/*
* Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "compiler/disassembler.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/sharedRuntime.hpp"
#include "jvmci/jvmciEnv.hpp"
#include "jvmci/jvmciCodeInstaller.hpp"
#include "jvmci/jvmciJavaClasses.hpp"
#include "jvmci/jvmciCompilerToVM.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "asm/register.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/vmreg.hpp"
#include "vmreg_x86.inline.hpp"
jint CodeInstaller::pd_next_offset(NativeInstruction* inst, jint pc_offset, oop method) {
if (inst->is_call() || inst->is_jump()) {
assert(NativeCall::instruction_size == (int)NativeJump::instruction_size, "unexpected size");
return (pc_offset + NativeCall::instruction_size);
} else if (inst->is_mov_literal64()) {
// mov+call instruction pair
jint offset = pc_offset + NativeMovConstReg::instruction_size;
u_char* call = (u_char*) (_instructions->start() + offset);
if (call[0] == Assembler::REX_B) {
offset += 1; /* prefix byte for extended register R8-R15 */
call++;
}
assert(call[0] == 0xFF, "expected call");
offset += 2; /* opcode byte + modrm byte */
return (offset);
} else if (inst->is_call_reg()) {
// the inlined vtable stub contains a "call register" instruction
assert(method != NULL, "only valid for virtual calls");
return (pc_offset + ((NativeCallReg *) inst)->next_instruction_offset());
} else if (inst->is_cond_jump()) {
address pc = (address) (inst);
return pc_offset + (jint) (Assembler::locate_next_instruction(pc) - pc);
} else {
fatal("unsupported type of instruction for call site");
return 0;
}
}
void CodeInstaller::pd_patch_OopConstant(int pc_offset, Handle& constant) {
address pc = _instructions->start() + pc_offset;
Handle obj = HotSpotObjectConstantImpl::object(constant);
jobject value = JNIHandles::make_local(obj());
if (HotSpotObjectConstantImpl::compressed(constant)) {
#ifdef _LP64
address operand = Assembler::locate_operand(pc, Assembler::narrow_oop_operand);
int oop_index = _oop_recorder->find_index(value);
_instructions->relocate(pc, oop_Relocation::spec(oop_index), Assembler::narrow_oop_operand);
TRACE_jvmci_3("relocating (narrow oop constant) at " PTR_FORMAT "/" PTR_FORMAT, p2i(pc), p2i(operand));
#else
fatal("compressed oop on 32bit");
#endif
} else {
address operand = Assembler::locate_operand(pc, Assembler::imm_operand);
*((jobject*) operand) = value;
_instructions->relocate(pc, oop_Relocation::spec_for_immediate(), Assembler::imm_operand);
TRACE_jvmci_3("relocating (oop constant) at " PTR_FORMAT "/" PTR_FORMAT, p2i(pc), p2i(operand));
}
}
void CodeInstaller::pd_patch_DataSectionReference(int pc_offset, int data_offset) {
address pc = _instructions->start() + pc_offset;
address operand = Assembler::locate_operand(pc, Assembler::disp32_operand);
address next_instruction = Assembler::locate_next_instruction(pc);
address dest = _constants->start() + data_offset;
long disp = dest - next_instruction;
assert(disp == (jint) disp, "disp doesn't fit in 32 bits");
*((jint*) operand) = (jint) disp;
_instructions->relocate(pc, section_word_Relocation::spec((address) dest, CodeBuffer::SECT_CONSTS), Assembler::disp32_operand);
TRACE_jvmci_3("relocating at " PTR_FORMAT "/" PTR_FORMAT " with destination at " PTR_FORMAT " (%d)", p2i(pc), p2i(operand), p2i(dest), data_offset);
}
void CodeInstaller::pd_relocate_CodeBlob(CodeBlob* cb, NativeInstruction* inst) {
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*) cb;
nativeJump_at((address)inst)->set_jump_destination(nm->verified_entry_point());
} else {
nativeJump_at((address)inst)->set_jump_destination(cb->code_begin());
}
_instructions->relocate((address)inst, runtime_call_Relocation::spec(), Assembler::call32_operand);
}
void CodeInstaller::pd_relocate_ForeignCall(NativeInstruction* inst, jlong foreign_call_destination) {
address pc = (address) inst;
if (inst->is_call()) {
// NOTE: for call without a mov, the offset must fit a 32-bit immediate
// see also CompilerToVM.getMaxCallTargetOffset()
NativeCall* call = nativeCall_at(pc);
call->set_destination((address) foreign_call_destination);
_instructions->relocate(call->instruction_address(), runtime_call_Relocation::spec(), Assembler::call32_operand);
} else if (inst->is_mov_literal64()) {
NativeMovConstReg* mov = nativeMovConstReg_at(pc);
mov->set_data((intptr_t) foreign_call_destination);
