8233940: Preview API tests for String methods should use ${jdk.version} as -source arg
Reviewed-by: jlaskey, jlahoda
/*
* Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "jvm.h"
#include "asm/macroAssembler.hpp"
#include "macroAssembler_sparc.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "nativeInst_sparc.hpp"
#include "os_share_solaris.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
# include <signal.h> // needed first to avoid name collision for "std" with SC 5.0
// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <pthread.h>
# include <errno.h>
# include <dlfcn.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/resource.h>
# include <thread.h>
# include <sys/stat.h>
# include <sys/time.h>
# include <sys/filio.h>
# include <sys/utsname.h>
# include <sys/systeminfo.h>
# include <sys/socket.h>
# include <sys/lwp.h>
# include <poll.h>
# include <sys/lwp.h>
# define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
# include <sys/procfs.h> // see comment in <sys/procfs.h>
#define MAX_PATH (2 * K)
// Minimum usable stack sizes required to get to user code. Space for
// HotSpot guard pages is added later.
size_t os::Posix::_compiler_thread_min_stack_allowed = 104 * K;
size_t os::Posix::_java_thread_min_stack_allowed = 86 * K;
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 128 * K;
static void handle_unflushed_register_windows(gwindows_t *win) {
int restore_count = win->wbcnt;
int i;
for(i=0; i<restore_count; i++) {
address sp = ((address)win->spbuf[i]) + STACK_BIAS;
address reg_win = (address)&win->wbuf[i];
memcpy(sp,reg_win,sizeof(struct rwindow));
}
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
// On SPARC, 0 != %hi(any real address), because there is no
// allocation in the first 1Kb of the virtual address space.
return (char*) 0;
}
// Validate a ucontext retrieved from walking a uc_link of a ucontext.
// There are issues with libthread giving out uc_links for different threads
// on the same uc_link chain and bad or circular links.
//
bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
if (valid >= suspect ||
valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp ||
valid->uc_stack.ss_size != suspect->uc_stack.ss_size) {
DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
return false;
}
if (thread->is_Java_thread()) {
if (!valid_stack_address(thread, (address)suspect)) {
DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
return false;
}
address _sp = (address)((intptr_t)suspect->uc_mcontext.gregs[REG_SP] + STACK_BIAS);
if (!valid_stack_address(thread, _sp) ||
!frame::is_valid_stack_pointer(((JavaThread*)thread)->base_of_stack_pointer(), (intptr_t*)_sp)) {
DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
return false;
}
}
return true;
}
// We will only follow one level of uc_link since there are libthread
// issues with ucontext linking and it is better to be safe and just
// let caller retry later.
const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
const ucontext_t *uc) {
const ucontext_t *retuc = NULL;
// Sometimes the topmost register windows are not properly flushed.
// i.e., if the kernel would have needed to take a page fault
if (uc != NULL && uc->uc_mcontext.gwins != NULL) {
::handle_unflushed_register_windows(uc->uc_mcontext.gwins);
}
if (uc != NULL) {
if (uc->uc_link == NULL) {
// cannot validate without uc_link so accept current ucontext
retuc = uc;
} else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
// first ucontext is valid so try the next one
uc = uc->uc_link;
if (uc->uc_link == NULL) {
// cannot validate without uc_link so accept current ucontext
retuc = uc;
} else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
// the ucontext one level down is also valid so return it
retuc = uc;
}
}
}
return retuc;
}
// Assumes ucontext is valid
ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
address pc = (address)uc->uc_mcontext.gregs[REG_PC];
// set npc to zero to avoid using it for safepoint, good for profiling only
return ExtendedPC(pc);
}
void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
uc->uc_mcontext.gregs [REG_PC] = (greg_t) pc;
uc->uc_mcontext.gregs [REG_nPC] = (greg_t) (pc + 4);
}
// Assumes ucontext is valid
intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
return (intptr_t*)((intptr_t)uc->uc_mcontext.gregs[REG_SP] + STACK_BIAS);
}
// Solaris X86 only
intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
ShouldNotReachHere();
return NULL;
}
address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
return (address) uc->uc_mcontext.gregs[REG_PC];
}
// For Forte Analyzer AsyncGetCallTrace profiling support - thread
// is currently interrupted by SIGPROF.
//
// ret_fp parameter is only used by Solaris X86.
//
// The difference between this and os::fetch_frame_from_context() is that
// here we try to skip nested signal frames.
// This method is also used for stack overflow signal handling.
ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
assert(thread != NULL, "just checking");
assert(ret_sp != NULL, "just checking");
assert(ret_fp == NULL, "just checking");
const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
}
// ret_fp parameter is only used by Solaris X86.
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
ExtendedPC epc;
const ucontext_t *uc = (const ucontext_t*)ucVoid;
if (uc != NULL) {
epc = os::Solaris::ucontext_get_ExtendedPC(uc);
if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) *ret_sp = (intptr_t *)NULL;
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
return frame(sp, frame::unpatchable, epc.pc());
}
frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
intptr_t* sp;
ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, NULL);
return frame(sp, frame::unpatchable, epc.pc());
}
bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
address pc = (address) os::Solaris::ucontext_get_pc(uc);
if (Interpreter::contains(pc)) {
*fr = os::fetch_frame_from_ucontext(thread, uc);
if (!fr->is_first_java_frame()) {
assert(fr->safe_for_sender(thread), "Safety check");
*fr = fr->java_sender();
}
} else {
// more complex code with compiled code
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
CodeBlob* cb = CodeCache::find_blob(pc);
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
// Not sure where the pc points to, fallback to default
// stack overflow handling
return false;
} else {
// Returned frame will be the caller of the method that faults on the stack bang.
// Register window not yet rotated (happens at SAVE after stack bang), so there is no new
// frame to go with the faulting PC. Using caller SP that is still in SP, and caller PC
// that was written to O7 at call.
intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
address pc = (address)uc->uc_mcontext.gregs[REG_O7];
*fr = frame(sp, frame::unpatchable, pc);
if (!fr->is_java_frame()) {
assert(fr->safe_for_sender(thread), "Safety check");
*fr = fr->java_sender();
}
}
}
assert(fr->is_java_frame(), "Safety check");
return true;
}
frame os::get_sender_for_C_frame(frame* fr) {
return frame(fr->sender_sp(), frame::unpatchable, fr->sender_pc());
}
// Returns an estimate of the current stack pointer. Result must be guaranteed to
// point into the calling threads stack, and be no lower than the current stack
// pointer.
address os::current_stack_pointer() {
volatile int dummy;
address sp = (address)&dummy + 8; // %%%% need to confirm if this is right
return sp;
}
frame os::current_frame() {
intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
frame myframe(sp, frame::unpatchable,
CAST_FROM_FN_PTR(address, os::current_frame));
if (os::is_first_C_frame(&myframe)) {
// stack is not walkable
return frame(NULL, NULL, false);
} else {
return os::get_sender_for_C_frame(&myframe);
}
}
bool os::is_allocatable(size_t bytes) {
return true;
}
extern "C" JNIEXPORT int
JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
int abort_if_unrecognized) {
ucontext_t* uc = (ucontext_t*) ucVoid;
Thread* t = Thread::current_or_null_safe();
// Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
// (no destructors can be run)
os::ThreadCrashProtection::check_crash_protection(sig, t);
SignalHandlerMark shm(t);
if(sig == SIGPIPE || sig == SIGXFSZ) {
if (os::Solaris::chained_handler(sig, info, ucVoid)) {
return true;
} else {
// Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
return true;
}
}
JavaThread* thread = NULL;
VMThread* vmthread = NULL;
if (os::Solaris::signal_handlers_are_installed) {
if (t != NULL ){
if(t->is_Java_thread()) {
thread = (JavaThread*)t;
}
else if(t->is_VM_thread()){
vmthread = (VMThread *)t;
}
}
}
if (sig == ASYNC_SIGNAL) {
if (thread || vmthread) {
OSThread::SR_handler(t, uc);
return true;
} else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
return true;
} else {
// If ASYNC_SIGNAL not chained, and this is a non-vm and
// non-java thread
return true;
}
}
if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
// can't decode this kind of signal
info = NULL;
} else {
assert(sig == info->si_signo, "bad siginfo");
}
// decide if this trap can be handled by a stub
address stub = NULL;
address pc = NULL;
address npc = NULL;
//%note os_trap_1
if (info != NULL && uc != NULL && thread != NULL) {
// factor me: getPCfromContext
pc = (address) uc->uc_mcontext.gregs[REG_PC];
npc = (address) uc->uc_mcontext.gregs[REG_nPC];
// SafeFetch() support
if (StubRoutines::is_safefetch_fault(pc)) {
os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
return 1;
}
// Handle ALL stack overflow variations here
if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
address addr = (address) info->si_addr;
if (thread->in_stack_yellow_reserved_zone(addr)) {
// Sometimes the register windows are not properly flushed.
if(uc->uc_mcontext.gwins != NULL) {
::handle_unflushed_register_windows(uc->uc_mcontext.gwins);
}
if (thread->thread_state() == _thread_in_Java) {
if (thread->in_stack_reserved_zone(addr)) {
frame fr;
if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
assert(fr.is_java_frame(), "Must be a Java frame");
frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
if (activation.sp() != NULL) {
thread->disable_stack_reserved_zone();
RegisterMap map(thread);
int frame_size = activation.frame_size(&map);
thread->set_reserved_stack_activation((address)(((address)activation.sp()) - STACK_BIAS));
return true;
}
}
}
// Throw a stack overflow exception. Guard pages will be reenabled
// while unwinding the stack.
thread->disable_stack_yellow_reserved_zone();
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
} else {
// Thread was in the vm or native code. Return and try to finish.
thread->disable_stack_yellow_reserved_zone();
return true;
}
} else if (thread->in_stack_red_zone(addr)) {
// Fatal red zone violation. Disable the guard pages and fall through
// to handle_unexpected_exception way down below.
thread->disable_stack_red_zone();
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
// Sometimes the register windows are not properly flushed.
if(uc->uc_mcontext.gwins != NULL) {
::handle_unflushed_register_windows(uc->uc_mcontext.gwins);
}
}
}
if (thread->thread_state() == _thread_in_vm ||
thread->thread_state() == _thread_in_native) {
if (sig == SIGBUS && thread->doing_unsafe_access()) {
if (UnsafeCopyMemory::contains_pc(pc)) {
npc = UnsafeCopyMemory::page_error_continue_pc(pc);
}
stub = SharedRuntime::handle_unsafe_access(thread, npc);
}
}
else if (thread->thread_state() == _thread_in_Java) {
// Java thread running in Java code => find exception handler if any
// a fault inside compiled code, the interpreter, or a stub
// Support Safepoint Polling
if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
stub = SharedRuntime::get_poll_stub(pc);
}
// Not needed on x86 solaris because verify_oops doesn't generate
// SEGV/BUS like sparc does.
if ( (sig == SIGSEGV || sig == SIGBUS)
&& pc >= MacroAssembler::_verify_oop_implicit_branch[0]
&& pc < MacroAssembler::_verify_oop_implicit_branch[1] ) {
stub = MacroAssembler::_verify_oop_implicit_branch[2];
warning("fixed up memory fault in +VerifyOops at address " INTPTR_FORMAT, info->si_addr);
}
// This is not factored because on x86 solaris the patching for
// zombies does not generate a SEGV.
else if (sig == SIGSEGV && nativeInstruction_at(pc)->is_zombie()) {
// zombie method (ld [%g0],%o7 instruction)
stub = SharedRuntime::get_handle_wrong_method_stub();
// At the stub it needs to look like a call from the caller of this
// method (not a call from the segv site).
pc = (address)uc->uc_mcontext.gregs[REG_O7];
}
else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
// BugId 4454115: A read from a MappedByteBuffer can fault
// here if the underlying file has been truncated.
// Do not crash the VM in such a case.
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
CompiledMethod* nm = cb->as_compiled_method_or_null();
bool is_unsafe_arraycopy = (thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc));
if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) {
if (is_unsafe_arraycopy) {
npc = UnsafeCopyMemory::page_error_continue_pc(pc);
}
stub = SharedRuntime::handle_unsafe_access(thread, npc);
}
}
else if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
// integer divide by zero
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
}
else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
// floating-point divide by zero
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
}
#ifdef COMPILER2
else if (sig == SIGILL && nativeInstruction_at(pc)->is_ic_miss_trap()) {
#ifdef ASSERT
#ifdef TIERED
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
assert(cb->is_compiled_by_c2(), "Wrong compiler");
#endif // TIERED
#endif // ASSERT
// Inline cache missed and user trap "Tne G0+ST_RESERVED_FOR_USER_0+2" taken.
stub = SharedRuntime::get_ic_miss_stub();
// At the stub it needs to look like a call from the caller of this
// method (not a call from the segv site).
pc = (address)uc->uc_mcontext.gregs[REG_O7];
}
#endif // COMPILER2
else if (sig == SIGSEGV && info->si_code > 0 && MacroAssembler::uses_implicit_null_check(info->si_addr)) {
// Determination of interpreter/vtable stub/compiled code null exception
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
}
}
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
// and the heap gets shrunk before the field access.
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
stub = addr;
}
}
}
if (stub != NULL) {
// save all thread context in case we need to restore it
thread->set_saved_exception_pc(pc);
thread->set_saved_exception_npc(npc);
// simulate a branch to the stub (a "call" in the safepoint stub case)
// factor me: setPC
os::Solaris::ucontext_set_pc(uc, stub);
return true;
}
// signal-chaining
if (os::Solaris::chained_handler(sig, info, ucVoid)) {
return true;
}
if (!abort_if_unrecognized) {
// caller wants another chance, so give it to him
return false;
}
if (!os::Solaris::libjsig_is_loaded) {
struct sigaction oldAct;
sigaction(sig, (struct sigaction *)0, &oldAct);
if (oldAct.sa_sigaction != signalHandler) {
void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
warning("Unexpected Signal %d occurred under user-defined signal handler " INTPTR_FORMAT, sig, (intptr_t)sighand);
}
}
if (pc == NULL && uc != NULL) {
pc = (address) uc->uc_mcontext.gregs[REG_PC];
}
// Sometimes the register windows are not properly flushed.
if(uc->uc_mcontext.gwins != NULL) {
::handle_unflushed_register_windows(uc->uc_mcontext.gwins);
}
// unmask current signal
sigset_t newset;
sigemptyset(&newset);
sigaddset(&newset, sig);
sigprocmask(SIG_UNBLOCK, &newset, NULL);
// Determine which sort of error to throw. Out of swap may signal
// on the thread stack, which could get a mapping error when touched.
address addr = (address) info->si_addr;
if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
}
VMError::report_and_die(t, sig, pc, info, ucVoid);
ShouldNotReachHere();
return false;
}
void os::print_context(outputStream *st, const void *context) {
if (context == NULL) return;
const ucontext_t *uc = (const ucontext_t*)context;
st->print_cr("Registers:");
st->print_cr(" G1=" INTPTR_FORMAT " G2=" INTPTR_FORMAT
" G3=" INTPTR_FORMAT " G4=" INTPTR_FORMAT,
uc->uc_mcontext.gregs[REG_G1],
uc->uc_mcontext.gregs[REG_G2],
uc->uc_mcontext.gregs[REG_G3],
uc->uc_mcontext.gregs[REG_G4]);
st->print_cr(" G5=" INTPTR_FORMAT " G6=" INTPTR_FORMAT
" G7=" INTPTR_FORMAT " Y=" INTPTR_FORMAT,
uc->uc_mcontext.gregs[REG_G5],
uc->uc_mcontext.gregs[REG_G6],
uc->uc_mcontext.gregs[REG_G7],
uc->uc_mcontext.gregs[REG_Y]);
st->print_cr(" O0=" INTPTR_FORMAT " O1=" INTPTR_FORMAT
" O2=" INTPTR_FORMAT " O3=" INTPTR_FORMAT,
uc->uc_mcontext.gregs[REG_O0],
uc->uc_mcontext.gregs[REG_O1],
uc->uc_mcontext.gregs[REG_O2],
uc->uc_mcontext.gregs[REG_O3]);
st->print_cr(" O4=" INTPTR_FORMAT " O5=" INTPTR_FORMAT
" O6=" INTPTR_FORMAT " O7=" INTPTR_FORMAT,
uc->uc_mcontext.gregs[REG_O4],
uc->uc_mcontext.gregs[REG_O5],
uc->uc_mcontext.gregs[REG_O6],
uc->uc_mcontext.gregs[REG_O7]);
intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
st->print_cr(" L0=" INTPTR_FORMAT " L1=" INTPTR_FORMAT
" L2=" INTPTR_FORMAT " L3=" INTPTR_FORMAT,
sp[L0->sp_offset_in_saved_window()],
sp[L1->sp_offset_in_saved_window()],
sp[L2->sp_offset_in_saved_window()],
sp[L3->sp_offset_in_saved_window()]);
st->print_cr(" L4=" INTPTR_FORMAT " L5=" INTPTR_FORMAT
" L6=" INTPTR_FORMAT " L7=" INTPTR_FORMAT,
sp[L4->sp_offset_in_saved_window()],
sp[L5->sp_offset_in_saved_window()],
sp[L6->sp_offset_in_saved_window()],
sp[L7->sp_offset_in_saved_window()]);
st->print_cr(" I0=" INTPTR_FORMAT " I1=" INTPTR_FORMAT
" I2=" INTPTR_FORMAT " I3=" INTPTR_FORMAT,
sp[I0->sp_offset_in_saved_window()],
sp[I1->sp_offset_in_saved_window()],
sp[I2->sp_offset_in_saved_window()],
sp[I3->sp_offset_in_saved_window()]);
st->print_cr(" I4=" INTPTR_FORMAT " I5=" INTPTR_FORMAT
" I6=" INTPTR_FORMAT " I7=" INTPTR_FORMAT,
sp[I4->sp_offset_in_saved_window()],
sp[I5->sp_offset_in_saved_window()],
sp[I6->sp_offset_in_saved_window()],
sp[I7->sp_offset_in_saved_window()]);
st->print_cr(" PC=" INTPTR_FORMAT " nPC=" INTPTR_FORMAT,
uc->uc_mcontext.gregs[REG_PC],
uc->uc_mcontext.gregs[REG_nPC]);
st->cr();
st->cr();
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
address pc = epc.pc();
print_instructions(st, pc, sizeof(char));
st->cr();
}
void os::print_register_info(outputStream *st, const void *context) {
if (context == NULL) return;
const ucontext_t *uc = (const ucontext_t*)context;
intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
st->print_cr("Register to memory mapping:");
st->cr();
// this is only for the "general purpose" registers
st->print("G1="); print_location(st, uc->uc_mcontext.gregs[REG_G1]);
st->print("G2="); print_location(st, uc->uc_mcontext.gregs[REG_G2]);
st->print("G3="); print_location(st, uc->uc_mcontext.gregs[REG_G3]);
st->print("G4="); print_location(st, uc->uc_mcontext.gregs[REG_G4]);
st->print("G5="); print_location(st, uc->uc_mcontext.gregs[REG_G5]);
st->print("G6="); print_location(st, uc->uc_mcontext.gregs[REG_G6]);
st->print("G7="); print_location(st, uc->uc_mcontext.gregs[REG_G7]);
st->cr();
st->print("O0="); print_location(st, uc->uc_mcontext.gregs[REG_O0]);
st->print("O1="); print_location(st, uc->uc_mcontext.gregs[REG_O1]);
st->print("O2="); print_location(st, uc->uc_mcontext.gregs[REG_O2]);
st->print("O3="); print_location(st, uc->uc_mcontext.gregs[REG_O3]);
st->print("O4="); print_location(st, uc->uc_mcontext.gregs[REG_O4]);
st->print("O5="); print_location(st, uc->uc_mcontext.gregs[REG_O5]);
st->print("O6="); print_location(st, uc->uc_mcontext.gregs[REG_O6]);
st->print("O7="); print_location(st, uc->uc_mcontext.gregs[REG_O7]);
st->cr();
st->print("L0="); print_location(st, sp[L0->sp_offset_in_saved_window()]);
st->print("L1="); print_location(st, sp[L1->sp_offset_in_saved_window()]);
st->print("L2="); print_location(st, sp[L2->sp_offset_in_saved_window()]);
st->print("L3="); print_location(st, sp[L3->sp_offset_in_saved_window()]);
st->print("L4="); print_location(st, sp[L4->sp_offset_in_saved_window()]);
st->print("L5="); print_location(st, sp[L5->sp_offset_in_saved_window()]);
st->print("L6="); print_location(st, sp[L6->sp_offset_in_saved_window()]);
st->print("L7="); print_location(st, sp[L7->sp_offset_in_saved_window()]);
st->cr();
st->print("I0="); print_location(st, sp[I0->sp_offset_in_saved_window()]);
st->print("I1="); print_location(st, sp[I1->sp_offset_in_saved_window()]);
st->print("I2="); print_location(st, sp[I2->sp_offset_in_saved_window()]);
st->print("I3="); print_location(st, sp[I3->sp_offset_in_saved_window()]);
st->print("I4="); print_location(st, sp[I4->sp_offset_in_saved_window()]);
st->print("I5="); print_location(st, sp[I5->sp_offset_in_saved_window()]);
st->print("I6="); print_location(st, sp[I6->sp_offset_in_saved_window()]);
st->print("I7="); print_location(st, sp[I7->sp_offset_in_saved_window()]);
st->cr();
}
void os::Solaris::init_thread_fpu_state(void) {
// Nothing needed on Sparc.
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
}
#endif
int os::extra_bang_size_in_bytes() {
// SPARC does not require an additional stack bang.
return 0;
}