/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_SHARED_OOPSTORAGE_HPP
#define SHARE_GC_SHARED_OOPSTORAGE_HPP
#include "memory/allocation.hpp"
#include "metaprogramming/conditional.hpp"
#include "metaprogramming/isConst.hpp"
#include "oops/oop.hpp"
#include "utilities/count_trailing_zeros.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
class Mutex;
class outputStream;
// OopStorage supports management of off-heap references to objects allocated
// in the Java heap. An OopStorage object provides a set of Java object
// references (oop values), which clients refer to via oop* handles to the
// associated OopStorage entries. Clients allocate entries to create a
// (possibly weak) reference to a Java object, use that reference, and release
// the reference when no longer needed.
//
// The garbage collector must know about all OopStorage objects and their
// reference strength. OopStorage provides the garbage collector with support
// for iteration over all the allocated entries.
//
// There are several categories of interaction with an OopStorage object.
//
// (1) allocation and release of entries, by the mutator or the VM.
// (2) iteration by the garbage collector, possibly concurrent with mutator.
// (3) iteration by other, non-GC, tools (only at safepoints).
// (4) cleanup of unused internal storage, possibly concurrent with mutator.
//
// A goal of OopStorage is to make these interactions thread-safe, while
// minimizing potential lock contention issues within and between these
// categories. In particular, support for concurrent iteration by the garbage
// collector, under certain restrictions, is required. Further, it must not
// block nor be blocked by other operations for long periods.
//
// Internally, OopStorage is a set of Block objects, from which entries are
// allocated and released. A block contains an oop[] and a bitmask indicating
// which entries are in use (have been allocated and not yet released). New
// blocks are constructed and added to the storage object when an entry
// allocation request is made and there are no blocks with unused entries.
// Blocks may be removed and deleted when empty.
//
// There are two important (and somewhat intertwined) protocols governing
// concurrent access to a storage object. These are the Concurrent Iteration
// Protocol and the Allocation Protocol. See the ParState class for a
// discussion of concurrent iteration and the management of thread
// interactions for this protocol. Similarly, see the allocate() function for
// a discussion of allocation.
class OopStorage : public CHeapObj<mtGC> {
public:
OopStorage(const char* name, Mutex* allocate_mutex, Mutex* active_mutex);
~OopStorage();
// These count and usage accessors are racy unless at a safepoint.
// The number of allocated and not yet released entries.
size_t allocation_count() const;
// The number of blocks of entries. Useful for sizing parallel iteration.
size_t block_count() const;
// The number of blocks with no allocated entries. Useful for sizing
// parallel iteration and scheduling block deletion.
size_t empty_block_count() const;
// Total number of blocks * memory allocation per block, plus
// bookkeeping overhead, including this storage object.
size_t total_memory_usage() const;
enum EntryStatus {
INVALID_ENTRY,
UNALLOCATED_ENTRY,
ALLOCATED_ENTRY
};
// Locks _allocate_mutex.
EntryStatus allocation_status(const oop* ptr) const;
// Allocates and returns a new entry. Returns NULL if memory allocation
// failed. Locks _allocate_mutex.
// postcondition: *result == NULL.
oop* allocate();
// Deallocates ptr, after setting its value to NULL. Locks _allocate_mutex.
// precondition: ptr is a valid allocated entry.
// precondition: *ptr == NULL.
void release(const oop* ptr);
// Releases all the ptrs. Possibly faster than individual calls to
// release(oop*). Best if ptrs is sorted by address. Locks
// _allocate_mutex.
// precondition: All elements of ptrs are valid allocated entries.
// precondition: *ptrs[i] == NULL, for i in [0,size).
void release(const oop* const* ptrs, size_t size);
// Applies f to each allocated entry's location. f must be a function or
// function object. Assume p is either a const oop* or an oop*, depending
// on whether the associated storage is const or non-const, respectively.
// Then f(p) must be a valid expression. The result of invoking f(p) must
// be implicitly convertible to bool. Iteration terminates and returns
// false if any invocation of f returns false. Otherwise, the result of
// iteration is true.
