/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "utilities/macros.hpp"
#ifndef CC_INTERP
#define __ _masm->
// Global Register Names
Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi);
Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi);
// Platform-dependent initialization
void TemplateTable::pd_initialize() {
// No x86 specific initialization
}
// Address Computation: local variables
static inline Address iaddress(int n) {
return Address(rlocals, Interpreter::local_offset_in_bytes(n));
}
static inline Address laddress(int n) {
return iaddress(n + 1);
}
#ifndef _LP64
static inline Address haddress(int n) {
return iaddress(n + 0);
}
#endif
static inline Address faddress(int n) {
return iaddress(n);
}
static inline Address daddress(int n) {
return laddress(n);
}
static inline Address aaddress(int n) {
return iaddress(n);
}
static inline Address iaddress(Register r) {
return Address(rlocals, r, Address::times_ptr);
}
static inline Address laddress(Register r) {
return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
}
#ifndef _LP64
static inline Address haddress(Register r) {
return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
}
#endif
static inline Address faddress(Register r) {
return iaddress(r);
}
static inline Address daddress(Register r) {
return laddress(r);
}
static inline Address aaddress(Register r) {
return iaddress(r);
}
// expression stack
// (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
// data beyond the rsp which is potentially unsafe in an MT environment;
// an interrupt may overwrite that data.)
static inline Address at_rsp () {
return Address(rsp, 0);
}
// At top of Java expression stack which may be different than esp(). It
// isn't for category 1 objects.
static inline Address at_tos () {
return Address(rsp, Interpreter::expr_offset_in_bytes(0));
}
static inline Address at_tos_p1() {
return Address(rsp, Interpreter::expr_offset_in_bytes(1));
}
static inline Address at_tos_p2() {
return Address(rsp, Interpreter::expr_offset_in_bytes(2));
}
// Condition conversion
static Assembler::Condition j_not(TemplateTable::Condition cc) {
switch (cc) {
case TemplateTable::equal : return Assembler::notEqual;
case TemplateTable::not_equal : return Assembler::equal;
case TemplateTable::less : return Assembler::greaterEqual;
case TemplateTable::less_equal : return Assembler::greater;
case TemplateTable::greater : return Assembler::lessEqual;
case TemplateTable::greater_equal: return Assembler::less;
}
ShouldNotReachHere();
return Assembler::zero;
}
// Miscelaneous helper routines
// Store an oop (or NULL) at the address described by obj.
// If val == noreg this means store a NULL
static void do_oop_store(InterpreterMacroAssembler* _masm,
Address obj,
Register val,
BarrierSet::Name barrier,
bool precise) {
assert(val == noreg || val == rax, "parameter is just for looks");
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1SATBCTLogging:
{
// flatten object address if needed
// We do it regardless of precise because we need the registers
if (obj.index() == noreg && obj.disp() == 0) {
if (obj.base() != rdx) {
__ movptr(rdx, obj.base());
}
} else {
__ lea(rdx, obj);
}
Register rtmp = LP64_ONLY(r8) NOT_LP64(rsi);
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
NOT_LP64(__ get_thread(rcx));
NOT_LP64(__ save_bcp());
__ g1_write_barrier_pre(rdx /* obj */,
rbx /* pre_val */,
rthread /* thread */,
rtmp /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
if (val == noreg) {
__ store_heap_oop_null(Address(rdx, 0));
} else {
// G1 barrier needs uncompressed oop for region cross check.
Register new_val = val;
if (UseCompressedOops) {
new_val = rbx;
__ movptr(new_val, val);
}
__ store_heap_oop(Address(rdx, 0), val);
__ g1_write_barrier_post(rdx /* store_adr */,
new_val /* new_val */,
rthread /* thread */,
rtmp /* tmp */,
rbx /* tmp2 */);
}
NOT_LP64( __ restore_bcp());
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
{
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
// flatten object address if needed
if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
__ store_check(obj.base());
} else {
__ lea(rdx, obj);
__ store_check(rdx);
}
}
}
break;
case BarrierSet::ModRef:
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
}
break;
default :
ShouldNotReachHere();
}
}
Address TemplateTable::at_bcp(int offset) {
assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
return Address(rbcp, offset);
}
void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
int byte_no) {
if (!RewriteBytecodes) return;
Label L_patch_done;
switch (bc) {
case Bytecodes::_fast_aputfield:
case Bytecodes::_fast_bputfield:
case Bytecodes::_fast_cputfield:
case Bytecodes::_fast_dputfield:
case Bytecodes::_fast_fputfield:
case Bytecodes::_fast_iputfield:
case Bytecodes::_fast_lputfield:
case Bytecodes::_fast_sputfield:
{
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
__ movl(bc_reg, bc);
__ cmpl(temp_reg, (int) 0);
__ jcc(Assembler::zero, L_patch_done); // don't patch
}
break;
default:
assert(byte_no == -1, "sanity");
// the pair bytecodes have already done the load.
if (load_bc_into_bc_reg) {
__ movl(bc_reg, bc);
}
}
if (JvmtiExport::can_post_breakpoint()) {
Label L_fast_patch;
// if a breakpoint is present we can't rewrite the stream directly
__ movzbl(temp_reg, at_bcp(0));
__ cmpl(temp_reg, Bytecodes::_breakpoint);
__ jcc(Assembler::notEqual, L_fast_patch);
__ get_method(temp_reg);
// Let breakpoint table handling rewrite to quicker bytecode
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
#ifndef ASSERT
__ jmpb(L_patch_done);
#else
__ jmp(L_patch_done);
#endif
__ bind(L_fast_patch);
}
#ifdef ASSERT
Label L_okay;
__ load_unsigned_byte(temp_reg, at_bcp(0));
__ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
__ jcc(Assembler::equal, L_okay);
__ cmpl(temp_reg, bc_reg);
__ jcc(Assembler::equal, L_okay);
__ stop("patching the wrong bytecode");
__ bind(L_okay);
#endif
// patch bytecode
__ movb(at_bcp(0), bc_reg);
__ bind(L_patch_done);
}
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
// nothing to do
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("shouldnotreachhere bytecode");
}
void TemplateTable::aconst_null() {
transition(vtos, atos);
__ xorl(rax, rax);
}
void TemplateTable::iconst(int value) {
transition(vtos, itos);
if (value == 0) {
__ xorl(rax, rax);
} else {
__ movl(rax, value);
}
}
void TemplateTable::lconst(int value) {
transition(vtos, ltos);
if (value == 0) {
__ xorl(rax, rax);
} else {
__ movl(rax, value);
}
#ifndef _LP64
assert(value >= 0, "check this code");
__ xorptr(rdx, rdx);
#endif
}
void TemplateTable::fconst(int value) {
transition(vtos, ftos);
if (UseSSE >= 1) {
static float one = 1.0f, two = 2.0f;
switch (value) {
case 0:
__ xorps(xmm0, xmm0);
break;
case 1:
__ movflt(xmm0, ExternalAddress((address) &one));
break;
case 2:
__ movflt(xmm0, ExternalAddress((address) &two));
break;
default:
ShouldNotReachHere();
break;
}
} else {
#ifdef _LP64
ShouldNotReachHere();
#else
if (value == 0) { __ fldz();
} else if (value == 1) { __ fld1();
} else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
} else { ShouldNotReachHere();
}
#endif // _LP64
}
}
void TemplateTable::dconst(int value) {
transition(vtos, dtos);
if (UseSSE >= 2) {
static double one = 1.0;
switch (value) {
case 0:
__ xorpd(xmm0, xmm0);
break;
case 1:
__ movdbl(xmm0, ExternalAddress((address) &one));
break;
default:
ShouldNotReachHere();
break;
}
} else {
#ifdef _LP64
ShouldNotReachHere();
#else
if (value == 0) { __ fldz();
} else if (value == 1) { __ fld1();
} else { ShouldNotReachHere();
}
#endif
}
}
void TemplateTable::bipush() {
transition(vtos, itos);
__ load_signed_byte(rax, at_bcp(1));
}
void TemplateTable::sipush() {
transition(vtos, itos);
__ load_unsigned_short(rax, at_bcp(1));
__ bswapl(rax);
__ sarl(rax, 16);
}
void TemplateTable::ldc(bool wide) {
transition(vtos, vtos);
Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
Label call_ldc, notFloat, notClass, Done;
if (wide) {
__ get_unsigned_2_byte_index_at_bcp(rbx, 1);
} else {
__ load_unsigned_byte(rbx, at_bcp(1));
}
__ get_cpool_and_tags(rcx, rax);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type
__ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
// unresolved class - get the resolved class
__ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
__ jccb(Assembler::equal, call_ldc);
// unresolved class in error state - call into runtime to throw the error
// from the first resolution attempt
__ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
__ jccb(Assembler::equal, call_ldc);
// resolved class - need to call vm to get java mirror of the class
__ cmpl(rdx, JVM_CONSTANT_Class);
__ jcc(Assembler::notEqual, notClass);
__ bind(call_ldc);
__ movl(rarg, wide);
call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
__ push(atos);
__ jmp(Done);
__ bind(notClass);
__ cmpl(rdx, JVM_CONSTANT_Float);
__ jccb(Assembler::notEqual, notFloat);
// ftos
__ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
__ push(ftos);
__ jmp(Done);
__ bind(notFloat);
#ifdef ASSERT
{
Label L;
__ cmpl(rdx, JVM_CONSTANT_Integer);
__ jcc(Assembler::equal, L);
// String and Object are rewritten to fast_aldc
__ stop("unexpected tag type in ldc");
__ bind(L);
}
#endif
// itos JVM_CONSTANT_Integer only
__ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
__ push(itos);
__ bind(Done);
}
// Fast path for caching oop constants.
void TemplateTable::fast_aldc(bool wide) {
transition(vtos, atos);
Register result = rax;
Register tmp = rdx;
int index_size = wide ? sizeof(u2) : sizeof(u1);
Label resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (String, MethodType, etc.)
assert_different_registers(result, tmp);
__ get_cache_index_at_bcp(tmp, 1, index_size);
__ load_resolved_reference_at_index(result, tmp);
__ testl(result, result);
__ jcc(Assembler::notZero, resolved);
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
// first time invocation - must resolve first
__ movl(tmp, (int)bytecode());
__ call_VM(result, entry, tmp);
__ bind(resolved);
if (VerifyOops) {
__ verify_oop(result);
}
}
void TemplateTable::ldc2_w() {
transition(vtos, vtos);
Label Long, Done;
__ get_unsigned_2_byte_index_at_bcp(rbx, 1);
__ get_cpool_and_tags(rcx, rax);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type
__ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
JVM_CONSTANT_Double);
__ jccb(Assembler::notEqual, Long);
// dtos
__ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
__ push(dtos);
__ jmpb(Done);
__ bind(Long);
// ltos
__ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
__ push(ltos);
__ bind(Done);
}
void TemplateTable::locals_index(Register reg, int offset) {
__ load_unsigned_byte(reg, at_bcp(offset));
__ negptr(reg);
}
void TemplateTable::iload() {
iload_internal();
}
void TemplateTable::nofast_iload() {
iload_internal(may_not_rewrite);
}
void TemplateTable::iload_internal(RewriteControl rc) {
transition(vtos, itos);
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
LP64_ONLY(assert(rbx != bc, "register damaged"));
// get next byte
__ load_unsigned_byte(rbx,
at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
// if _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ cmpl(rbx, Bytecodes::_iload);
__ jcc(Assembler::equal, done);
__ cmpl(rbx, Bytecodes::_fast_iload);
__ movl(bc, Bytecodes::_fast_iload2);
__ jccb(Assembler::equal, rewrite);
// if _caload, rewrite to fast_icaload
__ cmpl(rbx, Bytecodes::_caload);
__ movl(bc, Bytecodes::_fast_icaload);
__ jccb(Assembler::equal, rewrite);
// rewrite so iload doesn't check again.
