8013129: Possible deadlock with Metaspace locks due to mixed usage of safepoint aware and non-safepoint aware locking
Summary: Change Metaspace::deallocate to take lock with _no_safepoint_check_flag
Reviewed-by: coleenp, jmasa, dholmes
/*
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
#define SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
#include "memory/freeBlockDictionary.hpp"
#include "memory/freeList.hpp"
/*
* A binary tree based search structure for free blocks.
* This is currently used in the Concurrent Mark&Sweep implementation, but
* will be used for free block management for metadata.
*/
// A TreeList is a FreeList which can be used to maintain a
// binary tree of free lists.
template <class Chunk_t, template <class> class FreeList_t> class TreeChunk;
template <class Chunk_t, template <class> class FreeList_t> class BinaryTreeDictionary;
template <class Chunk_t, template <class> class FreeList_t> class AscendTreeCensusClosure;
template <class Chunk_t, template <class> class FreeList_t> class DescendTreeCensusClosure;
template <class Chunk_t, template <class> class FreeList_t> class DescendTreeSearchClosure;
class FreeChunk;
template <class> class AdaptiveFreeList;
typedef BinaryTreeDictionary<FreeChunk, AdaptiveFreeList> AFLBinaryTreeDictionary;
template <class Chunk_t, template <class> class FreeList_t>
class TreeList : public FreeList_t<Chunk_t> {
friend class TreeChunk<Chunk_t, FreeList_t>;
friend class BinaryTreeDictionary<Chunk_t, FreeList_t>;
friend class AscendTreeCensusClosure<Chunk_t, FreeList_t>;
friend class DescendTreeCensusClosure<Chunk_t, FreeList_t>;
friend class DescendTreeSearchClosure<Chunk_t, FreeList_t>;
TreeList<Chunk_t, FreeList_t>* _parent;
TreeList<Chunk_t, FreeList_t>* _left;
TreeList<Chunk_t, FreeList_t>* _right;
protected:
TreeList<Chunk_t, FreeList_t>* parent() const { return _parent; }
TreeList<Chunk_t, FreeList_t>* left() const { return _left; }
TreeList<Chunk_t, FreeList_t>* right() const { return _right; }
// Wrapper on call to base class, to get the template to compile.
Chunk_t* head() const { return FreeList_t<Chunk_t>::head(); }
Chunk_t* tail() const { return FreeList_t<Chunk_t>::tail(); }
void set_head(Chunk_t* head) { FreeList_t<Chunk_t>::set_head(head); }
void set_tail(Chunk_t* tail) { FreeList_t<Chunk_t>::set_tail(tail); }
size_t size() const { return FreeList_t<Chunk_t>::size(); }
// Accessors for links in tree.
void set_left(TreeList<Chunk_t, FreeList_t>* tl) {
_left = tl;
if (tl != NULL)
tl->set_parent(this);
}
void set_right(TreeList<Chunk_t, FreeList_t>* tl) {
_right = tl;
if (tl != NULL)
tl->set_parent(this);
}
void set_parent(TreeList<Chunk_t, FreeList_t>* tl) { _parent = tl; }
void clear_left() { _left = NULL; }
void clear_right() { _right = NULL; }
void clear_parent() { _parent = NULL; }
void initialize() { clear_left(); clear_right(), clear_parent(); FreeList_t<Chunk_t>::initialize(); }
// For constructing a TreeList from a Tree chunk or
// address and size.
TreeList();
static TreeList<Chunk_t, FreeList_t>*
as_TreeList(TreeChunk<Chunk_t, FreeList_t>* tc);
static TreeList<Chunk_t, FreeList_t>* as_TreeList(HeapWord* addr, size_t size);
// Returns the head of the free list as a pointer to a TreeChunk.
TreeChunk<Chunk_t, FreeList_t>* head_as_TreeChunk();
// Returns the first available chunk in the free list as a pointer
// to a TreeChunk.
TreeChunk<Chunk_t, FreeList_t>* first_available();
// Returns the block with the largest heap address amongst
// those in the list for this size; potentially slow and expensive,
// use with caution!