// precondition: at safepoint.
template<typename F> bool iterate_safepoint(F f);
template<typename F> bool iterate_safepoint(F f) const;
// oops_do and weak_oops_do are wrappers around iterate_safepoint, providing
// an adaptation layer allowing the use of existing is-alive closures and
// OopClosures. Assume p is either const oop* or oop*, depending on whether
// the associated storage is const or non-const, respectively. Then
//
// - closure->do_oop(p) must be a valid expression whose value is ignored.
//
// - is_alive->do_object_b(*p) must be a valid expression whose value is
// convertible to bool.
//
// For weak_oops_do, if *p == NULL then neither is_alive nor closure will be
// invoked for p. If is_alive->do_object_b(*p) is false, then closure will
// not be invoked on p, and *p will be set to NULL.
template<typename Closure> void oops_do(Closure* closure);
template<typename Closure> void oops_do(Closure* closure) const;
template<typename Closure> void weak_oops_do(Closure* closure);
template<typename IsAliveClosure, typename Closure>
void weak_oops_do(IsAliveClosure* is_alive, Closure* closure);
#if INCLUDE_ALL_GCS
// Parallel iteration is for the exclusive use of the GC.
// Other clients must use serial iteration.
template<bool concurrent, bool is_const> class ParState;
#endif // INCLUDE_ALL_GCS
// Block cleanup functions are for the exclusive use of the GC.
// Both stop deleting if there is an in-progress concurrent iteration.
// Concurrent deletion locks both the allocate_mutex and the active_mutex.
void delete_empty_blocks_safepoint(size_t retain = 1);
void delete_empty_blocks_concurrent(size_t retain = 1);
// Debugging and logging support.
const char* name() const;
void print_on(outputStream* st) const PRODUCT_RETURN;
// Provides access to storage internals, for unit testing.
// Declare, but not define, the public class OopStorage::TestAccess.
// That class is defined as part of the unit-test. It "exports" the needed
// private types by providing public typedefs for them.
class TestAccess;
// xlC on AIX can't compile test_oopStorage.cpp with following private
// classes. C++03 introduced access for nested classes with DR45, but xlC
// version 12 rejects it.
NOT_AIX( private: )
class Block;
class BlockList;
class BlockEntry VALUE_OBJ_CLASS_SPEC {
friend class BlockList;
// Members are mutable, and we deal exclusively with pointers to
// const, to make const blocks easier to use; a block being const
// doesn't prevent modifying its list state.
mutable const Block* _prev;
mutable const Block* _next;
// Noncopyable.
BlockEntry(const BlockEntry&);
BlockEntry& operator=(const BlockEntry&);
public:
BlockEntry();
~BlockEntry();
};
class BlockList VALUE_OBJ_CLASS_SPEC {
const Block* _head;
const Block* _tail;
const BlockEntry& (*_get_entry)(const Block& block);
// Noncopyable.
BlockList(const BlockList&);
BlockList& operator=(const BlockList&);
public:
BlockList(const BlockEntry& (*get_entry)(const Block& block));
~BlockList();
Block* head();
const Block* chead() const;
const Block* ctail() const;
Block* prev(Block& block);
Block* next(Block& block);
const Block* prev(const Block& block) const;
const Block* next(const Block& block) const;
void push_front(const Block& block);
void push_back(const Block& block);
void unlink(const Block& block);
};
class Block /* No base class, to avoid messing up alignment requirements */ {
// _data must be the first non-static data member, for alignment.
oop _data[BitsPerWord];
static const unsigned _data_pos = 0; // Position of _data.
volatile uintx _allocated_bitmask; // One bit per _data element.
const OopStorage* _owner;
void* _memory; // Unaligned storage containing block.
BlockEntry _active_entry;
BlockEntry _allocate_entry;
Block(const OopStorage* owner, void* memory);
~Block();
void check_index(unsigned index) const;
unsigned get_index(const oop* ptr) const;
template<typename F, typename BlockPtr>
static bool iterate_impl(F f, BlockPtr b);
// Noncopyable.
