out) {
out->print_cr("\n Recent concurrent refinement statistics");
out->print_cr(" Processed "SIZE_FORMAT" cards",
num_concurrent_refined_cards());
out->print_cr(" Of "SIZE_FORMAT" completed buffers:", num_processed_buf_total());
out->print_cr(" "SIZE_FORMAT_W(8)" (%5.1f%%) by concurrent RS threads.",
num_processed_buf_total(),
percent_of(num_processed_buf_rs_threads(), num_processed_buf_total()));
out->print_cr(" "SIZE_FORMAT_W(8)" (%5.1f%%) by mutator threads.",
num_processed_buf_mutator(),
percent_of(num_processed_buf_mutator(), num_processed_buf_total()));
out->print_cr(" Did "SIZE_FORMAT" coarsenings.", num_coarsenings());
out->print_cr(" Concurrent RS threads times (s)");
out->print(" ");
for (uint i = 0; i < _num_vtimes; i++) {
out->print(" %5.2f", rs_thread_vtime(i));
}
out->cr();
out->print_cr(" Concurrent sampling threads times (s)");
out->print_cr(" %5.2f", sampling_thread_vtime());
HRRSStatsIter blk;
G1CollectedHeap::heap()->heap_region_iterate(&blk);
blk.print_summary_on(out);
}