TreeChunk<Chunk_t, FreeList_t>* largest_address();
TreeList<Chunk_t, FreeList_t>* get_better_list(
BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary);
// remove_chunk_replace_if_needed() removes the given "tc" from the TreeList.
// If "tc" is the first chunk in the list, it is also the
// TreeList that is the node in the tree. remove_chunk_replace_if_needed()
// returns the possibly replaced TreeList* for the node in
// the tree. It also updates the parent of the original
// node to point to the new node.
TreeList<Chunk_t, FreeList_t>* remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc);
// See FreeList.
void return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* tc);
void return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* tc);
};
// A TreeChunk is a subclass of a Chunk that additionally
// maintains a pointer to the free list on which it is currently
// linked.
// A TreeChunk is also used as a node in the binary tree. This
// allows the binary tree to be maintained without any additional
// storage (the free chunks are used). In a binary tree the first
// chunk in the free list is also the tree node. Note that the
// TreeChunk has an embedded TreeList for this purpose. Because
// the first chunk in the list is distinguished in this fashion
// (also is the node in the tree), it is the last chunk to be found
// on the free list for a node in the tree and is only removed if
// it is the last chunk on the free list.
template <class Chunk_t, template <class> class FreeList_t>
class TreeChunk : public Chunk_t {
friend class TreeList<Chunk_t, FreeList_t>;
TreeList<Chunk_t, FreeList_t>* _list;
TreeList<Chunk_t, FreeList_t> _embedded_list; // if non-null, this chunk is on _list
static size_t _min_tree_chunk_size;
protected:
TreeList<Chunk_t, FreeList_t>* embedded_list() const { return (TreeList<Chunk_t, FreeList_t>*) &_embedded_list; }
void set_embedded_list(TreeList<Chunk_t, FreeList_t>* v) { _embedded_list = *v; }
public:
TreeList<Chunk_t, FreeList_t>* list() { return _list; }
void set_list(TreeList<Chunk_t, FreeList_t>* v) { _list = v; }
static TreeChunk<Chunk_t, FreeList_t>* as_TreeChunk(Chunk_t* fc);
// Initialize fields in a TreeChunk that should be
// initialized when the TreeChunk is being added to
// a free list in the tree.
void initialize() { embedded_list()->initialize(); }
Chunk_t* next() const { return Chunk_t::next(); }
Chunk_t* prev() const { return Chunk_t::prev(); }
size_t size() const volatile { return Chunk_t::size(); }
static size_t min_size() {
return _min_tree_chunk_size;
}
// debugging
void verify_tree_chunk_list() const;
void assert_is_mangled() const;
};
template <class Chunk_t, template <class> class FreeList_t>
class BinaryTreeDictionary: public FreeBlockDictionary<Chunk_t> {
friend class VMStructs;
size_t _total_size;
size_t _total_free_blocks;
TreeList<Chunk_t, FreeList_t>* _root;
// private accessors
void set_total_size(size_t v) { _total_size = v; }
virtual void inc_total_size(size_t v);
virtual void dec_total_size(size_t v);
void set_total_free_blocks(size_t v) { _total_free_blocks = v; }
TreeList<Chunk_t, FreeList_t>* root() const { return _root; }
void set_root(TreeList<Chunk_t, FreeList_t>* v) { _root = v; }
// This field is added and can be set to point to the
// the Mutex used to synchronize access to the
// dictionary so that assertion checking can be done.
// For example it is set to point to _parDictionaryAllocLock.
NOT_PRODUCT(Mutex* _lock;)
// Remove a chunk of size "size" or larger from the tree and
// return it. If the chunk
// is the last chunk of that size, remove the node for that size
// from the tree.
TreeChunk<Chunk_t, FreeList_t>* get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither);
// Remove this chunk from the tree. If the removal results
// in an empty list in the tree, remove the empty list.
TreeChunk<Chunk_t, FreeList_t>* remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc);
// Remove the node in the trees starting at tl that has the
// minimum value and return it. Repair the tree as needed.
TreeList<Chunk_t, FreeList_t>* remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl);
// Add this free chunk to the tree.
void insert_chunk_in_tree(Chunk_t* freeChunk);
public:
// Return a list of the specified size or NULL from the tree.
// The list is not removed from the tree.