Block(const Block&);
Block& operator=(const Block&);
public:
static const BlockEntry& get_active_entry(const Block& block);
static const BlockEntry& get_allocate_entry(const Block& block);
static size_t allocation_size();
static size_t allocation_alignment_shift();
oop* get_pointer(unsigned index);
const oop* get_pointer(unsigned index) const;
uintx bitmask_for_index(unsigned index) const;
uintx bitmask_for_entry(const oop* ptr) const;
// Allocation bitmask accessors are racy.
bool is_full() const;
bool is_empty() const;
uintx allocated_bitmask() const;
uintx cmpxchg_allocated_bitmask(uintx new_value, uintx compare_value);
bool contains(const oop* ptr) const;
// Returns NULL if ptr is not in a block or not allocated in that block.
static Block* block_for_ptr(const OopStorage* owner, const oop* ptr);
oop* allocate();
static Block* new_block(const OopStorage* owner);
static void delete_block(const Block& block);
template<typename F> bool iterate(F f);
template<typename F> bool iterate(F f) const;
}; // class Block
private:
const char* _name;
BlockList _active_list;
BlockList _allocate_list;
Block* volatile _active_head;
Mutex* _allocate_mutex;
Mutex* _active_mutex;
// Counts are volatile for racy unlocked accesses.
volatile size_t _allocation_count;
volatile size_t _block_count;
volatile size_t _empty_block_count;
// mutable because this gets set even for const iteration.
mutable bool _concurrent_iteration_active;
Block* find_block_or_null(const oop* ptr) const;
bool is_valid_block_locked_or_safepoint(const Block* block) const;
EntryStatus allocation_status_validating_block(const Block* block, const oop* ptr) const;
void check_release(const Block* block, const oop* ptr) const NOT_DEBUG_RETURN;
void release_from_block(Block& block, uintx release_bitmask);
void delete_empty_block(const Block& block);
static void assert_at_safepoint() NOT_DEBUG_RETURN;
template<typename F, typename Storage>
static bool iterate_impl(F f, Storage* storage);
#if INCLUDE_ALL_GCS
// Implementation support for parallel iteration
class BasicParState;
#endif // INCLUDE_ALL_GCS
// Wrapper for OopClosure-style function, so it can be used with
// iterate. Assume p is of type oop*. Then cl->do_oop(p) must be a
// valid expression whose value may be ignored.
template<typename Closure> class OopFn;
template<typename Closure> static OopFn<Closure> oop_fn(Closure* cl);
// Wrapper for BoolObjectClosure + iteration handler pair, so they
// can be used with iterate.
template<typename IsAlive, typename F> class IfAliveFn;
template<typename IsAlive, typename F>
static IfAliveFn<IsAlive, F> if_alive_fn(IsAlive* is_alive, F f);
// Wrapper for iteration handler, automatically skipping NULL entries.
template<typename F> class SkipNullFn;
template<typename F> static SkipNullFn<F> skip_null_fn(F f);
// Wrapper for iteration handler; ignore handler result and return true.