__ movl(bc, Bytecodes::_fast_iload);
// rewrite
// bc: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_iload, bc, rbx, false);
__ bind(done);
}
// Get the local value into tos
locals_index(rbx);
__ movl(rax, iaddress(rbx));
}
void TemplateTable::fast_iload2() {
transition(vtos, itos);
locals_index(rbx);
__ movl(rax, iaddress(rbx));
__ push(itos);
locals_index(rbx, 3);
__ movl(rax, iaddress(rbx));
}
void TemplateTable::fast_iload() {
transition(vtos, itos);
locals_index(rbx);
__ movl(rax, iaddress(rbx));
}
void TemplateTable::lload() {
transition(vtos, ltos);
locals_index(rbx);
__ movptr(rax, laddress(rbx));
NOT_LP64(__ movl(rdx, haddress(rbx)));
}
void TemplateTable::fload() {
transition(vtos, ftos);
locals_index(rbx);
__ load_float(faddress(rbx));
}
void TemplateTable::dload() {
transition(vtos, dtos);
locals_index(rbx);
__ load_double(daddress(rbx));
}
void TemplateTable::aload() {
transition(vtos, atos);
locals_index(rbx);
__ movptr(rax, aaddress(rbx));
}
void TemplateTable::locals_index_wide(Register reg) {
__ load_unsigned_short(reg, at_bcp(2));
__ bswapl(reg);
__ shrl(reg, 16);
__ negptr(reg);
}
void TemplateTable::wide_iload() {
transition(vtos, itos);
locals_index_wide(rbx);
__ movl(rax, iaddress(rbx));
}
void TemplateTable::wide_lload() {
transition(vtos, ltos);
locals_index_wide(rbx);
__ movptr(rax, laddress(rbx));
NOT_LP64(__ movl(rdx, haddress(rbx)));
}
void TemplateTable::wide_fload() {
transition(vtos, ftos);
locals_index_wide(rbx);
__ load_float(faddress(rbx));
}
void TemplateTable::wide_dload() {
transition(vtos, dtos);
locals_index_wide(rbx);
__ load_double(daddress(rbx));
}
void TemplateTable::wide_aload() {
transition(vtos, atos);
locals_index_wide(rbx);
__ movptr(rax, aaddress(rbx));
}
void TemplateTable::index_check(Register array, Register index) {
// Pop ptr into array
__ pop_ptr(array);
index_check_without_pop(array, index);
}
void TemplateTable::index_check_without_pop(Register array, Register index) {
// destroys rbx
// check array
__ null_check(array, arrayOopDesc::length_offset_in_bytes());
// sign extend index for use by indexed load
__ movl2ptr(index, index);
// check index
__ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
if (index != rbx) {
// ??? convention: move aberrant index into rbx for exception message
assert(rbx != array, "different registers");
__ movl(rbx, index);
}
__ jump_cc(Assembler::aboveEqual,
ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
}
void TemplateTable::iaload() {
transition(itos, itos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ movl(rax, Address(rdx, rax,
Address::times_4,
arrayOopDesc::base_offset_in_bytes(T_INT)));
}
void TemplateTable::laload() {
transition(itos, ltos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
NOT_LP64(__ mov(rbx, rax));
// rbx,: index
__ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
}
void TemplateTable::faload() {
transition(itos, ftos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_float(Address(rdx, rax,
Address::times_4,
arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
}
void TemplateTable::daload() {
transition(itos, dtos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_double(Address(rdx, rax,
Address::times_8,
arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
}
void TemplateTable::aaload() {
transition(itos, atos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_heap_oop(rax, Address(rdx, rax,
UseCompressedOops ? Address::times_4 : Address::times_ptr,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
}
void TemplateTable::baload() {
transition(itos, itos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
}
void TemplateTable::caload() {
transition(itos, itos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
// iload followed by caload frequent pair
void TemplateTable::fast_icaload() {
transition(vtos, itos);
// load index out of locals
locals_index(rbx);
__ movl(rax, iaddress(rbx));
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_unsigned_short(rax,
Address(rdx, rax,
Address::times_2,
arrayOopDesc::base_offset_in_bytes(T_CHAR)));
}
void TemplateTable::saload() {
transition(itos, itos);
// rax: index
// rdx: array
index_check(rdx, rax); // kills rbx
__ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
}
void TemplateTable::iload(int n) {
transition(vtos, itos);
__ movl(rax, iaddress(n));
}
void TemplateTable::lload(int n) {
transition(vtos, ltos);
__ movptr(rax, laddress(n));
NOT_LP64(__ movptr(rdx, haddress(n)));
}
void TemplateTable::fload(int n) {
transition(vtos, ftos);
__ load_float(faddress(n));
}
void TemplateTable::dload(int n) {
transition(vtos, dtos);
__ load_double(daddress(n));
}
void TemplateTable::aload(int n) {
transition(vtos, atos);
__ movptr(rax, aaddress(n));
}
void TemplateTable::aload_0() {
aload_0_internal();
}
void TemplateTable::nofast_aload_0() {
aload_0_internal(may_not_rewrite);
}
void TemplateTable::aload_0_internal(RewriteControl rc) {
transition(vtos, atos);
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield
// _aload_0, _fast_agetfield
// _aload_0, _fast_fgetfield
//
// occur frequently. If RewriteFrequentPairs is set, the (slow)
// _aload_0 bytecode checks if the next bytecode is either
// _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
// rewrites the current bytecode into a pair bytecode; otherwise it
// rewrites the current bytecode into _fast_aload_0 that doesn't do
// the pair check anymore.
//
// Note: If the next bytecode is _getfield, the rewrite must be
// delayed, otherwise we may miss an opportunity for a pair.
//
// Also rewrite frequent pairs
// aload_0, aload_1
// aload_0, iload_1
// These bytecodes with a small amount of code are most profitable
// to rewrite
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
LP64_ONLY(assert(rbx != bc, "register damaged"));
// get next byte
__ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
// do actual aload_0
aload(0);
// if _getfield then wait with rewrite
__ cmpl(rbx, Bytecodes::_getfield);
__ jcc(Assembler::equal, done);
// if _igetfield then reqrite to _fast_iaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmpl(rbx, Bytecodes::_fast_igetfield);
__ movl(bc, Bytecodes::_fast_iaccess_0);
__ jccb(Assembler::equal, rewrite);
// if _agetfield then reqrite to _fast_aaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmpl(rbx, Bytecodes::_fast_agetfield);
__ movl(bc, Bytecodes::_fast_aaccess_0);
__ jccb(Assembler::equal, rewrite);
// if _fgetfield then reqrite to _fast_faccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ cmpl(rbx, Bytecodes::_fast_fgetfield);
__ movl(bc, Bytecodes::_fast_faccess_0);
__ jccb(Assembler::equal, rewrite);
// else rewrite to _fast_aload0
assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ movl(bc, Bytecodes::_fast_aload_0);
// rewrite
// bc: fast bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
__ bind(done);
} else {
aload(0);
}
}
void TemplateTable::istore() {
transition(itos, vtos);
locals_index(rbx);
__ movl(iaddress(rbx), rax);
}
void TemplateTable::lstore() {
transition(ltos, vtos);
locals_index(rbx);
__ movptr(laddress(rbx), rax);
NOT_LP64(__ movptr(haddress(rbx), rdx));
}
void TemplateTable::fstore() {
transition(ftos, vtos);
locals_index(rbx);
__ store_float(faddress(rbx));
}
void TemplateTable::dstore() {
transition(dtos, vtos);
locals_index(rbx);
__ store_double(daddress(rbx));
}
void TemplateTable::astore() {
transition(vtos, vtos);
__ pop_ptr(rax);
locals_index(rbx);
__ movptr(aaddress(rbx), rax);
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
__ pop_i();
locals_index_wide(rbx);
__ movl(iaddress(rbx), rax);
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
NOT_LP64(__ pop_l(rax, rdx));
LP64_ONLY(__ pop_l());
locals_index_wide(rbx);
__ movptr(laddress(rbx), rax);
NOT_LP64(__ movl(haddress(rbx), rdx));
}
void TemplateTable::wide_fstore() {
#ifdef _LP64
transition(vtos, vtos);
__ pop_f(xmm0);
locals_index_wide(rbx);
__ movflt(faddress(rbx), xmm0);
#else
wide_istore();
#endif
}
void TemplateTable::wide_dstore() {
#ifdef _LP64
transition(vtos, vtos);
__ pop_d(xmm0);
locals_index_wide(rbx);
__ movdbl(daddress(rbx), xmm0);
#else
wide_lstore();
#endif
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
__ pop_ptr(rax);
locals_index_wide(rbx);
__ movptr(aaddress(rbx), rax);
}
void TemplateTable::iastore() {
transition(itos, vtos);
__ pop_i(rbx);
// rax: value
// rbx: index
// rdx: array
index_check(rdx, rbx); // prefer index in rbx
__ movl(Address(rdx, rbx,
Address::times_4,
arrayOopDesc::base_offset_in_bytes(T_INT)),
rax);
}
void TemplateTable::lastore() {
transition(ltos, vtos);
__ pop_i(rbx);
// rax,: low(value)
// rcx: array
// rdx: high(value)
index_check(rcx, rbx); // prefer index in rbx,
// rbx,: index
__ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
}
void TemplateTable::fastore() {
transition(ftos, vtos);
__ pop_i(rbx);
// value is in UseSSE >= 1 ? xmm0 : ST(0)
// rbx: index
// rdx: array
index_check(rdx, rbx); // prefer index in rbx
__ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
}
void TemplateTable::dastore() {
transition(dtos, vtos);
__ pop_i(rbx);
// value is in UseSSE >= 2 ? xmm0 : ST(0)
// rbx: index
// rdx: array
index_check(rdx, rbx); // prefer index in rbx
__ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
}
void TemplateTable::aastore() {
Label is_null, ok_is_subtype, done;
transition(vtos, vtos);
// stack: ..., array, index, value
__ movptr(rax, at_tos()); // value
__ movl(rcx, at_tos_p1()); // index
__ movptr(rdx, at_tos_p2()); // array
Address element_address(rdx, rcx,
UseCompressedOops? Address::times_4 : Address::times_ptr,
arrayOopDesc::base_offset_in_bytes(T_OBJECT));
index_check_without_pop(rdx, rcx); // kills rbx
__ testptr(rax, rax);
__ jcc(Assembler::zero, is_null);
// Move subklass into rbx
__ load_klass(rbx, rax);
// Move superklass into rax
__ load_klass(rax, rdx);
__ movptr(rax, Address(rax,
ObjArrayKlass::element_klass_offset()));
// Compress array + index*oopSize + 12 into a single register. Frees rcx.
__ lea(rdx, element_address);
// Generate subtype check. Blows rcx, rdi
// Superklass in rax. Subklass in rbx.
