8163115: Temporarily problem list javac repeating annotations tests
Reviewed-by: jjg
/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "logging/log.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/os.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "vm_version_sparc.hpp"
unsigned int VM_Version::_L2_data_cache_line_size = 0;
void VM_Version::initialize() {
assert(_features != 0, "System pre-initialization is not complete.");
guarantee(VM_Version::has_v9(), "only SPARC v9 is supported");
PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
PrefetchFieldsAhead = prefetch_fields_ahead();
// Allocation prefetch settings
intx cache_line_size = prefetch_data_size();
if( cache_line_size > AllocatePrefetchStepSize )
AllocatePrefetchStepSize = cache_line_size;
AllocatePrefetchDistance = allocate_prefetch_distance();
AllocatePrefetchStyle = allocate_prefetch_style();
if (!has_blk_init() || cache_line_size <= 0) {
if (AllocatePrefetchInstr == 1) {
warning("BIS instructions required for AllocatePrefetchInstr 1 unavailable");
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0);
}
}
UseSSE = 0; // Only on x86 and x64
_supports_cx8 = has_v9();
_supports_atomic_getset4 = true; // swap instruction
if (is_niagara()) {
// Indirect branch is the same cost as direct
if (FLAG_IS_DEFAULT(UseInlineCaches)) {
FLAG_SET_DEFAULT(UseInlineCaches, false);
}
// Align loops on a single instruction boundary.
if (FLAG_IS_DEFAULT(OptoLoopAlignment)) {
FLAG_SET_DEFAULT(OptoLoopAlignment, 4);
}
#ifdef _LP64
// 32-bit oops don't make sense for the 64-bit VM on sparc
// since the 32-bit VM has the same registers and smaller objects.
Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
#endif // _LP64
#ifdef COMPILER2
// Indirect branch is the same cost as direct
if (FLAG_IS_DEFAULT(UseJumpTables)) {
FLAG_SET_DEFAULT(UseJumpTables, true);
}
// Single-issue, so entry and loop tops are
// aligned on a single instruction boundary
if (FLAG_IS_DEFAULT(InteriorEntryAlignment)) {
FLAG_SET_DEFAULT(InteriorEntryAlignment, 4);
}
if (is_niagara_plus()) {
if (has_blk_init() && (cache_line_size > 0) && UseTLAB &&
FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
// Use BIS instruction for TLAB allocation prefetch.
FLAG_SET_DEFAULT(AllocatePrefetchInstr, 1);
}
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
if (AllocatePrefetchInstr == 0) {
// Use different prefetch distance without BIS
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 256);
} else {
// Use smaller prefetch distance with BIS
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 64);
}
}
if (is_T4()) {
// Double number of prefetched cache lines on T4
// since L2 cache line size is smaller (32 bytes).
if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) {
FLAG_SET_ERGO(intx, AllocatePrefetchLines, AllocatePrefetchLines*2);
}
if (FLAG_IS_DEFAULT(AllocateInstancePrefetchLines)) {
FLAG_SET_ERGO(intx, AllocateInstancePrefetchLines, AllocateInstancePrefetchLines*2);
}
}
}
if (AllocatePrefetchInstr == 1) {
// Use allocation prefetch style 3 because BIS instructions
// require aligned memory addresses.
FLAG_SET_DEFAULT(AllocatePrefetchStyle, 3);
}
#endif /* COMPILER2 */
}
// Use hardware population count instruction if available.
if (has_hardware_popc()) {
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
FLAG_SET_DEFAULT(UsePopCountInstruction, true);
}
} else if (UsePopCountInstruction) {
warning("POPC instruction is not available on this CPU");
FLAG_SET_DEFAULT(UsePopCountInstruction, false);
}
// T4 and newer Sparc cpus have new compare and branch instruction.
if (has_cbcond()) {
if (FLAG_IS_DEFAULT(UseCBCond)) {
FLAG_SET_DEFAULT(UseCBCond, true);
}
} else if (UseCBCond) {
warning("CBCOND instruction is not available on this CPU");
FLAG_SET_DEFAULT(UseCBCond, false);
}
assert(BlockZeroingLowLimit > 0, "invalid value");
if (has_block_zeroing() && cache_line_size > 0) {
if (FLAG_IS_DEFAULT(UseBlockZeroing)) {
FLAG_SET_DEFAULT(UseBlockZeroing, true);
}
} else if (UseBlockZeroing) {
warning("BIS zeroing instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseBlockZeroing, false);
}
assert(BlockCopyLowLimit > 0, "invalid value");
if (has_block_zeroing() && cache_line_size > 0) { // has_blk_init() && is_T4(): core's local L2 cache
if (FLAG_IS_DEFAULT(UseBlockCopy)) {
FLAG_SET_DEFAULT(UseBlockCopy, true);
}
} else if (UseBlockCopy) {
warning("BIS instructions are not available or expensive on this CPU");
FLAG_SET_DEFAULT(UseBlockCopy, false);
}
#ifdef COMPILER2
// T4 and newer Sparc cpus have fast RDPC.
if (has_fast_rdpc() && FLAG_IS_DEFAULT(UseRDPCForConstantTableBase)) {
FLAG_SET_DEFAULT(UseRDPCForConstantTableBase, true);
}
// Currently not supported anywhere.