template<typename F> class AlwaysTrueFn;
};
inline OopStorage::Block* OopStorage::BlockList::head() {
return const_cast<Block*>(_head);
}
inline const OopStorage::Block* OopStorage::BlockList::chead() const {
return _head;
}
inline const OopStorage::Block* OopStorage::BlockList::ctail() const {
return _tail;
}
inline OopStorage::Block* OopStorage::BlockList::prev(Block& block) {
return const_cast<Block*>(_get_entry(block)._prev);
}
inline OopStorage::Block* OopStorage::BlockList::next(Block& block) {
return const_cast<Block*>(_get_entry(block)._next);
}
inline const OopStorage::Block* OopStorage::BlockList::prev(const Block& block) const {
return _get_entry(block)._prev;
}
inline const OopStorage::Block* OopStorage::BlockList::next(const Block& block) const {
return _get_entry(block)._next;
}
template<typename Closure>
class OopStorage::OopFn VALUE_OBJ_CLASS_SPEC {
public:
explicit OopFn(Closure* cl) : _cl(cl) {}
template<typename OopPtr> // [const] oop*
bool operator()(OopPtr ptr) const {
_cl->do_oop(ptr);
return true;
}
private:
Closure* _cl;
};
template<typename Closure>
inline OopStorage::OopFn<Closure> OopStorage::oop_fn(Closure* cl) {
return OopFn<Closure>(cl);
}
template<typename IsAlive, typename F>
class OopStorage::IfAliveFn VALUE_OBJ_CLASS_SPEC {
public:
IfAliveFn(IsAlive* is_alive, F f) : _is_alive(is_alive), _f(f) {}
bool operator()(oop* ptr) const {
bool result = true;
oop v = *ptr;
if (v != NULL) {
if (_is_alive->do_object_b(v)) {
result = _f(ptr);
} else {
*ptr = NULL; // Clear dead value.
}
}
return result;
}
private:
IsAlive* _is_alive;
F _f;
};
template<typename IsAlive, typename F>
inline OopStorage::IfAliveFn<IsAlive, F> OopStorage::if_alive_fn(IsAlive* is_alive, F f) {
return IfAliveFn<IsAlive, F>(is_alive, f);
}
template<typename F>
class OopStorage::SkipNullFn VALUE_OBJ_CLASS_SPEC {
public:
SkipNullFn(F f) : _f(f) {}
template<typename OopPtr> // [const] oop*
bool operator()(OopPtr ptr) const {
return (*ptr != NULL) ? _f(ptr) : true;
}
private:
F _f;
};
template<typename F>
inline OopStorage::SkipNullFn<F> OopStorage::skip_null_fn(F f) {
return SkipNullFn<F>(f);
}
template<typename F>
class OopStorage::AlwaysTrueFn VALUE_OBJ_CLASS_SPEC {
F _f;
public:
AlwaysTrueFn(F f) : _f(f) {}
template<typename OopPtr> // [const] oop*
bool operator()(OopPtr ptr) const { _f(ptr); return true; }
};
// Inline Block accesses for use in iteration inner loop.
inline void OopStorage::Block::check_index(unsigned index) const {
assert(index < ARRAY_SIZE(_data), "Index out of bounds: %u", index);
}
inline oop* OopStorage::Block::get_pointer(unsigned index) {
check_index(index);
return &_data[index];
}
inline const oop* OopStorage::Block::get_pointer(unsigned index) const {
check_index(index);
return &_data[index];
}
inline uintx OopStorage::Block::allocated_bitmask() const {
return _allocated_bitmask;
}
inline uintx OopStorage::Block::bitmask_for_index(unsigned index) const {
check_index(index);
return uintx(1) << index;
}
// Provide const or non-const iteration, depending on whether BlockPtr
// is const Block* or Block*, respectively.
template<typename F, typename BlockPtr> // BlockPtr := [const] Block*
inline bool OopStorage::Block::iterate_impl(F f, BlockPtr block) {
uintx bitmask = block->allocated_bitmask();
while (bitmask != 0) {
unsigned index = count_trailing_zeros(bitmask);
bitmask ^= block->bitmask_for_index(index);
if (!f(block->get_pointer(index))) {
return false;
}
}
return true;
}
template<typename F>
inline bool OopStorage::Block::iterate(F f) {
return iterate_impl(f, this);
}
template<typename F>
inline bool OopStorage::Block::iterate(F f) const {
return iterate_impl(f, this);
}
//////////////////////////////////////////////////////////////////////////////
// Support for serial iteration, always at a safepoint.
