8021130: Comments need to be tokens
Reviewed-by: lagergren, attila
Contributed-by: james.laskey@oracle.com
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_REGMASK_HPP
#define SHARE_VM_OPTO_REGMASK_HPP
#include "code/vmreg.hpp"
#include "libadt/port.hpp"
#include "opto/optoreg.hpp"
#ifdef TARGET_ARCH_MODEL_x86_32
# include "adfiles/adGlobals_x86_32.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_x86_64
# include "adfiles/adGlobals_x86_64.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_sparc
# include "adfiles/adGlobals_sparc.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_zero
# include "adfiles/adGlobals_zero.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_arm
# include "adfiles/adGlobals_arm.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_ppc
# include "adfiles/adGlobals_ppc.hpp"
#endif
// Some fun naming (textual) substitutions:
//
// RegMask::get_low_elem() ==> RegMask::find_first_elem()
// RegMask::Special ==> RegMask::Empty
// RegMask::_flags ==> RegMask::is_AllStack()
// RegMask::operator<<=() ==> RegMask::Insert()
// RegMask::operator>>=() ==> RegMask::Remove()
// RegMask::Union() ==> RegMask::OR
// RegMask::Inter() ==> RegMask::AND
//
// OptoRegister::RegName ==> OptoReg::Name
//
// OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version
//
// numregs in chaitin ==> proper degree in chaitin
//-------------Non-zero bit search methods used by RegMask---------------------
// Find lowest 1, or return 32 if empty
int find_lowest_bit( uint32 mask );
// Find highest 1, or return 32 if empty
int find_hihghest_bit( uint32 mask );
//------------------------------RegMask----------------------------------------
// The ADL file describes how to print the machine-specific registers, as well
// as any notion of register classes. We provide a register mask, which is
// just a collection of Register numbers.
// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
// RM_SIZE is the size of a register mask in words.
// FORALL_BODY replicates a BODY macro once per word in the register mask.
// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
// However, it means the ADLC can redefine the unroll macro and all loops
// over register masks will be unrolled by the correct amount.
class RegMask VALUE_OBJ_CLASS_SPEC {
union {
double _dummy_force_double_alignment[RM_SIZE>>1];
// Array of Register Mask bits. This array is large enough to cover
// all the machine registers and all parameters that need to be passed
// on the stack (stack registers) up to some interesting limit. Methods
// that need more parameters will NOT be compiled. On Intel, the limit
// is something like 90+ parameters.
int _A[RM_SIZE];
};
enum {
_WordBits = BitsPerInt,
_LogWordBits = LogBitsPerInt,
_RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef
};
public:
enum { CHUNK_SIZE = RM_SIZE*_WordBits };
// SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
// Also, consider the maximum alignment size for a normally allocated
// value. Since we allocate register pairs but not register quads (at
// present), this alignment is SlotsPerLong (== 2). A normally
// aligned allocated register is either a single register, or a pair
// of adjacent registers, the lower-numbered being even.
// See also is_aligned_Pairs() below, and the padding added before
// Matcher::_new_SP to keep allocated pairs aligned properly.
// If we ever go to quad-word allocations, SlotsPerQuad will become
// the controlling alignment constraint. Note that this alignment
// requirement is internal to the allocator, and independent of any
// particular platform.
enum { SlotsPerLong = 2,
SlotsPerVecS = 1,
SlotsPerVecD = 2,
SlotsPerVecX = 4,
SlotsPerVecY = 8 };
// A constructor only used by the ADLC output. All mask fields are filled
// in directly. Calls to this look something like RM(1,2,3,4);
RegMask(
# define BODY(I) int a##I,
FORALL_BODY
# undef BODY
int dummy = 0 ) {
# define BODY(I) _A[I] = a##I;
FORALL_BODY
# undef BODY
}
// Handy copying constructor
RegMask( RegMask *rm ) {
# define BODY(I) _A[I] = rm->_A[I];
FORALL_BODY
# undef BODY
}
// Construct an empty mask
RegMask( ) { Clear(); }
// Construct a mask with a single bit
RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
// Check for register being in mask
int Member( OptoReg::Name reg ) const {
assert( reg < CHUNK_SIZE, "" );
return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
}
// The last bit in the register mask indicates that the mask should repeat
// indefinitely with ONE bits. Returns TRUE if mask is infinite or
// unbounded in size. Returns FALSE if mask is finite size.
int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
// Work around an -xO3 optimization problme in WS6U1. The old way:
// void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
// will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
// follows an Insert() loop, like the one found in init_spill_mask(). Using
// Insert() instead works because the index into _A in computed instead of
// constant. See bug 4665841.
void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
// Test for being a not-empty mask.
int is_NotEmpty( ) const {
int tmp = 0;
# define BODY(I) tmp |= _A[I];
FORALL_BODY
# undef BODY
return tmp;
}
// Find lowest-numbered register from mask, or BAD if mask is empty.