FLAG_SET_DEFAULT(UseFPUForSpilling, false);
MaxVectorSize = 8;
assert((InteriorEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size");
#endif
assert((CodeEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size");
assert((OptoLoopAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size");
char buf[512];
jio_snprintf(buf, sizeof(buf), "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
(has_v9() ? ", v9" : (has_v8() ? ", v8" : "")),
(has_hardware_popc() ? ", popc" : ""),
(has_vis1() ? ", vis1" : ""),
(has_vis2() ? ", vis2" : ""),
(has_vis3() ? ", vis3" : ""),
(has_blk_init() ? ", blk_init" : ""),
(has_cbcond() ? ", cbcond" : ""),
(has_aes() ? ", aes" : ""),
(has_sha1() ? ", sha1" : ""),
(has_sha256() ? ", sha256" : ""),
(has_sha512() ? ", sha512" : ""),
(has_crc32c() ? ", crc32c" : ""),
(is_ultra3() ? ", ultra3" : ""),
(is_sun4v() ? ", sun4v" : ""),
(is_niagara_plus() ? ", niagara_plus" : (is_niagara() ? ", niagara" : "")),
(is_sparc64() ? ", sparc64" : ""),
(!has_hardware_mul32() ? ", no-mul32" : ""),
(!has_hardware_div32() ? ", no-div32" : ""),
(!has_hardware_fsmuld() ? ", no-fsmuld" : ""));
// buf is started with ", " or is empty
_features_string = os::strdup(strlen(buf) > 2 ? buf + 2 : buf);
// UseVIS is set to the smallest of what hardware supports and what
// the command line requires. I.e., you cannot set UseVIS to 3 on
// older UltraSparc which do not support it.
if (UseVIS > 3) UseVIS=3;
if (UseVIS < 0) UseVIS=0;
if (!has_vis3()) // Drop to 2 if no VIS3 support
UseVIS = MIN2((intx)2,UseVIS);
if (!has_vis2()) // Drop to 1 if no VIS2 support
UseVIS = MIN2((intx)1,UseVIS);
if (!has_vis1()) // Drop to 0 if no VIS1 support
UseVIS = 0;
// SPARC T4 and above should have support for AES instructions
if (has_aes()) {
if (FLAG_IS_DEFAULT(UseAES)) {
FLAG_SET_DEFAULT(UseAES, true);
}
if (!UseAES) {
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
}
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
} else {
// The AES intrinsic stubs require AES instruction support (of course)
// but also require VIS3 mode or higher for instructions it use.
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
}
} else {
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("SPARC AES intrinsics require VIS3 instructions. Intrinsics will be disabled.");
}
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
} else if (UseAES || UseAESIntrinsics) {
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
// GHASH/GCM intrinsics
if (has_vis3() && (UseVIS > 2)) {
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
UseGHASHIntrinsics = true;
}
} else if (UseGHASHIntrinsics) {
if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
warning("GHASH intrinsics require VIS3 instruction support. Intrinsics will be disabled");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
// SHA1, SHA256, and SHA512 instructions were added to SPARC T-series at different times
if (has_sha1() || has_sha256() || has_sha512()) {
if (UseVIS > 0) { // SHA intrinsics use VIS1 instructions
if (FLAG_IS_DEFAULT(UseSHA)) {
FLAG_SET_DEFAULT(UseSHA, true);
}
} else {
if (UseSHA) {
warning("SPARC SHA intrinsics require VIS1 instruction support. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseSHA, false);
}
}
} else if (UseSHA) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA && has_sha1()) {
if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA1Intrinsics, true);
}
} else if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA && has_sha256()) {
if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA256Intrinsics, true);
}
} else if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA && has_sha512()) {
if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA512Intrinsics, true);
}
} else if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) {
FLAG_SET_DEFAULT(UseSHA, false);
}
// SPARC T4 and above should have support for CRC32C instruction
if (has_crc32c()) {
if (UseVIS > 2) { // CRC32C intrinsics use VIS3 instructions
if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) {
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true);
}
} else {
if (UseCRC32CIntrinsics) {
warning("SPARC CRC32C intrinsics require VIS3 instruction support. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
}
} else if (UseCRC32CIntrinsics) {
warning("CRC32C instruction is not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) {
FLAG_SET_DEFAULT(UseAdler32Intrinsics, true);
}
} else if (UseAdler32Intrinsics) {