// Provide const or non-const iteration, depending on whether Storage is
// const OopStorage* or OopStorage*, respectively.
template<typename F, typename Storage> // Storage := [const] OopStorage
inline bool OopStorage::iterate_impl(F f, Storage* storage) {
assert_at_safepoint();
// Propagate const/non-const iteration to the block layer, by using
// const or non-const blocks as corresponding to Storage.
typedef typename Conditional<IsConst<Storage>::value, const Block*, Block*>::type BlockPtr;
for (BlockPtr block = storage->_active_head;
block != NULL;
block = storage->_active_list.next(*block)) {
if (!block->iterate(f)) {
return false;
}
}
return true;
}
template<typename F>
inline bool OopStorage::iterate_safepoint(F f) {
return iterate_impl(f, this);
}
template<typename F>
inline bool OopStorage::iterate_safepoint(F f) const {
return iterate_impl(f, this);
}
template<typename Closure>
inline void OopStorage::oops_do(Closure* cl) {
iterate_safepoint(oop_fn(cl));
}
template<typename Closure>
inline void OopStorage::oops_do(Closure* cl) const {
iterate_safepoint(oop_fn(cl));
}
template<typename Closure>
inline void OopStorage::weak_oops_do(Closure* cl) {
iterate_safepoint(skip_null_fn(oop_fn(cl)));
}
template<typename IsAliveClosure, typename Closure>
inline void OopStorage::weak_oops_do(IsAliveClosure* is_alive, Closure* cl) {
iterate_safepoint(if_alive_fn(is_alive, oop_fn(cl)));
}
#if INCLUDE_ALL_GCS
//////////////////////////////////////////////////////////////////////////////
// Support for parallel and optionally concurrent state iteration.
//
// Parallel iteration is for the exclusive use of the GC. Other iteration
// clients must use serial iteration.
//
// Concurrent Iteration
//
// Iteration involves the _active_list, which contains all of the blocks owned
// by a storage object. This is a doubly-linked list, linked through
// dedicated fields in the blocks.
//
// At most one concurrent ParState can exist at a time for a given storage
// object.
//
// A concurrent ParState sets the associated storage's
// _concurrent_iteration_active flag true when the state is constructed, and
// sets it false when the state is destroyed. These assignments are made with
// _active_mutex locked. Meanwhile, empty block deletion is not done while
// _concurrent_iteration_active is true. The flag check and the dependent
// removal of a block from the _active_list is performed with _active_mutex
// locked. This prevents concurrent iteration and empty block deletion from
// interfering with with each other.
//
// Both allocate() and delete_empty_blocks_concurrent() lock the
// _allocate_mutex while performing their respective list manipulations,
// preventing them from interfering with each other.
//
// When allocate() creates a new block, it is added to the front of the
// _active_list. Then _active_head is set to the new block. When concurrent
// iteration is started (by a parallel worker thread calling the state's
// iterate() function), the current _active_head is used as the initial block
// for the iteration, with iteration proceeding down the list headed by that
// block.
//
// As a result, the list over which concurrent iteration operates is stable.
// However, once the iteration is started, later allocations may add blocks to
// the front of the list that won't be examined by the iteration. And while
// the list is stable, concurrent allocate() and release() operations may
// change the set of allocated entries in a block at any time during the
// iteration.
//
// As a result, a concurrent iteration handler must accept that some
// allocations and releases that occur after the iteration started will not be
// seen by the iteration. Further, some may overlap examination by the
// iteration. To help with this, allocate() and release() have an invariant
// that an entry's value must be NULL when it is not in use.
//
// An in-progress delete_empty_blocks_concurrent() operation can contend with
// the start of a concurrent iteration over the _active_mutex. Since both are
// under GC control, that potential contention can be eliminated by never
// scheduling both operations to run at the same time.
//
// ParState<concurrent, is_const>
// concurrent must be true if iteration is concurrent with the
// mutator, false if iteration is at a safepoint.
//
// is_const must be true if the iteration is over a constant storage
// object, false if the iteration may modify the storage object.
//
// ParState([const] OopStorage* storage)
// Construct an object for managing an iteration over storage. For a
// concurrent ParState, empty block deletion for the associated storage
// is inhibited for the life of the ParState. There can be no more
// than one live concurrent ParState at a time for a given storage object.