_instructions->relocate(mov->instruction_address(), runtime_call_Relocation::spec(), Assembler::imm_operand);
} else if (inst->is_jump()) {
NativeJump* jump = nativeJump_at(pc);
jump->set_jump_destination((address) foreign_call_destination);
_instructions->relocate(jump->instruction_address(), runtime_call_Relocation::spec(), Assembler::call32_operand);
} else if (inst->is_cond_jump()) {
address old_dest = nativeGeneralJump_at(pc)->jump_destination();
address disp = Assembler::locate_operand(pc, Assembler::call32_operand);
*(jint*) disp += ((address) foreign_call_destination) - old_dest;
_instructions->relocate(pc, runtime_call_Relocation::spec(), Assembler::call32_operand);
} else {
fatal("unsupported relocation for foreign call");
}
TRACE_jvmci_3("relocating (foreign call) at " PTR_FORMAT, p2i(inst));
}
void CodeInstaller::pd_relocate_JavaMethod(oop hotspot_method, jint pc_offset) {
#ifdef ASSERT
Method* method = NULL;
// we need to check, this might also be an unresolved method
if (hotspot_method->is_a(HotSpotResolvedJavaMethodImpl::klass())) {
method = getMethodFromHotSpotMethod(hotspot_method);
}
#endif
switch (_next_call_type) {
case INLINE_INVOKE:
break;
case INVOKEVIRTUAL:
case INVOKEINTERFACE: {
assert(method == NULL || !method->is_static(), "cannot call static method with invokeinterface");
NativeCall* call = nativeCall_at(_instructions->start() + pc_offset);
call->set_destination(SharedRuntime::get_resolve_virtual_call_stub());
_instructions->relocate(call->instruction_address(),
virtual_call_Relocation::spec(_invoke_mark_pc),
Assembler::call32_operand);
break;
}
case INVOKESTATIC: {
assert(method == NULL || method->is_static(), "cannot call non-static method with invokestatic");
NativeCall* call = nativeCall_at(_instructions->start() + pc_offset);
call->set_destination(SharedRuntime::get_resolve_static_call_stub());
_instructions->relocate(call->instruction_address(),
relocInfo::static_call_type, Assembler::call32_operand);
break;
}
case INVOKESPECIAL: {
assert(method == NULL || !method->is_static(), "cannot call static method with invokespecial");
NativeCall* call = nativeCall_at(_instructions->start() + pc_offset);
call->set_destination(SharedRuntime::get_resolve_opt_virtual_call_stub());
_instructions->relocate(call->instruction_address(),
relocInfo::opt_virtual_call_type, Assembler::call32_operand);
break;
}
default:
break;
}
}
static void relocate_poll_near(address pc) {
NativeInstruction* ni = nativeInstruction_at(pc);
int32_t* disp = (int32_t*) Assembler::locate_operand(pc, Assembler::disp32_operand);
int32_t offset = *disp; // The Java code installed the polling page offset into the disp32 operand
intptr_t new_disp = (intptr_t) (os::get_polling_page() + offset) - (intptr_t) ni;
*disp = (int32_t)new_disp;
}
void CodeInstaller::pd_relocate_poll(address pc, jint mark) {
switch (mark) {
case POLL_NEAR: {
relocate_poll_near(pc);
_instructions->relocate(pc, relocInfo::poll_type, Assembler::disp32_operand);
break;
}
case POLL_FAR:
// This is a load from a register so there is no relocatable operand.
// We just have to ensure that the format is not disp32_operand
// so that poll_Relocation::fix_relocation_after_move does the right
// thing (i.e. ignores this relocation record)
_instructions->relocate(pc, relocInfo::poll_type, Assembler::imm_operand);
break;
case POLL_RETURN_NEAR: {
relocate_poll_near(pc);
_instructions->relocate(pc, relocInfo::poll_return_type, Assembler::disp32_operand);
break;
}
case POLL_RETURN_FAR:
// see comment above for POLL_FAR
_instructions->relocate(pc, relocInfo::poll_return_type, Assembler::imm_operand);
break;
default:
fatal("invalid mark value");
break;
}
}
// convert JVMCI register indices (as used in oop maps) to HotSpot registers
VMReg CodeInstaller::get_hotspot_reg(jint jvmci_reg) {
if (jvmci_reg < RegisterImpl::number_of_registers) {
return as_Register(jvmci_reg)->as_VMReg();
} else {
jint floatRegisterNumber = jvmci_reg - RegisterImpl::number_of_registers;
if (floatRegisterNumber < XMMRegisterImpl::number_of_registers) {
return as_XMMRegister(floatRegisterNumber)->as_VMReg();
}
ShouldNotReachHere();
return NULL;
}
}
bool CodeInstaller::is_general_purpose_reg(VMReg hotspotRegister) {
return !(hotspotRegister->is_FloatRegister() || hotspotRegister->is_XMMRegister());
}