warning("SPARC Adler32 intrinsics require VIS3 instruction support. Intrinsics will be disabled.");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
if (UseVIS > 2) {
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
FLAG_SET_DEFAULT(UseCRC32Intrinsics, true);
}
} else if (UseCRC32Intrinsics) {
warning("SPARC CRC32 intrinsics require VIS3 insructions support. Intriniscs will be disabled");
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
}
if (UseVectorizedMismatchIntrinsic) {
warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
(cache_line_size > ContendedPaddingWidth))
ContendedPaddingWidth = cache_line_size;
// This machine does not allow unaligned memory accesses
if (UseUnalignedAccesses) {
if (!FLAG_IS_DEFAULT(UseUnalignedAccesses))
warning("Unaligned memory access is not available on this CPU");
FLAG_SET_DEFAULT(UseUnalignedAccesses, false);
}
if (log_is_enabled(Info, os, cpu)) {
ResourceMark rm;
outputStream* log = Log(os, cpu)::info_stream();
log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size());
log->print_cr("L2 data cache line size: %u", L2_data_cache_line_size());
log->print("Allocation");
if (AllocatePrefetchStyle <= 0) {
log->print(": no prefetching");
} else {
log->print(" prefetching: ");
if (AllocatePrefetchInstr == 0) {
log->print("PREFETCH");
} else if (AllocatePrefetchInstr == 1) {
log->print("BIS");
}
if (AllocatePrefetchLines > 1) {
log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize);
} else {
log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize);
}
}
if (PrefetchCopyIntervalInBytes > 0) {
log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes);
}
if (PrefetchScanIntervalInBytes > 0) {
log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes);
}
if (PrefetchFieldsAhead > 0) {
log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead);
}
if (ContendedPaddingWidth > 0) {
log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth);
}
}
}
void VM_Version::print_features() {
tty->print_cr("Version:%s", _features);
}
int VM_Version::determine_features() {
if (UseV8InstrsOnly) {
log_info(os, cpu)("Version is Forced-V8");
return generic_v8_m;
}
int features = platform_features(unknown_m); // platform_features() is os_arch specific
if (features == unknown_m) {
features = generic_v9_m;
log_info(os)("Cannot recognize SPARC version. Default to V9");
}
assert(is_T_family(features) == is_niagara(features), "Niagara should be T series");
if (UseNiagaraInstrs) { // Force code generation for Niagara
if (is_T_family(features)) {
// Happy to accomodate...
} else {
log_info(os, cpu)("Version is Forced-Niagara");
features |= T_family_m;
}
} else {
if (is_T_family(features) && !FLAG_IS_DEFAULT(UseNiagaraInstrs)) {
log_info(os, cpu)("Version is Forced-Not-Niagara");
features &= ~(T_family_m | T1_model_m);
} else {
// Happy to accomodate...
}
}
return features;
}
static uint64_t saved_features = 0;
void VM_Version::allow_all() {
saved_features = _features;
_features = all_features_m;
}
void VM_Version::revert() {
_features = saved_features;
}
unsigned int VM_Version::calc_parallel_worker_threads() {
unsigned int result;
if (is_M_series()) {
// for now, use same gc thread calculation for M-series as for niagara-plus
// in future, we may want to tweak parameters for nof_parallel_worker_thread
result = nof_parallel_worker_threads(5, 16, 8);
} else if (is_niagara_plus()) {
result = nof_parallel_worker_threads(5, 16, 8);
} else {
result = nof_parallel_worker_threads(5, 8, 8);
}
return result;
}
int VM_Version::parse_features(const char* implementation) {
int features = unknown_m;
// Convert to UPPER case before compare.
char* impl = os::strdup_check_oom(implementation);
for (int i = 0; impl[i] != 0; i++)
impl[i] = (char)toupper((uint)impl[i]);
if (strstr(impl, "SPARC64") != NULL) {
features |= sparc64_family_m;
} else if (strstr(impl, "SPARC-M") != NULL) {
// M-series SPARC is based on T-series.
features |= (M_family_m | T_family_m);
} else if (strstr(impl, "SPARC-T") != NULL) {
features |= T_family_m;
if (strstr(impl, "SPARC-T1") != NULL) {
features |= T1_model_m;
}
} else {
if (strstr(impl, "SPARC") == NULL) {
#ifndef PRODUCT
// kstat on Solaris 8 virtual machines (branded zones)
// returns "(unsupported)" implementation. Solaris 8 is not
// supported anymore, but include this check to be on the
// safe side.
warning("Can't parse CPU implementation = '%s', assume generic SPARC", impl);
#endif
}
}
os::free((void*)impl);
return features;
}