__ gen_subtype_check(rbx, ok_is_subtype);
// Come here on failure
// object is at TOS
__ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
// Come here on success
__ bind(ok_is_subtype);
// Get the value we will store
__ movptr(rax, at_tos());
// Now store using the appropriate barrier
do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
__ jmp(done);
// Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx]
__ bind(is_null);
__ profile_null_seen(rbx);
// Store a NULL
do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
// Pop stack arguments
__ bind(done);
__ addptr(rsp, 3 * Interpreter::stackElementSize);
}
void TemplateTable::bastore() {
transition(itos, vtos);
__ pop_i(rbx);
// rax: value
// rbx: index
// rdx: array
index_check(rdx, rbx); // prefer index in rbx
__ movb(Address(rdx, rbx,
Address::times_1,
arrayOopDesc::base_offset_in_bytes(T_BYTE)),
rax);
}
void TemplateTable::castore() {
transition(itos, vtos);
__ pop_i(rbx);
// rax: value
// rbx: index
// rdx: array
index_check(rdx, rbx); // prefer index in rbx
__ movw(Address(rdx, rbx,
Address::times_2,
arrayOopDesc::base_offset_in_bytes(T_CHAR)),
rax);
}
void TemplateTable::sastore() {
castore();
}
void TemplateTable::istore(int n) {
transition(itos, vtos);
__ movl(iaddress(n), rax);
}
void TemplateTable::lstore(int n) {
transition(ltos, vtos);
__ movptr(laddress(n), rax);
NOT_LP64(__ movptr(haddress(n), rdx));
}
void TemplateTable::fstore(int n) {
transition(ftos, vtos);
__ store_float(faddress(n));
}
void TemplateTable::dstore(int n) {
transition(dtos, vtos);
__ store_double(daddress(n));
}
void TemplateTable::astore(int n) {
transition(vtos, vtos);
__ pop_ptr(rax);
__ movptr(aaddress(n), rax);
}
void TemplateTable::pop() {
transition(vtos, vtos);
__ addptr(rsp, Interpreter::stackElementSize);
}
void TemplateTable::pop2() {
transition(vtos, vtos);
__ addptr(rsp, 2 * Interpreter::stackElementSize);
}
void TemplateTable::dup() {
transition(vtos, vtos);
__ load_ptr(0, rax);
__ push_ptr(rax);
// stack: ..., a, a
}
void TemplateTable::dup_x1() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr( 0, rax); // load b
__ load_ptr( 1, rcx); // load a
__ store_ptr(1, rax); // store b
__ store_ptr(0, rcx); // store a
__ push_ptr(rax); // push b
// stack: ..., b, a, b
}
void TemplateTable::dup_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr( 0, rax); // load c
__ load_ptr( 2, rcx); // load a
__ store_ptr(2, rax); // store c in a
__ push_ptr(rax); // push c
// stack: ..., c, b, c, c
__ load_ptr( 2, rax); // load b
__ store_ptr(2, rcx); // store a in b
// stack: ..., c, a, c, c
__ store_ptr(1, rax); // store b in c
// stack: ..., c, a, b, c
}
void TemplateTable::dup2() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr(1, rax); // load a
__ push_ptr(rax); // push a
__ load_ptr(1, rax); // load b
__ push_ptr(rax); // push b
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ load_ptr( 0, rcx); // load c
__ load_ptr( 1, rax); // load b
__ push_ptr(rax); // push b
__ push_ptr(rcx); // push c
// stack: ..., a, b, c, b, c
__ store_ptr(3, rcx); // store c in b
// stack: ..., a, c, c, b, c
__ load_ptr( 4, rcx); // load a
__ store_ptr(2, rcx); // store a in 2nd c
// stack: ..., a, c, a, b, c
__ store_ptr(4, rax); // store b in a
// stack: ..., b, c, a, b, c
}
void TemplateTable::dup2_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c, d
__ load_ptr( 0, rcx); // load d
__ load_ptr( 1, rax); // load c
__ push_ptr(rax); // push c
__ push_ptr(rcx); // push d
// stack: ..., a, b, c, d, c, d
__ load_ptr( 4, rax); // load b
__ store_ptr(2, rax); // store b in d
__ store_ptr(4, rcx); // store d in b
// stack: ..., a, d, c, b, c, d
__ load_ptr( 5, rcx); // load a
__ load_ptr( 3, rax); // load c
__ store_ptr(3, rcx); // store a in c
__ store_ptr(5, rax); // store c in a
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap() {
transition(vtos, vtos);
// stack: ..., a, b
__ load_ptr( 1, rcx); // load a
__ load_ptr( 0, rax); // load b
__ store_ptr(0, rcx); // store a in b
__ store_ptr(1, rax); // store b in a
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op) {
transition(itos, itos);
switch (op) {
case add : __ pop_i(rdx); __ addl (rax, rdx); break;
case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break;
case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break;
case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break;
default : ShouldNotReachHere();
}
}
void TemplateTable::lop2(Operation op) {
transition(ltos, ltos);
#ifdef _LP64
switch (op) {
case add : __ pop_l(rdx); __ addptr(rax, rdx); break;
case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break;
case _and : __ pop_l(rdx); __ andptr(rax, rdx); break;
case _or : __ pop_l(rdx); __ orptr (rax, rdx); break;
case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break;
default : ShouldNotReachHere();
}
#else
__ pop_l(rbx, rcx);
switch (op) {
case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
__ mov (rax, rbx); __ mov (rdx, rcx); break;
case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
default : ShouldNotReachHere();
}
#endif
}
void TemplateTable::idiv() {
transition(itos, itos);
__ movl(rcx, rax);
__ pop_i(rax);
// Note: could xor rax and ecx and compare with (-1 ^ min_int). If
// they are not equal, one could do a normal division (no correction
// needed), which may speed up this implementation for the common case.
// (see also JVM spec., p.243 & p.271)
__ corrected_idivl(rcx);
}
void TemplateTable::irem() {
transition(itos, itos);
__ movl(rcx, rax);
__ pop_i(rax);
// Note: could xor rax and ecx and compare with (-1 ^ min_int). If
// they are not equal, one could do a normal division (no correction
// needed), which may speed up this implementation for the common case.
// (see also JVM spec., p.243 & p.271)
__ corrected_idivl(rcx);
__ movl(rax, rdx);
}
void TemplateTable::lmul() {
transition(ltos, ltos);
#ifdef _LP64
__ pop_l(rdx);
__ imulq(rax, rdx);
#else
__ pop_l(rbx, rcx);
__ push(rcx); __ push(rbx);
__ push(rdx); __ push(rax);
__ lmul(2 * wordSize, 0);
__ addptr(rsp, 4 * wordSize); // take off temporaries
#endif
}
void TemplateTable::ldiv() {
transition(ltos, ltos);
#ifdef _LP64
__ mov(rcx, rax);
__ pop_l(rax);
// generate explicit div0 check
__ testq(rcx, rcx);
__ jump_cc(Assembler::zero,
ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
// Note: could xor rax and rcx and compare with (-1 ^ min_int). If
// they are not equal, one could do a normal division (no correction
// needed), which may speed up this implementation for the common case.
// (see also JVM spec., p.243 & p.271)
__ corrected_idivq(rcx); // kills rbx
#else
__ pop_l(rbx, rcx);
__ push(rcx); __ push(rbx);
__ push(rdx); __ push(rax);
// check if y = 0
__ orl(rax, rdx);
__ jump_cc(Assembler::zero,
ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
__ addptr(rsp, 4 * wordSize); // take off temporaries
#endif
}
void TemplateTable::lrem() {
transition(ltos, ltos);
#ifdef _LP64
__ mov(rcx, rax);
__ pop_l(rax);
__ testq(rcx, rcx);
__ jump_cc(Assembler::zero,
ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
// Note: could xor rax and rcx and compare with (-1 ^ min_int). If
// they are not equal, one could do a normal division (no correction
// needed), which may speed up this implementation for the common case.
// (see also JVM spec., p.243 & p.271)
__ corrected_idivq(rcx); // kills rbx
__ mov(rax, rdx);
#else
__ pop_l(rbx, rcx);
__ push(rcx); __ push(rbx);
__ push(rdx); __ push(rax);
// check if y = 0
__ orl(rax, rdx);
__ jump_cc(Assembler::zero,
ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
__ addptr(rsp, 4 * wordSize);
#endif
}
void TemplateTable::lshl() {
transition(itos, ltos);
__ movl(rcx, rax); // get shift count
#ifdef _LP64
__ pop_l(rax); // get shift value
__ shlq(rax);
#else
__ pop_l(rax, rdx); // get shift value
__ lshl(rdx, rax);
#endif
}
void TemplateTable::lshr() {
#ifdef _LP64
transition(itos, ltos);
__ movl(rcx, rax); // get shift count
__ pop_l(rax); // get shift value
__ sarq(rax);
#else
transition(itos, ltos);
__ mov(rcx, rax); // get shift count
__ pop_l(rax, rdx); // get shift value
__ lshr(rdx, rax, true);
#endif
}
void TemplateTable::lushr() {
transition(itos, ltos);
#ifdef _LP64
__ movl(rcx, rax); // get shift count
__ pop_l(rax); // get shift value
__ shrq(rax);
#else
__ mov(rcx, rax); // get shift count
__ pop_l(rax, rdx); // get shift value
__ lshr(rdx, rax);
#endif
}
void TemplateTable::fop2(Operation op) {
transition(ftos, ftos);
if (UseSSE >= 1) {
switch (op) {
case add:
__ addss(xmm0, at_rsp());
__ addptr(rsp, Interpreter::stackElementSize);
break;
case sub:
__ movflt(xmm1, xmm0);
__ pop_f(xmm0);
__ subss(xmm0, xmm1);
break;
case mul:
__ mulss(xmm0, at_rsp());
__ addptr(rsp, Interpreter::stackElementSize);
break;
case div:
__ movflt(xmm1, xmm0);
__ pop_f(xmm0);
__ divss(xmm0, xmm1);
break;
case rem:
// On x86_64 platforms the SharedRuntime::frem method is called to perform the
// modulo operation. The frem method calls the function
// double fmod(double x, double y) in math.h. The documentation of fmod states:
// "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
// (signalling or quiet) is returned.
//
// On x86_32 platforms the FPU is used to perform the modulo operation. The
// reason is that on 32-bit Windows the sign of modulo operations diverges from
// what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
// The fprem instruction used on x86_32 is functionally equivalent to
// SharedRuntime::frem in that it returns a NaN.
#ifdef _LP64
__ movflt(xmm1, xmm0);
__ pop_f(xmm0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
#else
__ push_f(xmm0);
__ pop_f();
__ fld_s(at_rsp());
__ fremr(rax);
__ f2ieee();
__ pop(rax); // pop second operand off the stack
__ push_f();
__ pop_f(xmm0);
#endif
break;
default:
ShouldNotReachHere();
break;
}
} else {
#ifdef _LP64
ShouldNotReachHere();
#else
switch (op) {
case add: __ fadd_s (at_rsp()); break;
case sub: __ fsubr_s(at_rsp()); break;
case mul: __ fmul_s (at_rsp()); break;
case div: __ fdivr_s(at_rsp()); break;
case rem: __ fld_s (at_rsp()); __ fremr(rax); break;
default : ShouldNotReachHere();
}
__ f2ieee();
__ pop(rax); // pop second operand off the stack
#endif // _LP64
}
}
void TemplateTable::dop2(Operation op) {
transition(dtos, dtos);
if (UseSSE >= 2) {
switch (op) {
case add:
__ addsd(xmm0, at_rsp());
__ addptr(rsp, 2 * Interpreter::stackElementSize);
break;
case sub:
__ movdbl(xmm1, xmm0);
__ pop_d(xmm0);
__ subsd(xmm0, xmm1);
break;
case mul:
__ mulsd(xmm0, at_rsp());
__ addptr(rsp, 2 * Interpreter::stackElementSize);
break;
case div:
__ movdbl(xmm1, xmm0);
__ pop_d(xmm0);
__ divsd(xmm0, xmm1);
break;
case rem:
// Similar to fop2(), the modulo operation is performed using the
// SharedRuntime::drem method (on x86_64 platforms) or using the
// FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
#ifdef _LP64
__ movdbl(xmm1, xmm0);
__ pop_d(xmm0);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
#else
__ push_d(xmm0);
__ pop_d();
__ fld_d(at_rsp());
__ fremr(rax);
__ d2ieee();
__ pop(rax);
__ pop(rdx);
__ push_d();
__ pop_d(xmm0);
#endif
break;
default:
ShouldNotReachHere();
break;
}
} else {
#ifdef _LP64
ShouldNotReachHere();
#else
switch (op) {
case add: __ fadd_d (at_rsp()); break;
case sub: __ fsubr_d(at_rsp()); break;
case mul: {
Label L_strict;
Label L_join;
const Address access_flags (rcx, Method::access_flags_offset());
__ get_method(rcx);
__ movl(rcx, access_flags);
__ testl(rcx, JVM_ACC_STRICT);
__ jccb(Assembler::notZero, L_strict);
__ fmul_d (at_rsp());
__ jmpb(L_join);
__ bind(L_strict);
__ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
__ fmulp();
__ fmul_d (at_rsp());
__ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
__ fmulp();
__ bind(L_join);
break;
}
case div: {
Label L_strict;
Label L_join;
const Address access_flags (rcx, Method::access_flags_offset());
__ get_method(rcx);
__ movl(rcx, access_flags);
__ testl(rcx, JVM_ACC_STRICT);
__ jccb(Assembler::notZero, L_strict);
__ fdivr_d(at_rsp());
__ jmp(L_join);
__ bind(L_strict);
__ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
__ fmul_d (at_rsp());
__ fdivrp();
__ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
__ fmulp();
__ bind(L_join);
break;
}
case rem: __ fld_d (at_rsp()); __ fremr(rax); break;
default : ShouldNotReachHere();
}
__ d2ieee();
// Pop double precision number from rsp.