//
// template<typename F> void iterate(F f)
// Repeatedly claims a block from the associated storage that has
// not been processed by this iteration (possibly by other threads),
// and applies f to each entry in the claimed block. Assume p is of
// type const oop* or oop*, according to is_const. Then f(p) must be
// a valid expression whose value is ignored. Concurrent uses must
// be prepared for an entry's value to change at any time, due to
// mutator activity.
//
// template<typename Closure> void oops_do(Closure* cl)
// Wrapper around iterate, providing an adaptation layer allowing
// the use of OopClosures and similar objects for iteration. Assume
// p is of type const oop* or oop*, according to is_const. Then
// cl->do_oop(p) must be a valid expression whose value is ignored.
// Concurrent uses must be prepared for the entry's value to change
// at any time, due to mutator activity.
//
// Optional operations, provided only if !concurrent && !is_const.
// These are not provided when is_const, because the storage object
// may be modified by the iteration infrastructure, even if the
// provided closure doesn't modify the storage object. These are not
// provided when concurrent because any pre-filtering behavior by the
// iteration infrastructure is inappropriate for concurrent iteration;
// modifications of the storage by the mutator could result in the
// pre-filtering being applied (successfully or not) to objects that
// are unrelated to what the closure finds in the entry.
//
// template<typename Closure> void weak_oops_do(Closure* cl)
// template<typename IsAliveClosure, typename Closure>
// void weak_oops_do(IsAliveClosure* is_alive, Closure* cl)
// Wrappers around iterate, providing an adaptation layer allowing
// the use of is-alive closures and OopClosures for iteration.
// Assume p is of type oop*. Then
//
// - cl->do_oop(p) must be a valid expression whose value is ignored.
//
// - is_alive->do_object_b(*p) must be a valid expression whose value
// is convertible to bool.
//
// If *p == NULL then neither is_alive nor cl will be invoked for p.
// If is_alive->do_object_b(*p) is false, then cl will not be
// invoked on p.
class OopStorage::BasicParState VALUE_OBJ_CLASS_SPEC {
public:
BasicParState(OopStorage* storage, bool concurrent);
~BasicParState();
template<bool is_const, typename F> void iterate(F f) {
// Wrap f in ATF so we can use Block::iterate.
AlwaysTrueFn<F> atf_f(f);
ensure_iteration_started();
typename Conditional<is_const, const Block*, Block*>::type block;
while ((block = claim_next_block()) != NULL) {
block->iterate(atf_f);
}
}
private:
OopStorage* _storage;
void* volatile _next_block;
bool _concurrent;
// Noncopyable.
BasicParState(const BasicParState&);
BasicParState& operator=(const BasicParState&);
void update_iteration_state(bool value);
void ensure_iteration_started();
Block* claim_next_block();
};
template<bool concurrent, bool is_const>
class OopStorage::ParState VALUE_OBJ_CLASS_SPEC {
BasicParState _basic_state;
public:
ParState(const OopStorage* storage) :
// For simplicity, always recorded as non-const.
_basic_state(const_cast<OopStorage*>(storage), concurrent)
{}
template<typename F>
void iterate(F f) {
_basic_state.template iterate<is_const>(f);
}
template<typename Closure>
void oops_do(Closure* cl) {
this->iterate(oop_fn(cl));
}
};
template<>
class OopStorage::ParState<false, false> VALUE_OBJ_CLASS_SPEC {
BasicParState _basic_state;
public:
ParState(OopStorage* storage) :
_basic_state(storage, false)
{}
template<typename F>
void iterate(F f) {
_basic_state.template iterate<false>(f);
}
template<typename Closure>
void oops_do(Closure* cl) {
this->iterate(oop_fn(cl));
}
template<typename Closure>
void weak_oops_do(Closure* cl) {
this->iterate(skip_null_fn(oop_fn(cl)));
}
template<typename IsAliveClosure, typename Closure>
void weak_oops_do(IsAliveClosure* is_alive, Closure* cl) {
this->iterate(if_alive_fn(is_alive, oop_fn(cl)));
}
};
#endif // INCLUDE_ALL_GCS
#endif // include guard