OptoReg::Name find_first_elem() const {
int base, bits;
# define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
FORALL_BODY
# undef BODY
{ base = OptoReg::Bad; bits = 1<<0; }
return OptoReg::Name(base + find_lowest_bit(bits));
}
// Get highest-numbered register from mask, or BAD if mask is empty.
OptoReg::Name find_last_elem() const {
int base, bits;
# define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
FORALL_BODY
# undef BODY
{ base = OptoReg::Bad; bits = 1<<0; }
return OptoReg::Name(base + find_hihghest_bit(bits));
}
// Find the lowest-numbered register pair in the mask. Return the
// HIGHEST register number in the pair, or BAD if no pairs.
// Assert that the mask contains only bit pairs.
OptoReg::Name find_first_pair() const;
// Clear out partial bits; leave only aligned adjacent bit pairs.
void clear_to_pairs();
// Smear out partial bits; leave only aligned adjacent bit pairs.
void smear_to_pairs();
// Verify that the mask contains only aligned adjacent bit pairs
void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); }
// Test that the mask contains only aligned adjacent bit pairs
bool is_aligned_pairs() const;
// mask is a pair of misaligned registers
bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); }
// Test for single register
int is_bound1() const;
// Test for a single adjacent pair
int is_bound_pair() const;
// Test for a single adjacent set of ideal register's size.
int is_bound(uint ireg) const {
if (is_vector(ireg)) {
if (is_bound_set(num_registers(ireg)))
return true;
} else if (is_bound1() || is_bound_pair()) {
return true;
}
return false;
}
// Find the lowest-numbered register set in the mask. Return the
// HIGHEST register number in the set, or BAD if no sets.
// Assert that the mask contains only bit sets.
OptoReg::Name find_first_set(const int size) const;
// Clear out partial bits; leave only aligned adjacent bit sets of size.
void clear_to_sets(const int size);
// Smear out partial bits to aligned adjacent bit sets.
void smear_to_sets(const int size);
// Verify that the mask contains only aligned adjacent bit sets
void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); }
// Test that the mask contains only aligned adjacent bit sets
bool is_aligned_sets(const int size) const;
// mask is a set of misaligned registers
bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);}
// Test for a single adjacent set
int is_bound_set(const int size) const;
static bool is_vector(uint ireg);
static int num_registers(uint ireg);
// Fast overlap test. Non-zero if any registers in common.
int overlap( const RegMask &rm ) const {
return
# define BODY(I) (_A[I] & rm._A[I]) |
FORALL_BODY
# undef BODY
0 ;
}
// Special test for register pressure based splitting
// UP means register only, Register plus stack, or stack only is DOWN
bool is_UP() const;
// Clear a register mask
void Clear( ) {
# define BODY(I) _A[I] = 0;
FORALL_BODY
# undef BODY
}
// Fill a register mask with 1's
void Set_All( ) {
# define BODY(I) _A[I] = -1;
FORALL_BODY
# undef BODY
}
// Insert register into mask
void Insert( OptoReg::Name reg ) {
assert( reg < CHUNK_SIZE, "" );
_A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
}
// Remove register from mask
void Remove( OptoReg::Name reg ) {
assert( reg < CHUNK_SIZE, "" );
_A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
}
// OR 'rm' into 'this'
void OR( const RegMask &rm ) {
# define BODY(I) this->_A[I] |= rm._A[I];
FORALL_BODY
# undef BODY
}
// AND 'rm' into 'this'
void AND( const RegMask &rm ) {
# define BODY(I) this->_A[I] &= rm._A[I];
FORALL_BODY
# undef BODY
}
// Subtract 'rm' from 'this'
void SUBTRACT( const RegMask &rm ) {
# define BODY(I) _A[I] &= ~rm._A[I];
FORALL_BODY
# undef BODY
}
// Compute size of register mask: number of bits
uint Size() const;
#ifndef PRODUCT
void print() const { dump(); }
void dump(outputStream *st = tty) const; // Print a mask
#endif
static const RegMask Empty; // Common empty mask
static bool can_represent(OptoReg::Name reg) {
// NOTE: -1 in computation reflects the usage of the last
// bit of the regmask as an infinite stack flag and
// -7 is to keep mask aligned for largest value (VecY).
return (int)reg < (int)(CHUNK_SIZE-1);
}
static bool can_represent_arg(OptoReg::Name reg) {
// NOTE: -SlotsPerVecY in computation reflects the need
// to keep mask aligned for largest value (VecY).
return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY);
}
};
// Do not use this constant directly in client code!
#undef RM_SIZE
#endif // SHARE_VM_OPTO_REGMASK_HPP