__ pop(rax);
__ pop(rdx);
#endif
}
}
void TemplateTable::ineg() {
transition(itos, itos);
__ negl(rax);
}
void TemplateTable::lneg() {
transition(ltos, ltos);
LP64_ONLY(__ negq(rax));
NOT_LP64(__ lneg(rdx, rax));
}
// Note: 'double' and 'long long' have 32-bits alignment on x86.
static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
// Use the expression (adr)&(~0xF) to provide 128-bits aligned address
// of 128-bits operands for SSE instructions.
jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
// Store the value to a 128-bits operand.
operand[0] = lo;
operand[1] = hi;
return operand;
}
// Buffer for 128-bits masks used by SSE instructions.
static jlong float_signflip_pool[2*2];
static jlong double_signflip_pool[2*2];
void TemplateTable::fneg() {
transition(ftos, ftos);
if (UseSSE >= 1) {
static jlong *float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
__ xorps(xmm0, ExternalAddress((address) float_signflip));
} else {
LP64_ONLY(ShouldNotReachHere());
NOT_LP64(__ fchs());
}
}
void TemplateTable::dneg() {
transition(dtos, dtos);
if (UseSSE >= 2) {
static jlong *double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
__ xorpd(xmm0, ExternalAddress((address) double_signflip));
} else {
#ifdef _LP64
ShouldNotReachHere();
#else
__ fchs();
#endif
}
}
void TemplateTable::iinc() {
transition(vtos, vtos);
__ load_signed_byte(rdx, at_bcp(2)); // get constant
locals_index(rbx);
__ addl(iaddress(rbx), rdx);
}
void TemplateTable::wide_iinc() {
transition(vtos, vtos);
__ movl(rdx, at_bcp(4)); // get constant
locals_index_wide(rbx);
__ bswapl(rdx); // swap bytes & sign-extend constant
__ sarl(rdx, 16);
__ addl(iaddress(rbx), rdx);
// Note: should probably use only one movl to get both
// the index and the constant -> fix this
}
void TemplateTable::convert() {
#ifdef _LP64
// Checking
#ifdef ASSERT
{
TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
}
#endif // ASSERT
static const int64_t is_nan = 0x8000000000000000L;
// Conversion
switch (bytecode()) {
case Bytecodes::_i2l:
__ movslq(rax, rax);
break;
case Bytecodes::_i2f:
__ cvtsi2ssl(xmm0, rax);
break;
case Bytecodes::_i2d:
__ cvtsi2sdl(xmm0, rax);
break;
case Bytecodes::_i2b:
__ movsbl(rax, rax);
break;
case Bytecodes::_i2c:
__ movzwl(rax, rax);
break;
case Bytecodes::_i2s:
__ movswl(rax, rax);
break;
case Bytecodes::_l2i:
__ movl(rax, rax);
break;
case Bytecodes::_l2f:
__ cvtsi2ssq(xmm0, rax);
break;
case Bytecodes::_l2d:
__ cvtsi2sdq(xmm0, rax);
break;
case Bytecodes::_f2i:
{
Label L;
__ cvttss2sil(rax, xmm0);
__ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
__ jcc(Assembler::notEqual, L);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
__ bind(L);
}
break;
case Bytecodes::_f2l:
{
Label L;
__ cvttss2siq(rax, xmm0);
// NaN or overflow/underflow?
__ cmp64(rax, ExternalAddress((address) &is_nan));
__ jcc(Assembler::notEqual, L);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
__ bind(L);
}
break;
case Bytecodes::_f2d:
__ cvtss2sd(xmm0, xmm0);
break;
case Bytecodes::_d2i:
{
Label L;
__ cvttsd2sil(rax, xmm0);
__ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
__ jcc(Assembler::notEqual, L);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
__ bind(L);
}
break;
case Bytecodes::_d2l:
{
Label L;
__ cvttsd2siq(rax, xmm0);
// NaN or overflow/underflow?
__ cmp64(rax, ExternalAddress((address) &is_nan));
__ jcc(Assembler::notEqual, L);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
__ bind(L);
}
break;
case Bytecodes::_d2f:
__ cvtsd2ss(xmm0, xmm0);
break;
default:
ShouldNotReachHere();
}
#else
// Checking
#ifdef ASSERT
{ TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
}
#endif // ASSERT
// Conversion
// (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
switch (bytecode()) {
case Bytecodes::_i2l:
__ extend_sign(rdx, rax);
break;
case Bytecodes::_i2f:
if (UseSSE >= 1) {
__ cvtsi2ssl(xmm0, rax);
} else {
__ push(rax); // store int on tos
__ fild_s(at_rsp()); // load int to ST0
__ f2ieee(); // truncate to float size
__ pop(rcx); // adjust rsp
}
break;
case Bytecodes::_i2d:
if (UseSSE >= 2) {
__ cvtsi2sdl(xmm0, rax);
} else {
__ push(rax); // add one slot for d2ieee()
__ push(rax); // store int on tos
__ fild_s(at_rsp()); // load int to ST0
__ d2ieee(); // truncate to double size
__ pop(rcx); // adjust rsp
__ pop(rcx);
}
break;
case Bytecodes::_i2b:
__ shll(rax, 24); // truncate upper 24 bits
__ sarl(rax, 24); // and sign-extend byte
LP64_ONLY(__ movsbl(rax, rax));
break;
case Bytecodes::_i2c:
__ andl(rax, 0xFFFF); // truncate upper 16 bits
LP64_ONLY(__ movzwl(rax, rax));
break;
case Bytecodes::_i2s:
__ shll(rax, 16); // truncate upper 16 bits
__ sarl(rax, 16); // and sign-extend short
LP64_ONLY(__ movswl(rax, rax));
break;
case Bytecodes::_l2i:
/* nothing to do */
break;
case Bytecodes::_l2f:
// On 64-bit platforms, the cvtsi2ssq instruction is used to convert
// 64-bit long values to floats. On 32-bit platforms it is not possible
// to use that instruction with 64-bit operands, therefore the FPU is
// used to perform the conversion.
__ push(rdx); // store long on tos
__ push(rax);
__ fild_d(at_rsp()); // load long to ST0
__ f2ieee(); // truncate to float size
__ pop(rcx); // adjust rsp
__ pop(rcx);
if (UseSSE >= 1) {
__ push_f();
__ pop_f(xmm0);
}
break;
case Bytecodes::_l2d:
// On 32-bit platforms the FPU is used for conversion because on
// 32-bit platforms it is not not possible to use the cvtsi2sdq
// instruction with 64-bit operands.
__ push(rdx); // store long on tos
__ push(rax);
__ fild_d(at_rsp()); // load long to ST0
__ d2ieee(); // truncate to double size
__ pop(rcx); // adjust rsp
__ pop(rcx);
if (UseSSE >= 2) {
__ push_d();
__ pop_d(xmm0);
}
break;
case Bytecodes::_f2i:
// SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
// as it returns 0 for any NaN.
if (UseSSE >= 1) {
__ push_f(xmm0);
} else {
__ push(rcx); // reserve space for argument
__ fstp_s(at_rsp()); // pass float argument on stack
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
break;
case Bytecodes::_f2l:
// SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
// as it returns 0 for any NaN.
if (UseSSE >= 1) {
__ push_f(xmm0);
} else {
__ push(rcx); // reserve space for argument
__ fstp_s(at_rsp()); // pass float argument on stack
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
break;
case Bytecodes::_f2d:
if (UseSSE < 1) {
/* nothing to do */
} else if (UseSSE == 1) {
__ push_f(xmm0);
__ pop_f();
} else { // UseSSE >= 2
__ cvtss2sd(xmm0, xmm0);
}
break;
case Bytecodes::_d2i:
if (UseSSE >= 2) {
__ push_d(xmm0);
} else {
__ push(rcx); // reserve space for argument
__ push(rcx);
__ fstp_d(at_rsp()); // pass double argument on stack
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
break;
case Bytecodes::_d2l:
if (UseSSE >= 2) {
__ push_d(xmm0);
} else {
__ push(rcx); // reserve space for argument
__ push(rcx);
__ fstp_d(at_rsp()); // pass double argument on stack
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
break;
case Bytecodes::_d2f:
if (UseSSE <= 1) {
__ push(rcx); // reserve space for f2ieee()
__ f2ieee(); // truncate to float size
__ pop(rcx); // adjust rsp
if (UseSSE == 1) {
// The cvtsd2ss instruction is not available if UseSSE==1, therefore
// the conversion is performed using the FPU in this case.
__ push_f();
__ pop_f(xmm0);
}
} else { // UseSSE >= 2
__ cvtsd2ss(xmm0, xmm0);
}
break;
default :
ShouldNotReachHere();
}
#endif
}
void TemplateTable::lcmp() {
transition(ltos, itos);
#ifdef _LP64
Label done;
__ pop_l(rdx);
__ cmpq(rdx, rax);
__ movl(rax, -1);
__ jccb(Assembler::less, done);
__ setb(Assembler::notEqual, rax);
__ movzbl(rax, rax);
__ bind(done);
#else
// y = rdx:rax
__ pop_l(rbx, rcx); // get x = rcx:rbx
__ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
__ mov(rax, rcx);
#endif
}
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
if ((is_float && UseSSE >= 1) ||
(!is_float && UseSSE >= 2)) {
Label done;
if (is_float) {
// XXX get rid of pop here, use ... reg, mem32
__ pop_f(xmm1);
__ ucomiss(xmm1, xmm0);
} else {
// XXX get rid of pop here, use ... reg, mem64
__ pop_d(xmm1);
__ ucomisd(xmm1, xmm0);
}
if (unordered_result < 0) {
__ movl(rax, -1);
__ jccb(Assembler::parity, done);
__ jccb(Assembler::below, done);
__ setb(Assembler::notEqual, rdx);
__ movzbl(rax, rdx);
} else {
__ movl(rax, 1);
__ jccb(Assembler::parity, done);
__ jccb(Assembler::above, done);
__ movl(rax, 0);
__ jccb(Assembler::equal, done);
__ decrementl(rax);
}
__ bind(done);
} else {
#ifdef _LP64
ShouldNotReachHere();
#else
if (is_float) {
__ fld_s(at_rsp());
} else {
__ fld_d(at_rsp());
__ pop(rdx);
}
__ pop(rcx);
__ fcmp2int(rax, unordered_result < 0);
#endif // _LP64
}
}
void TemplateTable::branch(bool is_jsr, bool is_wide) {
__ get_method(rcx); // rcx holds method
__ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
// holds bumped taken count
const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset();
const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset();
// Load up edx with the branch displacement
if (is_wide) {
__ movl(rdx, at_bcp(1));
} else {
__ load_signed_short(rdx, at_bcp(1));
}
__ bswapl(rdx);
if (!is_wide) {
__ sarl(rdx, 16);
}
LP64_ONLY(__ movl2ptr(rdx, rdx));
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the non-JSR
// normal-branch stuff occurring below.
if (is_jsr) {
// Pre-load the next target bytecode into rbx
__ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
// compute return address as bci in rax
__ lea(rax, at_bcp((is_wide ? 5 : 3) -
in_bytes(ConstMethod::codes_offset())));
__ subptr(rax, Address(rcx, Method::const_offset()));
// Adjust the bcp in r13 by the displacement in rdx
__ addptr(rbcp, rdx);
// jsr returns atos that is not an oop
__ push_i(rax);
__ dispatch_only(vtos);
return;
}
// Normal (non-jsr) branch handling
// Adjust the bcp in r13 by the displacement in rdx
__ addptr(rbcp, rdx);
assert(UseLoopCounter || !UseOnStackReplacement,
"on-stack-replacement requires loop counters");
Label backedge_counter_overflow;
Label profile_method;
Label dispatch;
if (UseLoopCounter) {
// increment backedge counter for backward branches
// rax: MDO
// rbx: MDO bumped taken-count
// rcx: method
// rdx: target offset
// r13: target bcp
// r14: locals pointer
__ testl(rdx, rdx); // check if forward or backward branch
__ jcc(Assembler::positive, dispatch); // count only if backward branch
// check if MethodCounters exists
Label has_counters;
__ movptr(rax, Address(rcx, Method::method_counters_offset()));
__ testptr(rax, rax);
__ jcc(Assembler::notZero, has_counters);
__ push(rdx);
__ push(rcx);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
rcx);
__ pop(rcx);
__ pop(rdx);
__ movptr(rax, Address(rcx, Method::method_counters_offset()));
__ testptr(rax, rax);
__ jcc(Assembler::zero, dispatch);
__ bind(has_counters);
if (TieredCompilation) {
Label no_mdo;
int increment = InvocationCounter::count_increment;
if (ProfileInterpreter) {
// Are we profiling?
__ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
__ testptr(rbx, rbx);
__ jccb(Assembler::zero, no_mdo);
// Increment the MDO backedge counter
const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
__ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
rax, false, Assembler::zero, &backedge_counter_overflow);
__ jmp(dispatch);
}
__ bind(no_mdo);
// Increment backedge counter in MethodCounters*
__ movptr(rcx, Address(rcx, Method::method_counters_offset()));
const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
__ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
rax, false, Assembler::zero, &backedge_counter_overflow);
} else { // not TieredCompilation
// increment counter
__ movptr(rcx, Address(rcx, Method::method_counters_offset()));
__ movl(rax, Address(rcx, be_offset)); // load backedge counter
__ incrementl(rax, InvocationCounter::count_increment); // increment counter
__ movl(Address(rcx, be_offset), rax); // store counter
__ movl(rax, Address(rcx, inv_offset)); // load invocation counter
__ andl(rax, InvocationCounter::count_mask_value); // and the status bits
__ addl(rax, Address(rcx, be_offset)); // add both counters
if (ProfileInterpreter) {
// Test to see if we should create a method data oop
__ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
__ jcc(Assembler::less, dispatch);
// if no method data exists, go to profile method
__ test_method_data_pointer(rax, profile_method);
if (UseOnStackReplacement) {
// check for overflow against rbx which is the MDO taken count
__ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
__ jcc(Assembler::below, dispatch);
// When ProfileInterpreter is on, the backedge_count comes
// from the MethodData*, which value does not get reset on
// the call to frequency_counter_overflow(). To avoid
// excessive calls to the overflow routine while the method is
// being compiled, add a second test to make sure the overflow
// function is called only once every overflow_frequency.
const int overflow_frequency = 1024;
__ andl(rbx, overflow_frequency - 1);
__ jcc(Assembler::zero, backedge_counter_overflow);
}
} else {
if (UseOnStackReplacement) {
// check for overflow against rax, which is the sum of the
// counters
__ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
__ jcc(Assembler::aboveEqual, backedge_counter_overflow);
}
}
}
__ bind(dispatch);
}
// Pre-load the next target bytecode into rbx
__ load_unsigned_byte(rbx, Address(rbcp, 0));
// continue with the bytecode @ target
// rax: return bci for jsr's, unused otherwise
// rbx: target bytecode
// r13: target bcp
__ dispatch_only(vtos);
if (UseLoopCounter) {
if (ProfileInterpreter) {
// Out-of-line code to allocate method data oop.
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ load_unsigned_byte(rbx, Address(rbcp, 0)); // restore target bytecode
__ set_method_data_pointer_for_bcp();
__ jmp(dispatch);
}
if (UseOnStackReplacement) {
// invocation counter overflow
__ bind(backedge_counter_overflow);
__ negptr(rdx);
__ addptr(rdx, rbcp); // branch bcp
// IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::frequency_counter_overflow),
rdx);
__ load_unsigned_byte(rbx, Address(rbcp, 0)); // restore target bytecode
// rax: osr nmethod (osr ok) or NULL (osr not possible)
// rbx: target bytecode
// rdx: scratch
// r14: locals pointer
// r13: bcp
__ testptr(rax, rax); // test result
__ jcc(Assembler::zero, dispatch); // no osr if null
// nmethod may have been invalidated (VM may block upon call_VM return)
__ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
__ jcc(Assembler::notEqual, dispatch);
// We have the address of an on stack replacement routine in rax
// We need to prepare to execute the OSR method. First we must
// migrate the locals and monitors off of the stack.
LP64_ONLY(__ mov(r13, rax)); // save the nmethod
NOT_LP64(__ mov(rbx, rax)); // save the nmethod
NOT_LP64(__ get_thread(rcx));
call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
// rax is OSR buffer, move it to expected parameter location
LP64_ONLY(__ mov(j_rarg0, rax));
NOT_LP64(__ mov(rcx, rax));
// We use j_rarg definitions here so that registers don't conflict as parameter
// registers change across platforms as we are in the midst of a calling
// sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
// pop the interpreter frame
__ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
__ leave(); // remove frame anchor
__ pop(retaddr); // get return address
__ mov(rsp, sender_sp); // set sp to sender sp
// Ensure compiled code always sees stack at proper alignment
__ andptr(rsp, -(StackAlignmentInBytes));
// unlike x86 we need no specialized return from compiled code
// to the interpreter or the call stub.
// push the return address
__ push(retaddr);
// and begin the OSR nmethod
LP64_ONLY(__ jmp(Address(r13, nmethod::osr_entry_point_offset())));
NOT_LP64(__ jmp(Address(rbx, nmethod::osr_entry_point_offset())));
}
}
}
void TemplateTable::if_0cmp(Condition cc) {
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ testl(rax, rax);
__ jcc(j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(rax);
}
void TemplateTable::if_icmp(Condition cc) {
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_i(rdx);
__ cmpl(rdx, rax);
__ jcc(j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(rax);
}
void TemplateTable::if_nullcmp(Condition cc) {
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ testptr(rax, rax);
__ jcc(j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(rax);
}
void TemplateTable::if_acmp(Condition cc) {
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_ptr(rdx);
__ cmpptr(rdx, rax);
__ jcc(j_not(cc), not_taken);
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(rax);
}
void TemplateTable::ret() {
transition(vtos, vtos);
locals_index(rbx);
LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
NOT_LP64(__ movptr(rbx, iaddress(rbx)));
__ profile_ret(rbx, rcx);
__ get_method(rax);
__ movptr(rbcp, Address(rax, Method::const_offset()));
__ lea(rbcp, Address(rbcp, rbx, Address::times_1,
ConstMethod::codes_offset()));
__ dispatch_next(vtos);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
locals_index_wide(rbx);
__ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
__ profile_ret(rbx, rcx);
__ get_method(rax);
__ movptr(rbcp, Address(rax, Method::const_offset()));
__ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
__ dispatch_next(vtos);
}
void TemplateTable::tableswitch() {
Label default_case, continue_execution;
transition(itos, vtos);
// align r13/rsi
__ lea(rbx, at_bcp(BytesPerInt));
__ andptr(rbx, -BytesPerInt);
// load lo & hi
__ movl(rcx, Address(rbx, BytesPerInt));
__ movl(rdx, Address(rbx, 2 * BytesPerInt));
__ bswapl(rcx);
__ bswapl(rdx);
// check against lo & hi
__ cmpl(rax, rcx);
__ jcc(Assembler::less, default_case);
__ cmpl(rax, rdx);
__ jcc(Assembler::greater, default_case);
// lookup dispatch offset
__ subl(rax, rcx);
__ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
__ profile_switch_case(rax, rbx, rcx);
// continue execution
__ bind(continue_execution);
__ bswapl(rdx);
LP64_ONLY(__ movl2ptr(rdx, rdx));
__ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
__ addptr(rbcp, rdx);
__ dispatch_only(vtos);
// handle default
__ bind(default_case);
__ profile_switch_default(rax);
__ movl(rdx, Address(rbx, 0));
__ jmp(continue_execution);
}
void TemplateTable::lookupswitch() {
transition(itos, itos);
__ stop("lookupswitch bytecode should have been rewritten");
}
void TemplateTable::fast_linearswitch() {
transition(itos, vtos);
Label loop_entry, loop, found, continue_execution;
// bswap rax so we can avoid bswapping the table entries
__ bswapl(rax);
// align r13
__ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
// this instruction (change offsets
// below)
__ andptr(rbx, -BytesPerInt);
// set counter
__ movl(rcx, Address(rbx, BytesPerInt));
__ bswapl(rcx);
__ jmpb(loop_entry);
// table search
__ bind(loop);
__ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
__ jcc(Assembler::equal, found);
__ bind(loop_entry);
__ decrementl(rcx);
__ jcc(Assembler::greaterEqual, loop);
// default case
__ profile_switch_default(rax);
__ movl(rdx, Address(rbx, 0));
__ jmp(continue_execution);
// entry found -> get offset
__ bind(found);
__ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
__ profile_switch_case(rcx, rax, rbx);
// continue execution
__ bind(continue_execution);
__ bswapl(rdx);
__ movl2ptr(rdx, rdx);
__ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
__ addptr(rbcp, rdx);
__ dispatch_only(vtos);
}
void TemplateTable::fast_binaryswitch() {
transition(itos, vtos);
// Implementation using the following core algorithm:
//
// int binary_search(int key, LookupswitchPair* array, int n) {
// // Binary search according to "Methodik des Programmierens" by
// // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
// int i = 0;
// int j = n;
// while (i+1 < j) {
// // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
// // with Q: for all i: 0 <= i < n: key < a[i]
// // where a stands for the array and assuming that the (inexisting)
// // element a[n] is infinitely big.
// int h = (i + j) >> 1;
// // i < h < j
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// }
// // R: a[i] <= key < a[i+1] or Q
// // (i.e., if key is within array, i is the correct index)
// return i;
// }
// Register allocation
const Register key = rax; // already set (tosca)
const Register array = rbx;
const Register i = rcx;
const Register j = rdx;
const Register h = rdi;
const Register temp = rsi;
// Find array start
NOT_LP64(__ save_bcp());
__ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
// get rid of this
// instruction (change
// offsets below)
__ andptr(array, -BytesPerInt);
// Initialize i & j
__ xorl(i, i); // i = 0;
__ movl(j, Address(array, -BytesPerInt)); // j = length(array);
// Convert j into native byteordering
__ bswapl(j);
// And start
Label entry;
__ jmp(entry);
// binary search loop
{
Label loop;
__ bind(loop);
// int h = (i + j) >> 1;
__ leal(h, Address(i, j, Address::times_1)); // h = i + j;
__ sarl(h, 1); // h = (i + j) >> 1;
// if (key < array[h].fast_match()) {
// j = h;
// } else {
// i = h;
// }
// Convert array[h].match to native byte-ordering before compare
__ movl(temp, Address(array, h, Address::times_8));
__ bswapl(temp);
__ cmpl(key, temp);
// j = h if (key < array[h].fast_match())
__ cmov32(Assembler::less, j, h);
// i = h if (key >= array[h].fast_match())
__ cmov32(Assembler::greaterEqual, i, h);
// while (i+1 < j)
__ bind(entry);
__ leal(h, Address(i, 1)); // i+1
__ cmpl(h, j); // i+1 < j
__ jcc(Assembler::less, loop);
}
// end of binary search, result index is i (must check again!)
Label default_case;
// Convert array[i].match to native byte-ordering before compare
__ movl(temp, Address(array, i, Address::times_8));
__ bswapl(temp);
__ cmpl(key, temp);
__ jcc(Assembler::notEqual, default_case);
// entry found -> j = offset
__ movl(j , Address(array, i, Address::times_8, BytesPerInt));
__ profile_switch_case(i, key, array);
__ bswapl(j);
LP64_ONLY(__ movslq(j, j));
NOT_LP64(__ restore_bcp());
NOT_LP64(__ restore_locals()); // restore rdi
__ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
__ addptr(rbcp, j);
__ dispatch_only(vtos);
// default case -> j = default offset
__ bind(default_case);
__ profile_switch_default(i);
__ movl(j, Address(array, -2 * BytesPerInt));
__ bswapl(j);
LP64_ONLY(__ movslq(j, j));
NOT_LP64(__ restore_bcp());
NOT_LP64(__ restore_locals());
__ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
__ addptr(rbcp, j);
__ dispatch_only(vtos);
}
void TemplateTable::_return(TosState state) {
transition(state, state);
Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
assert(_desc->calls_vm(),
"inconsistent calls_vm information"); // call in remove_activation
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
assert(state == vtos, "only valid state");
__ movptr(robj, aaddress(0));
__ load_klass(rdi, robj);
__ movl(rdi, Address(rdi, Klass::access_flags_offset()));
__ testl(rdi, JVM_ACC_HAS_FINALIZER);
Label skip_register_finalizer;
__ jcc(Assembler::zero, skip_register_finalizer);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
__ bind(skip_register_finalizer);
}
__ remove_activation(state, rbcp);
__ jmp(rbcp);
}
// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's
// in order. Store buffers on most chips allow reads & writes to
// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
// without some kind of memory barrier (i.e., it's not sufficient that
// the interpreter does not reorder volatile references, the hardware
// also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other. ALSO reads &
// writes act as aquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that
// happen after the read float up to before the read. It's OK for
// non-volatile memory refs that happen before the volatile read to
// float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile
// memory refs that happen BEFORE the write float down to after the
// write. It's OK for non-volatile memory refs that happen after the
// volatile write to float up before it.
//
// We only put in barriers around volatile refs (they are expensive),
// not _between_ memory refs (that would require us to track the
// flavor of the previous memory refs). Requirements (2) and (3)
// require some barriers before volatile stores and after volatile
// loads. These nearly cover requirement (1) but miss the
// volatile-store-volatile-load case. This final case is placed after
// volatile-stores although it could just as well go before
// volatile-loads.
void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
// Helper function to insert a is-volatile test and memory barrier
if(!os::is_MP()) return; // Not needed on single CPU
__ membar(order_constraint);
}
void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache,
Register index,
size_t index_size) {
const Register temp = rbx;
assert_different_registers(Rcache, index, temp);
Label resolved;
Bytecodes::Code code = bytecode();
switch (code) {
case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
}
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
__ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
__ cmpl(temp, code); // have we resolved this bytecode?
__ jcc(Assembler::equal, resolved);
// resolve first time through
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
__ movl(temp, code);
__ call_VM(noreg, entry, temp);
// Update registers with resolved info
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
__ bind(resolved);
}
// The cache and index registers must be set before call
void TemplateTable::load_field_cp_cache_entry(Register obj,
Register cache,
Register index,
Register off,
Register flags,
bool is_static = false) {
assert_different_registers(cache, index, flags, off);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
// Field offset
__ movptr(off, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f2_offset())));
// Flags
__ movl(flags, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset())));
// klass overwrite register
if (is_static) {
__ movptr(obj, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f1_offset())));
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movptr(obj, Address(obj, mirror_offset));
}
}
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register method,
Register itable_index,
Register flags,
bool is_invokevirtual,
bool is_invokevfinal, /*unused*/
bool is_invokedynamic) {
// setup registers
const Register cache = rcx;
const Register index = rdx;
assert_different_registers(method, flags);
assert_different_registers(method, cache, index);
assert_different_registers(itable_index, flags);
assert_different_registers(itable_index, cache, index);
// determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes(
ConstantPoolCache::base_offset() +
((byte_no == f2_byte)
? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset()));
const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset());
// access constant pool cache fields
const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset());
size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
resolve_cache_and_index(byte_no, cache, index, index_size);
__ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
if (itable_index != noreg) {
// pick up itable or appendix index from f2 also:
__ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
}
__ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
}
// The registers cache and index expected to be set before call.
// Correct values of the cache and index registers are preserved.
void TemplateTable::jvmti_post_field_access(Register cache,
Register index,
bool is_static,
bool has_tos) {
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we take
// the time to call into the VM.
Label L1;
assert_different_registers(cache, index, rax);
__ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
__ testl(rax,rax);
__ jcc(Assembler::zero, L1);
// cache entry pointer
__ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
__ shll(index, LogBytesPerWord);
__ addptr(cache, index);
if (is_static) {
__ xorptr(rax, rax); // NULL object reference
} else {
__ pop(atos); // Get the object
__ verify_oop(rax);
__ push(atos); // Restore stack state
}
// rax,: object pointer or NULL
// cache: cache entry pointer
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
rax, cache);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
}
}
void TemplateTable::pop_and_check_object(Register r) {
__ pop_ptr(r);
__ null_check(r); // for field access must check obj.
__ verify_oop(r);
}
void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
const Register cache = rcx;
const Register index = rdx;
const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
const Register off = rbx;
const Register flags = rax;
const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_access(cache, index, is_static, false);
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
if (!is_static) pop_and_check_object(obj);
const Address field(obj, off, Address::times_1, 0*wordSize);
NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask edx after the above shift
assert(btos == 0, "change code, btos != 0");
__ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte);
// btos
__ load_signed_byte(rax, field);
__ push(btos);
// Rewrite bytecode to be faster
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
}
__ jmp(Done);
__ bind(notByte);
__ cmpl(flags, atos);
__ jcc(Assembler::notEqual, notObj);
// atos
__ load_heap_oop(rax, field);
__ push(atos);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
}
__ jmp(Done);
__ bind(notObj);
__ cmpl(flags, itos);
__ jcc(Assembler::notEqual, notInt);
// itos
__ movl(rax, field);
__ push(itos);
// Rewrite bytecode to be faster
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
}
__ jmp(Done);
__ bind(notInt);
__ cmpl(flags, ctos);
__ jcc(Assembler::notEqual, notChar);
// ctos
__ load_unsigned_short(rax, field);
__ push(ctos);
// Rewrite bytecode to be faster
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
}
__ jmp(Done);
__ bind(notChar);
__ cmpl(flags, stos);
__ jcc(Assembler::notEqual, notShort);
// stos
__ load_signed_short(rax, field);
__ push(stos);
// Rewrite bytecode to be faster
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
}
__ jmp(Done);
__ bind(notShort);
__ cmpl(flags, ltos);
__ jcc(Assembler::notEqual, notLong);
// ltos
#ifndef _LP64
// Generate code as if volatile. There just aren't enough registers to
// save that information and this code is faster than the test.
__ fild_d(field); // Must load atomically
__ subptr(rsp,2*wordSize); // Make space for store
__ fistp_d(Address(rsp,0));
__ pop(rax);
__ pop(rdx);
#else
__ movq(rax, field);
#endif
__ push(ltos);
// Rewrite bytecode to be faster
LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
__ jmp(Done);
__ bind(notLong);
__ cmpl(flags, ftos);
__ jcc(Assembler::notEqual, notFloat);
// ftos
__ load_float(field);
__ push(ftos);
// Rewrite bytecode to be faster
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
}
__ jmp(Done);
__ bind(notFloat);
#ifdef ASSERT
__ cmpl(flags, dtos);
__ jcc(Assembler::notEqual, notDouble);
#endif
// dtos
__ load_double(field);
__ push(dtos);
// Rewrite bytecode to be faster
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
}
#ifdef ASSERT
__ jmp(Done);
__ bind(notDouble);
__ stop("Bad state");
#endif
__ bind(Done);
// [jk] not needed currently
// volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
// Assembler::LoadStore));
}
void TemplateTable::getfield(int byte_no) {
getfield_or_static(byte_no, false);
}
void TemplateTable::nofast_getfield(int byte_no) {
getfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::getstatic(int byte_no) {
getfield_or_static(byte_no, true);
}
// The registers cache and index expected to be set before call.
// The function may destroy various registers, just not the cache and index registers.
void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax);
const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L1;
assert_different_registers(cache, index, rax);
__ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
__ testl(rax, rax);
__ jcc(Assembler::zero, L1);
__ get_cache_and_index_at_bcp(robj, RDX, 1);
if (is_static) {
// Life is simple. Null out the object pointer.
__ xorl(RBX, RBX);
} else {
// Life is harder. The stack holds the value on top, followed by
// the object. We don't know the size of the value, though; it
// could be one or two words depending on its type. As a result,
// we must find the type to determine where the object is.
#ifndef _LP64
Label two_word, valsize_known;
#endif
__ movl(RCX, Address(robj, RDX,
Address::times_ptr,
in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset())));
NOT_LP64(__ mov(rbx, rsp));
__ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rcx after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
#ifdef _LP64
__ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
__ cmpl(c_rarg3, ltos);
__ cmovptr(Assembler::equal,
c_rarg1, at_tos_p2()); // ltos (two word jvalue)
__ cmpl(c_rarg3, dtos);
__ cmovptr(Assembler::equal,
c_rarg1, at_tos_p2()); // dtos (two word jvalue)
#else
__ cmpl(rcx, ltos);
__ jccb(Assembler::equal, two_word);
__ cmpl(rcx, dtos);
__ jccb(Assembler::equal, two_word);
__ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
__ jmpb(valsize_known);
__ bind(two_word);
__ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
__ bind(valsize_known);
// setup object pointer
__ movptr(rbx, Address(rbx, 0));
#endif
}
// cache entry pointer
__ addptr(robj, in_bytes(cp_base_offset));
__ shll(RDX, LogBytesPerWord);
__ addptr(robj, RDX);
// object (tos)
__ mov(RCX, rsp);
// c_rarg1: object pointer set up above (NULL if static)
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_modification),
RBX, robj, RCX);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
}
}
void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
const Register cache = rcx;
const Register index = rdx;
const Register obj = rcx;
const Register off = rbx;
const Register flags = rax;
const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_mod(cache, index, is_static);
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
// [jk] not needed currently
// volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
// Assembler::StoreStore));
Label notVolatile, Done;
__ movl(rdx, flags);
__ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1);
// field addresses
const Address field(obj, off, Address::times_1, 0*wordSize);
NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
Label notByte, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
assert(btos == 0, "change code, btos != 0");
__ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte);
// btos
{
__ pop(btos);
if (!is_static) pop_and_check_object(obj);
__ movb(field, rax);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notByte);
__ cmpl(flags, atos);
__ jcc(Assembler::notEqual, notObj);
// atos
{
__ pop(atos);
if (!is_static) pop_and_check_object(obj);
// Store into the field
do_oop_store(_masm, field, rax, _bs->kind(), false);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notObj);
__ cmpl(flags, itos);
__ jcc(Assembler::notEqual, notInt);
// itos
{
__ pop(itos);
if (!is_static) pop_and_check_object(obj);
__ movl(field, rax);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notInt);
__ cmpl(flags, ctos);
__ jcc(Assembler::notEqual, notChar);
// ctos
{
__ pop(ctos);
if (!is_static) pop_and_check_object(obj);
__ movw(field, rax);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notChar);
__ cmpl(flags, stos);
__ jcc(Assembler::notEqual, notShort);
// stos
{
__ pop(stos);
if (!is_static) pop_and_check_object(obj);
__ movw(field, rax);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notShort);
__ cmpl(flags, ltos);
__ jcc(Assembler::notEqual, notLong);
// ltos
#ifdef _LP64
{
__ pop(ltos);
if (!is_static) pop_and_check_object(obj);
__ movq(field, rax);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
#else
{
Label notVolatileLong;
__ testl(rdx, rdx);
__ jcc(Assembler::zero, notVolatileLong);
__ pop(ltos); // overwrites rdx, do this after testing volatile.
if (!is_static) pop_and_check_object(obj);
// Replace with real volatile test
__ push(rdx);
__ push(rax); // Must update atomically with FIST
__ fild_d(Address(rsp,0)); // So load into FPU register
__ fistp_d(field); // and put into memory atomically
__ addptr(rsp, 2*wordSize);
// volatile_barrier();
volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
Assembler::StoreStore));
// Don't rewrite volatile version
__ jmp(notVolatile);
__ bind(notVolatileLong);
__ pop(ltos); // overwrites rdx
if (!is_static) pop_and_check_object(obj);
__ movptr(hi, rdx);
__ movptr(field, rax);
// Don't rewrite to _fast_lputfield for potential volatile case.
__ jmp(notVolatile);
}
#endif // _LP64
__ bind(notLong);
__ cmpl(flags, ftos);
__ jcc(Assembler::notEqual, notFloat);
// ftos
{
__ pop(ftos);
if (!is_static) pop_and_check_object(obj);
__ store_float(field);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notFloat);
#ifdef ASSERT
__ cmpl(flags, dtos);
__ jcc(Assembler::notEqual, notDouble);
#endif
// dtos
{
__ pop(dtos);
if (!is_static) pop_and_check_object(obj);
__ store_double(field);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
}
}
#ifdef ASSERT
__ jmp(Done);
__ bind(notDouble);
__ stop("Bad state");
#endif
__ bind(Done);
// Check for volatile store
__ testl(rdx, rdx);
__ jcc(Assembler::zero, notVolatile);
volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
Assembler::StoreStore));
__ bind(notVolatile);
}
void TemplateTable::putfield(int byte_no) {
putfield_or_static(byte_no, false);
}
void TemplateTable::nofast_putfield(int byte_no) {
putfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::putstatic(int byte_no) {
putfield_or_static(byte_no, true);
}
void TemplateTable::jvmti_post_fast_field_mod() {
const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L2;
__ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
__ testl(scratch, scratch);
__ jcc(Assembler::zero, L2);
__ pop_ptr(rbx); // copy the object pointer from tos
__ verify_oop(rbx);
__ push_ptr(rbx); // put the object pointer back on tos
// Save tos values before call_VM() clobbers them. Since we have
// to do it for every data type, we use the saved values as the
// jvalue object.
switch (bytecode()) { // load values into the jvalue object
case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ push_i(rax); break;
case Bytecodes::_fast_dputfield: __ push(dtos); break;
case Bytecodes::_fast_fputfield: __ push(ftos); break;
case Bytecodes::_fast_lputfield: __ push_l(rax); break;
default:
ShouldNotReachHere();
}
__ mov(scratch, rsp); // points to jvalue on the stack
// access constant pool cache entry
LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
__ verify_oop(rbx);
// rbx: object pointer copied above
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
switch (bytecode()) { // restore tos values
case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
case Bytecodes::_fast_dputfield: __ pop(dtos); break;
case Bytecodes::_fast_fputfield: __ pop(ftos); break;
case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
}
__ bind(L2);
}
}
void TemplateTable::fast_storefield(TosState state) {
transition(state, vtos);
ByteSize base = ConstantPoolCache::base_offset();
jvmti_post_fast_field_mod();
// access constant pool cache
__ get_cache_and_index_at_bcp(rcx, rbx, 1);
// test for volatile with rdx but rdx is tos register for lputfield.