TreeList<Chunk_t, FreeList_t>* find_list (size_t size) const;
void verify_tree() const;
// verify that the given chunk is in the tree.
bool verify_chunk_in_free_list(Chunk_t* tc) const;
private:
void verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const;
static size_t verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl);
// Returns the total number of chunks in the list.
size_t total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const;
// Returns the total number of words in the chunks in the tree
// starting at "tl".
size_t total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const;
// Returns the sum of the square of the size of each block
// in the tree starting at "tl".
double sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const;
// Returns the total number of free blocks in the tree starting
// at "tl".
size_t total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const;
size_t num_free_blocks() const;
size_t tree_height() const;
size_t tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const;
size_t total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const;
size_t total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const;
public:
// Constructor
BinaryTreeDictionary() :
_total_size(0), _total_free_blocks(0), _root(0) {}
BinaryTreeDictionary(MemRegion mr);
// Public accessors
size_t total_size() const { return _total_size; }
size_t total_free_blocks() const { return _total_free_blocks; }
// Reset the dictionary to the initial conditions with
// a single free chunk.
void reset(MemRegion mr);
void reset(HeapWord* addr, size_t size);
// Reset the dictionary to be empty.
void reset();
// Return a chunk of size "size" or greater from
// the tree.
Chunk_t* get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
FreeBlockDictionary<Chunk_t>::verify_par_locked();
Chunk_t* res = get_chunk_from_tree(size, dither);
assert(res == NULL || res->is_free(),
"Should be returning a free chunk");
assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
res == NULL || res->size() == size, "Not correct size");
return res;
}
void return_chunk(Chunk_t* chunk) {
FreeBlockDictionary<Chunk_t>::verify_par_locked();
insert_chunk_in_tree(chunk);
}
void remove_chunk(Chunk_t* chunk) {
FreeBlockDictionary<Chunk_t>::verify_par_locked();
remove_chunk_from_tree((TreeChunk<Chunk_t, FreeList_t>*)chunk);
assert(chunk->is_free(), "Should still be a free chunk");
}
size_t max_chunk_size() const;
size_t total_chunk_size(debug_only(const Mutex* lock)) const {
debug_only(
if (lock != NULL && lock->owned_by_self()) {
assert(total_size_in_tree(root()) == total_size(),
"_total_size inconsistency");
}
)
return total_size();
}
size_t min_size() const {
return TreeChunk<Chunk_t, FreeList_t>::min_size();
}
double sum_of_squared_block_sizes() const {
return sum_of_squared_block_sizes(root());
}
Chunk_t* find_chunk_ends_at(HeapWord* target) const;
// Find the list with size "size" in the binary tree and update
// the statistics in the list according to "split" (chunk was
// split or coalesce) and "birth" (chunk was added or removed).
void dict_census_update(size_t size, bool split, bool birth);
// Return true if the dictionary is overpopulated (more chunks of
// this size than desired) for size "size".
bool coal_dict_over_populated(size_t size);
// Methods called at the beginning of a sweep to prepare the
// statistics for the sweep.
void begin_sweep_dict_census(double coalSurplusPercent,
float inter_sweep_current,
float inter_sweep_estimate,
float intra_sweep_estimate);
// Methods called after the end of a sweep to modify the
// statistics for the sweep.
void end_sweep_dict_census(double splitSurplusPercent);
// Return the largest free chunk in the tree.
Chunk_t* find_largest_dict() const;
// Accessors for statistics
void set_tree_surplus(double splitSurplusPercent);
void set_tree_hints(void);
// Reset statistics for all the lists in the tree.
void clear_tree_census(void);
// Print the statistcis for all the lists in the tree. Also may
// print out summaries.
void print_dict_census(void) const;
void print_free_lists(outputStream* st) const;
// For debugging. Returns the sum of the _returned_bytes for
// all lists in the tree.
size_t sum_dict_returned_bytes() PRODUCT_RETURN0;
// Sets the _returned_bytes for all the lists in the tree to zero.
void initialize_dict_returned_bytes() PRODUCT_RETURN;
// For debugging. Return the total number of chunks in the dictionary.
size_t total_count() PRODUCT_RETURN0;
void report_statistics() const;
void verify() const;
};
#endif // SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP