8233940: Preview API tests for String methods should use ${jdk.version} as -source arg
Reviewed-by: jlaskey, jlahoda
/*
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_ASSEMBLER_X86_HPP
#define CPU_X86_ASSEMBLER_X86_HPP
#include "asm/register.hpp"
#include "vm_version_x86.hpp"
class BiasedLockingCounters;
// Contains all the definitions needed for x86 assembly code generation.
// Calling convention
class Argument {
public:
enum {
#ifdef _LP64
#ifdef _WIN64
n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
#else
n_register_parameters = 0 // 0 registers used to pass arguments
#endif // _LP64
};
};
#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...
#ifdef _WIN64
REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
#else
REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
#endif // _WIN64
// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
// |-------------------------------------------------------|
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
// |-------------------------------------------------------|
// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
// | rdi rsi rdx rcx r8 r9 | solaris/linux
// |-------------------------------------------------------|
// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
// |-------------------------------------------------------|
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
#else
// rscratch1 will apear in 32bit code that is dead but of course must compile
// Using noreg ensures if the dead code is incorrectly live and executed it
// will cause an assertion failure
#define rscratch1 noreg
#define rscratch2 noreg
#endif // _LP64
// JSR 292
// On x86, the SP does not have to be saved when invoking method handle intrinsics
// or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
// via an address for efficiency & simplicity reasons.
class ArrayAddress;
class Address {
public:
enum ScaleFactor {
no_scale = -1,
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
};
static ScaleFactor times(int size) {
assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
if (size == 8) return times_8;
if (size == 4) return times_4;
if (size == 2) return times_2;
return times_1;
}
static int scale_size(ScaleFactor scale) {
assert(scale != no_scale, "");
assert(((1 << (int)times_1) == 1 &&
(1 << (int)times_2) == 2 &&
(1 << (int)times_4) == 4 &&
(1 << (int)times_8) == 8), "");
return (1 << (int)scale);
}
private:
Register _base;
Register _index;
XMMRegister _xmmindex;
ScaleFactor _scale;
int _disp;
bool _isxmmindex;
RelocationHolder _rspec;
// Easily misused constructors make them private
// %%% can we make these go away?
NOT_LP64(Address(address loc, RelocationHolder spec);)
Address(int disp, address loc, relocInfo::relocType rtype);
Address(int disp, address loc, RelocationHolder spec);
public:
int disp() { return _disp; }
// creation
Address()
: _base(noreg),
_index(noreg),
_xmmindex(xnoreg),
_scale(no_scale),
_disp(0),
_isxmmindex(false){
}
// No default displacement otherwise Register can be implicitly
// converted to 0(Register) which is quite a different animal.
Address(Register base, int disp)
: _base(base),
_index(noreg),
_xmmindex(xnoreg),
_scale(no_scale),
_disp(disp),
_isxmmindex(false){
}
Address(Register base, Register index, ScaleFactor scale, int disp = 0)
: _base (base),
_index(index),
_xmmindex(xnoreg),
_scale(scale),
_disp (disp),
_isxmmindex(false) {
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
: _base (base),
_index(index.register_or_noreg()),
_xmmindex(xnoreg),
_scale(scale),
_disp (disp + (index.constant_or_zero() * scale_size(scale))),
_isxmmindex(false){
if (!index.is_register()) scale = Address::no_scale;
assert(!_index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0)
: _base (base),
_index(noreg),
_xmmindex(index),
_scale(scale),
_disp(disp),
_isxmmindex(true) {
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address plus_disp(int disp) const {
Address a = (*this);
a._disp += disp;
return a;
}
Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
Address a = (*this);
a._disp += disp.constant_or_zero() * scale_size(scale);
if (disp.is_register()) {
assert(!a.index()->is_valid(), "competing indexes");
a._index = disp.as_register();
a._scale = scale;
}
return a;
}
bool is_same_address(Address a) const {
// disregard _rspec
return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
}
// The following two overloads are used in connection with the
// ByteSize type (see sizes.hpp). They simplify the use of
// ByteSize'd arguments in assembly code. Note that their equivalent
// for the optimized build are the member functions with int disp
// argument since ByteSize is mapped to an int type in that case.