__ movl(rdx, Address(rcx, rbx, Address::times_ptr,
in_bytes(base +
ConstantPoolCacheEntry::flags_offset())));
// replace index with field offset from cache entry
__ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
// [jk] not needed currently
// volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
// Assembler::StoreStore));
Label notVolatile;
__ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1);
// Get object from stack
pop_and_check_object(rcx);
// field address
const Address field(rcx, rbx, Address::times_1);
// access field
switch (bytecode()) {
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, field, rax, _bs->kind(), false);
break;
case Bytecodes::_fast_lputfield:
#ifdef _LP64
__ movq(field, rax);
#else
__ stop("should not be rewritten");
#endif
break;
case Bytecodes::_fast_iputfield:
__ movl(field, rax);
break;
case Bytecodes::_fast_bputfield:
__ movb(field, rax);
break;
case Bytecodes::_fast_sputfield:
// fall through
case Bytecodes::_fast_cputfield:
__ movw(field, rax);
break;
case Bytecodes::_fast_fputfield:
__ store_float(field);
break;
case Bytecodes::_fast_dputfield:
__ store_double(field);
break;
default:
ShouldNotReachHere();
}
// Check for volatile store
__ testl(rdx, rdx);
__ jcc(Assembler::zero, notVolatile);
volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
Assembler::StoreStore));
__ bind(notVolatile);
}
void TemplateTable::fast_accessfield(TosState state) {
transition(atos, state);
// Do the JVMTI work here to avoid disturbing the register state below
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label L1;
__ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
__ testl(rcx, rcx);
__ jcc(Assembler::zero, L1);
// access constant pool cache entry
LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
__ verify_oop(rax);
__ push_ptr(rax); // save object pointer before call_VM() clobbers it
LP64_ONLY(__ mov(c_rarg1, rax));
// c_rarg1: object pointer copied above
// c_rarg2: cache entry pointer
LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
__ pop_ptr(rax); // restore object pointer
__ bind(L1);
}
// access constant pool cache
__ get_cache_and_index_at_bcp(rcx, rbx, 1);
// replace index with field offset from cache entry
// [jk] not needed currently
// if (os::is_MP()) {
// __ movl(rdx, Address(rcx, rbx, Address::times_8,
// in_bytes(ConstantPoolCache::base_offset() +
// ConstantPoolCacheEntry::flags_offset())));
// __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
// __ andl(rdx, 0x1);
// }
__ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset())));
// rax: object
__ verify_oop(rax);
__ null_check(rax);
Address field(rax, rbx, Address::times_1);
// access field
switch (bytecode()) {
case Bytecodes::_fast_agetfield:
__ load_heap_oop(rax, field);
__ verify_oop(rax);
break;
case Bytecodes::_fast_lgetfield:
#ifdef _LP64
__ movq(rax, field);
#else
__ stop("should not be rewritten");
#endif
break;
case Bytecodes::_fast_igetfield:
__ movl(rax, field);
break;
case Bytecodes::_fast_bgetfield:
__ movsbl(rax, field);
break;
case Bytecodes::_fast_sgetfield:
__ load_signed_short(rax, field);
break;
case Bytecodes::_fast_cgetfield:
__ load_unsigned_short(rax, field);
break;
case Bytecodes::_fast_fgetfield:
__ load_float(field);
break;
case Bytecodes::_fast_dgetfield:
__ load_double(field);
break;
default:
ShouldNotReachHere();
}
// [jk] not needed currently
// if (os::is_MP()) {
// Label notVolatile;
// __ testl(rdx, rdx);
// __ jcc(Assembler::zero, notVolatile);
// __ membar(Assembler::LoadLoad);
// __ bind(notVolatile);
//};
}
void TemplateTable::fast_xaccess(TosState state) {
transition(vtos, state);
// get receiver
__ movptr(rax, aaddress(0));
// access constant pool cache
__ get_cache_and_index_at_bcp(rcx, rdx, 2);
__ movptr(rbx,
Address(rcx, rdx, Address::times_ptr,
in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset())));
// make sure exception is reported in correct bcp range (getfield is
// next instruction)
__ increment(rbcp);
__ null_check(rax);
const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
switch (state) {
case itos:
__ movl(rax, field);
break;
case atos:
__ load_heap_oop(rax, field);
__ verify_oop(rax);
break;
case ftos:
__ load_float(field);
break;
default:
ShouldNotReachHere();
}
// [jk] not needed currently
// if (os::is_MP()) {
// Label notVolatile;
// __ movl(rdx, Address(rcx, rdx, Address::times_8,
// in_bytes(ConstantPoolCache::base_offset() +
// ConstantPoolCacheEntry::flags_offset())));
// __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
// __ testl(rdx, 0x1);
// __ jcc(Assembler::zero, notVolatile);
// __ membar(Assembler::LoadLoad);
// __ bind(notVolatile);
// }
__ decrement(rbcp);
}
//-----------------------------------------------------------------------------
// Calls
void TemplateTable::count_calls(Register method, Register temp) {
// implemented elsewhere
ShouldNotReachHere();
}
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);
const bool save_flags = (flags != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
assert(flags == noreg || flags == rdx, "");
assert(recv == noreg || recv == rcx, "");
// setup registers & access constant pool cache
if (recv == noreg) recv = rcx;
if (flags == noreg) flags = rdx;
assert_different_registers(method, index, recv, flags);
// save 'interpreter return address'
__ save_bcp();
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// maybe push appendix to arguments (just before return address)
if (is_invokedynamic || is_invokehandle) {
Label L_no_push;
__ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
__ jcc(Assembler::zero, L_no_push);
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ push(rbx);
__ mov(rbx, index);
assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
__ load_resolved_reference_at_index(index, rbx);
__ pop(rbx);
__ push(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
}
// load receiver if needed (after appendix is pushed so parameter size is correct)
// Note: no return address pushed yet
if (load_receiver) {
__ movl(recv, flags);
__ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
const int receiver_is_at_end = -1; // back off one slot to get receiver
Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
__ movptr(recv, recv_addr);
__ verify_oop(recv);
}
if (save_flags) {
__ movl(rbcp, flags);
}
// compute return type
__ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
// load return address
{
const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
ExternalAddress table(table_addr);
LP64_ONLY(__ lea(rscratch1, table));
LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
}
// push return address
__ push(flags);
// Restore flags value from the constant pool cache, and restore rsi
// for later null checks. r13 is the bytecode pointer
if (save_flags) {
__ movl(flags, rbcp);
__ restore_bcp();
}
}
void TemplateTable::invokevirtual_helper(Register index,
Register recv,
Register flags) {
// Uses temporary registers rax, rdx
assert_different_registers(index, recv, rax, rdx);
assert(index == rbx, "");
assert(recv == rcx, "");
// Test for an invoke of a final method
Label notFinal;
__ movl(rax, flags);
__ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
__ jcc(Assembler::zero, notFinal);
const Register method = index; // method must be rbx
assert(method == rbx,
"Method* must be rbx for interpreter calling convention");
// do the call - the index is actually the method to call
// that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
// It's final, need a null check here!
__ null_check(recv);
// profile this call
__ profile_final_call(rax);
__ profile_arguments_type(rax, method, rbcp, true);
__ jump_from_interpreted(method, rax);
__ bind(notFinal);
// get receiver klass
__ null_check(recv, oopDesc::klass_offset_in_bytes());
__ load_klass(rax, recv);
// profile this call
__ profile_virtual_call(rax, rlocals, rdx);
// get target Method* & entry point
__ lookup_virtual_method(rax, index, method);
__ profile_called_method(method, rdx, rbcp);
__ profile_arguments_type(rdx, method, rbcp, true);
__ jump_from_interpreted(method, rdx);
}
void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
prepare_invoke(byte_no,
rbx, // method or vtable index
noreg, // unused itable index
rcx, rdx); // recv, flags
// rbx: index
// rcx: receiver
// rdx: flags
invokevirtual_helper(rbx, rcx, rdx);
}
void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rbx, noreg, // get f1 Method*
rcx); // get receiver also for null check
__ verify_oop(rcx);
__ null_check(rcx);
// do the call
__ profile_call(rax);
__ profile_arguments_type(rax, rbx, rbcp, false);
__ jump_from_interpreted(rbx, rax);
}
void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rbx); // get f1 Method*
// do the call
__ profile_call(rax);
__ profile_arguments_type(rax, rbx, rbcp, false);
__ jump_from_interpreted(rbx, rax);
}
void TemplateTable::fast_invokevfinal(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
__ stop("fast_invokevfinal not used on x86");
}
void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index
rcx, rdx); // recv, flags
// rax: interface klass (from f1)
// rbx: itable index (from f2)
// rcx: receiver
// rdx: flags
// Special case of invokeinterface called for virtual method of
// java.lang.Object. See cpCacheOop.cpp for details.
// This code isn't produced by javac, but could be produced by
// another compliant java compiler.
Label notMethod;
__ movl(rlocals, rdx);
__ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
__ jcc(Assembler::zero, notMethod);
invokevirtual_helper(rbx, rcx, rdx);
__ bind(notMethod);
// Get receiver klass into rdx - also a null check
__ restore_locals(); // restore r14
__ null_check(rcx, oopDesc::klass_offset_in_bytes());
__ load_klass(rdx, rcx);
// profile this call
__ profile_virtual_call(rdx, rbcp, rlocals);
Label no_such_interface, no_such_method;
__ lookup_interface_method(// inputs: rec. class, interface, itable index
rdx, rax, rbx,
// outputs: method, scan temp. reg
rbx, rbcp,
no_such_interface);
// rbx: Method* to call
// rcx: receiver
// Check for abstract method error
// Note: This should be done more efficiently via a throw_abstract_method_error
// interpreter entry point and a conditional jump to it in case of a null
// method.
__ testptr(rbx, rbx);
__ jcc(Assembler::zero, no_such_method);
__ profile_called_method(rbx, rbcp, rdx);
__ profile_arguments_type(rdx, rbx, rbcp, true);
// do the call
// rcx: receiver
// rbx,: Method*
__ jump_from_interpreted(rbx, rdx);
__ should_not_reach_here();
// exception handling code follows...
// note: must restore interpreter registers to canonical
// state for exception handling to work correctly!
__ bind(no_such_method);
// throw exception
__ pop(rbx); // pop return address (pushed by prepare_invoke)
__ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
__ bind(no_such_interface);
// throw exception
__ pop(rbx); // pop return address (pushed by prepare_invoke)
__ restore_bcp(); // rbcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_IncompatibleClassChangeError));
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register rbx_method = rbx;
const Register rax_mtype = rax;
const Register rcx_recv = rcx;
const Register rdx_flags = rdx;
prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
__ verify_method_ptr(rbx_method);
__ verify_oop(rcx_recv);
__ null_check(rcx_recv);
// rax: MethodType object (from cpool->resolved_references[f1], if necessary)
// rbx: MH.invokeExact_MT method (from f2)
// Note: rax_mtype is already pushed (if necessary) by prepare_invoke
// FIXME: profile the LambdaForm also
__ profile_final_call(rax);
__ profile_arguments_type(rdx, rbx_method, rbcp, true);
__ jump_from_interpreted(rbx_method, rdx);
}
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
const Register rbx_method = rbx;
const Register rax_callsite = rax;
prepare_invoke(byte_no, rbx_method, rax_callsite);
// rax: CallSite object (from cpool->resolved_references[f1])
// rbx: MH.linkToCallSite method (from f2)
// Note: rax_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(rbcp);
__ profile_arguments_type(rdx, rbx_method, rbcp, false);
__ verify_oop(rax_callsite);
__ jump_from_interpreted(rbx_method, rdx);
}
//-----------------------------------------------------------------------------
// Allocation
void TemplateTable::_new() {
transition(vtos, atos);
__ get_unsigned_2_byte_index_at_bcp(rdx, 1);
Label slow_case;
Label slow_case_no_pop;
Label done;
Label initialize_header;
Label initialize_object; // including clearing the fields
Label allocate_shared;
__ get_cpool_and_tags(rcx, rax);
// Make sure the class we're about to instantiate has been resolved.
// This is done before loading InstanceKlass to be consistent with the order
// how Constant Pool is updated (see ConstantPool::klass_at_put)
const int tags_offset = Array<u1>::base_offset_in_bytes();
__ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
__ jcc(Assembler::notEqual, slow_case_no_pop);
// get InstanceKlass
__ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
__ push(rcx); // save the contexts of klass for initializing the header
// make sure klass is initialized & doesn't have finalizer
// make sure klass is fully initialized
__ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
__ jcc(Assembler::notEqual, slow_case);
// get instance_size in InstanceKlass (scaled to a count of bytes)
__ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
// test to see if it has a finalizer or is malformed in some way
__ testl(rdx, Klass::_lh_instance_slow_path_bit);
__ jcc(Assembler::notZero, slow_case);
//
// Allocate the instance
// 1) Try to allocate in the TLAB
// 2) if fail and the object is large allocate in the shared Eden
// 3) if the above fails (or is not applicable), go to a slow case
// (creates a new TLAB, etc.)
const bool allow_shared_alloc =
Universe::heap()->supports_inline_contig_alloc();
const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
#ifndef _LP64
if (UseTLAB || allow_shared_alloc) {
__ get_thread(thread);
}
#endif // _LP64
if (UseTLAB) {
__ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
__ lea(rbx, Address(rax, rdx, Address::times_1));
__ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
__ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
__ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
if (ZeroTLAB) {
// the fields have been already cleared
__ jmp(initialize_header);
} else {
// initialize both the header and fields
__ jmp(initialize_object);
}
}
// Allocation in the shared Eden, if allowed.
//
// rdx: instance size in bytes
if (allow_shared_alloc) {
__ bind(allocate_shared);
ExternalAddress heap_top((address)Universe::heap()->top_addr());
ExternalAddress heap_end((address)Universe::heap()->end_addr());
Label retry;
__ bind(retry);
__ movptr(rax, heap_top);
__ lea(rbx, Address(rax, rdx, Address::times_1));
__ cmpptr(rbx, heap_end);
__ jcc(Assembler::above, slow_case);
// Compare rax, with the top addr, and if still equal, store the new
// top addr in rbx, at the address of the top addr pointer. Sets ZF if was
// equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
//
// rax,: object begin
// rbx,: object end
// rdx: instance size in bytes
__ locked_cmpxchgptr(rbx, heap_top);
// if someone beat us on the allocation, try again, otherwise continue
__ jcc(Assembler::notEqual, retry);
__ incr_allocated_bytes(thread, rdx, 0);
}
if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
// The object is initialized before the header. If the object size is
// zero, go directly to the header initialization.
__ bind(initialize_object);
__ decrement(rdx, sizeof(oopDesc));
__ jcc(Assembler::zero, initialize_header);
// Initialize topmost object field, divide rdx by 8, check if odd and
// test if zero.
__ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
__ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
// rdx must have been multiple of 8
#ifdef ASSERT
// make sure rdx was multiple of 8
Label L;
// Ignore partial flag stall after shrl() since it is debug VM
__ jccb(Assembler::carryClear, L);
__ stop("object size is not multiple of 2 - adjust this code");
__ bind(L);
// rdx must be > 0, no extra check needed here
#endif
// initialize remaining object fields: rdx was a multiple of 8
{ Label loop;
__ bind(loop);
__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
__ decrement(rdx);
__ jcc(Assembler::notZero, loop);
}
// initialize object header only.
__ bind(initialize_header);
if (UseBiasedLocking) {
__ pop(rcx); // get saved klass back in the register.
__ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
__ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
} else {
__ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
(intptr_t)markOopDesc::prototype()); // header
__ pop(rcx); // get saved klass back in the register.
}
#ifdef _LP64
__ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
__ store_klass_gap(rax, rsi); // zero klass gap for compressed oops
#endif
__ store_klass(rax, rcx); // klass
{
SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
// Trigger dtrace event for fastpath
__ push(atos);
__ call_VM_leaf(
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
__ pop(atos);
}
__ jmp(done);
}
// slow case
__ bind(slow_case);
__ pop(rcx); // restore stack pointer to what it was when we came in.
__ bind(slow_case_no_pop);
Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
__ get_constant_pool(rarg1);
__ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
__ verify_oop(rax);
// continue
__ bind(done);
}
void TemplateTable::newarray() {
transition(itos, atos);
Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
__ load_unsigned_byte(rarg1, at_bcp(1));
call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
rarg1, rax);
}
void TemplateTable::anewarray() {
transition(itos, atos);
Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
__ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
__ get_constant_pool(rarg1);
call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
rarg1, rarg2, rax);
}
void TemplateTable::arraylength() {
transition(atos, itos);
__ null_check(rax, arrayOopDesc::length_offset_in_bytes());
__ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
}
void TemplateTable::checkcast() {
transition(atos, atos);
Label done, is_null, ok_is_subtype, quicked, resolved;
__ testptr(rax, rax); // object is in rax
__ jcc(Assembler::zero, is_null);
// Get cpool & tags index
__ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
__ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
// See if bytecode has already been quicked
__ cmpb(Address(rdx, rbx,
Address::times_1,
Array<u1>::base_offset_in_bytes()),
JVM_CONSTANT_Class);
__ jcc(Assembler::equal, quicked);
__ push(atos); // save receiver for result, and for GC
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
// vm_result_2 has metadata result
#ifndef _LP64
// borrow rdi from locals
__ get_thread(rdi);
__ get_vm_result_2(rax, rdi);
__ restore_locals();
#else
__ get_vm_result_2(rax, r15_thread);
#endif
__ pop_ptr(rdx); // restore receiver
__ jmpb(resolved);
// Get superklass in rax and subklass in rbx
__ bind(quicked);
__ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
__ movptr(rax, Address(rcx, rbx,
Address::times_ptr, sizeof(ConstantPool)));
__ bind(resolved);
__ load_klass(rbx, rdx);
// Generate subtype check. Blows rcx, rdi. Object in rdx.
// Superklass in rax. Subklass in rbx.
__ gen_subtype_check(rbx, ok_is_subtype);
// Come here on failure
__ push_ptr(rdx);
// object is at TOS
__ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
// Come here on success
__ bind(ok_is_subtype);
__ mov(rax, rdx); // Restore object in rdx
// Collect counts on whether this check-cast sees NULLs a lot or not.
if (ProfileInterpreter) {
__ jmp(done);
__ bind(is_null);
__ profile_null_seen(rcx);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
}
void TemplateTable::instanceof() {
transition(atos, itos);
Label done, is_null, ok_is_subtype, quicked, resolved;
__ testptr(rax, rax);
__ jcc(Assembler::zero, is_null);
// Get cpool & tags index
__ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
__ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
// See if bytecode has already been quicked
__ cmpb(Address(rdx, rbx,
Address::times_1,
Array<u1>::base_offset_in_bytes()),
JVM_CONSTANT_Class);
__ jcc(Assembler::equal, quicked);
__ push(atos); // save receiver for result, and for GC
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
// vm_result_2 has metadata result
#ifndef _LP64
// borrow rdi from locals
__ get_thread(rdi);
__ get_vm_result_2(rax, rdi);
__ restore_locals();
#else
__ get_vm_result_2(rax, r15_thread);
#endif
__ pop_ptr(rdx); // restore receiver
__ verify_oop(rdx);
__ load_klass(rdx, rdx);
__ jmpb(resolved);
// Get superklass in rax and subklass in rdx
__ bind(quicked);
__ load_klass(rdx, rax);
__ movptr(rax, Address(rcx, rbx,
Address::times_ptr, sizeof(ConstantPool)));
__ bind(resolved);
// Generate subtype check. Blows rcx, rdi
// Superklass in rax. Subklass in rdx.
__ gen_subtype_check(rdx, ok_is_subtype);
// Come here on failure
__ xorl(rax, rax);
__ jmpb(done);
// Come here on success
__ bind(ok_is_subtype);
__ movl(rax, 1);
// Collect counts on whether this test sees NULLs a lot or not.
if (ProfileInterpreter) {
__ jmp(done);
__ bind(is_null);
__ profile_null_seen(rcx);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
// rax = 0: obj == NULL or obj is not an instanceof the specified klass
// rax = 1: obj != NULL and obj is an instanceof the specified klass
}
//----------------------------------------------------------------------------------------------------
// Breakpoints
void TemplateTable::_breakpoint() {
// Note: We get here even if we are single stepping..
// jbug insists on setting breakpoints at every bytecode
// even if we are in single step mode.
transition(vtos, vtos);
Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
// get the unpatched byte code
__ get_method(rarg);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::get_original_bytecode_at),
rarg, rbcp);
__ mov(rbx, rax); // why?
// post the breakpoint event
__ get_method(rarg);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
rarg, rbcp);
// complete the execution of original bytecode
__ dispatch_only_normal(vtos);
}
//-----------------------------------------------------------------------------
// Exceptions
void TemplateTable::athrow() {
transition(atos, vtos);
__ null_check(rax);
__ jump(ExternalAddress(Interpreter::throw_exception_entry()));
}
//-----------------------------------------------------------------------------
// Synchronization
//
// Note: monitorenter & exit are symmetric routines; which is reflected
// in the assembly code structure as well
//
// Stack layout:
//
// [expressions ] <--- rsp = expression stack top
// ..
// [expressions ]
// [monitor entry] <--- monitor block top = expression stack bot
// ..
// [monitor entry]
// [frame data ] <--- monitor block bot
// ...
// [saved rbp ] <--- rbp
void TemplateTable::monitorenter() {
transition(atos, vtos);
// check for NULL object
__ null_check(rax);
const Address monitor_block_top(
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
Label allocated;
Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
// initialize entry pointer
__ xorl(rmon, rmon); // points to free slot or NULL
// find a free slot in the monitor block (result in rmon)
{
Label entry, loop, exit;
__ movptr(rtop, monitor_block_top); // points to current entry,
// starting with top-most entry
__ lea(rbot, monitor_block_bot); // points to word before bottom
// of monitor block
__ jmpb(entry);
__ bind(loop);
// check if current entry is used
__ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
// if not used then remember entry in rmon
__ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr
// check if current entry is for same object
__ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
// if same object then stop searching
__ jccb(Assembler::equal, exit);
// otherwise advance to next entry
__ addptr(rtop, entry_size);
__ bind(entry);
// check if bottom reached
__ cmpptr(rtop, rbot);
// if not at bottom then check this entry
__ jcc(Assembler::notEqual, loop);
__ bind(exit);
}
__ testptr(rmon, rmon); // check if a slot has been found
__ jcc(Assembler::notZero, allocated); // if found, continue with that one
// allocate one if there's no free slot
{
Label entry, loop;
// 1. compute new pointers // rsp: old expression stack top
__ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
__ subptr(rsp, entry_size); // move expression stack top
__ subptr(rmon, entry_size); // move expression stack bottom
__ mov(rtop, rsp); // set start value for copy loop
__ movptr(monitor_block_bot, rmon); // set new monitor block bottom
__ jmp(entry);
// 2. move expression stack contents
__ bind(loop);
__ movptr(rbot, Address(rtop, entry_size)); // load expression stack
// word from old location
__ movptr(Address(rtop, 0), rbot); // and store it at new location
__ addptr(rtop, wordSize); // advance to next word
__ bind(entry);
__ cmpptr(rtop, rmon); // check if bottom reached
__ jcc(Assembler::notEqual, loop); // if not at bottom then
// copy next word
}
// call run-time routine
// rmon: points to monitor entry
__ bind(allocated);
// Increment bcp to point to the next bytecode, so exception
// handling for async. exceptions work correctly.
// The object has already been poped from the stack, so the
// expression stack looks correct.
__ increment(rbcp);
// store object
__ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
__ lock_object(rmon);
// check to make sure this monitor doesn't cause stack overflow after locking
__ save_bcp(); // in case of exception
__ generate_stack_overflow_check(0);
// The bcp has already been incremented. Just need to dispatch to
// next instruction.
__ dispatch_next(vtos);
}
void TemplateTable::monitorexit() {
transition(atos, vtos);
// check for NULL object
__ null_check(rax);
const Address monitor_block_top(
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
Label found;
// find matching slot
{
Label entry, loop;
__ movptr(rtop, monitor_block_top); // points to current entry,
// starting with top-most entry
__ lea(rbot, monitor_block_bot); // points to word before bottom
// of monitor block
__ jmpb(entry);
__ bind(loop);
// check if current entry is for same object
__ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
// if same object then stop searching
__ jcc(Assembler::equal, found);
// otherwise advance to next entry
__ addptr(rtop, entry_size);
__ bind(entry);
// check if bottom reached
__ cmpptr(rtop, rbot);
// if not at bottom then check this entry
__ jcc(Assembler::notEqual, loop);
}
// error handling. Unlocking was not block-structured
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
// call run-time routine
__ bind(found);
__ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
__ unlock_object(rtop);
__ pop_ptr(rax); // discard object
}
// Wide instructions
void TemplateTable::wide() {
transition(vtos, vtos);
__ load_unsigned_byte(rbx, at_bcp(1));
ExternalAddress wtable((address)Interpreter::_wentry_point);
__ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
// Note: the rbcp increment step is part of the individual wide bytecode implementations
}
// Multi arrays
void TemplateTable::multianewarray() {
transition(vtos, atos);
Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
__ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
// last dim is on top of stack; we want address of first one:
// first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
// the latter wordSize to point to the beginning of the array.
__ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
__ load_unsigned_byte(rbx, at_bcp(3));
__ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts
}
#endif /* !CC_INTERP */