//
// Note: DO NOT introduce similar overloaded functions for WordSize
// arguments as in the optimized mode, both ByteSize and WordSize
// are mapped to the same type and thus the compiler cannot make a
// distinction anymore (=> compiler errors).
#ifdef ASSERT
Address(Register base, ByteSize disp)
: _base(base),
_index(noreg),
_xmmindex(xnoreg),
_scale(no_scale),
_disp(in_bytes(disp)),
_isxmmindex(false){
}
Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
: _base(base),
_index(index),
_xmmindex(xnoreg),
_scale(scale),
_disp(in_bytes(disp)),
_isxmmindex(false){
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
: _base (base),
_index(index.register_or_noreg()),
_xmmindex(xnoreg),
_scale(scale),
_disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))),
_isxmmindex(false) {
if (!index.is_register()) scale = Address::no_scale;
assert(!_index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
#endif // ASSERT
// accessors
bool uses(Register reg) const { return _base == reg || _index == reg; }
Register base() const { return _base; }
Register index() const { return _index; }
XMMRegister xmmindex() const { return _xmmindex; }
ScaleFactor scale() const { return _scale; }
int disp() const { return _disp; }
bool isxmmindex() const { return _isxmmindex; }
// Convert the raw encoding form into the form expected by the constructor for
// Address. An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
static Address make_array(ArrayAddress);
private:
bool base_needs_rex() const {
return _base != noreg && _base->encoding() >= 8;
}
bool index_needs_rex() const {
return _index != noreg &&_index->encoding() >= 8;
}
bool xmmindex_needs_rex() const {
return _xmmindex != xnoreg && _xmmindex->encoding() >= 8;
}
relocInfo::relocType reloc() const { return _rspec.type(); }
friend class Assembler;
friend class MacroAssembler;
friend class LIR_Assembler; // base/index/scale/disp
};
//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral {
friend class ArrayAddress;
RelocationHolder _rspec;
// Typically we use AddressLiterals we want to use their rval
// However in some situations we want the lval (effect address) of the item.
// We provide a special factory for making those lvals.
bool _is_lval;
// If the target is far we'll need to load the ea of this to
// a register to reach it. Otherwise if near we can do rip
// relative addressing.
address _target;
protected:
// creation
AddressLiteral()
: _is_lval(false),
_target(NULL)
{}
public:
AddressLiteral(address target, relocInfo::relocType rtype);
AddressLiteral(address target, RelocationHolder const& rspec)
: _rspec(rspec),
_is_lval(false),
_target(target)
{}
AddressLiteral addr() {
AddressLiteral ret = *this;
ret._is_lval = true;
return ret;
}
private:
address target() { return _target; }
bool is_lval() { return _is_lval; }
relocInfo::relocType reloc() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
friend class Assembler;
friend class MacroAssembler;
friend class Address;
friend class LIR_Assembler;
};
// Convience classes
class RuntimeAddress: public AddressLiteral {
public:
RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
};
class ExternalAddress: public AddressLiteral {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
};
class InternalAddress: public AddressLiteral {
public:
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
};
// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result
class ArrayAddress {
private:
AddressLiteral _base;
Address _index;
public:
ArrayAddress() {};
ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
AddressLiteral base() { return _base; }
Address index() { return _index; }
};
class InstructionAttr;
// 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes
// See fxsave and xsave(EVEX enabled) documentation for layout
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize);
// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.
class Assembler : public AbstractAssembler {
friend class AbstractAssembler; // for the non-virtual hack
friend class LIR_Assembler; // as_Address()
friend class StubGenerator;
public:
enum Condition { // The x86 condition codes used for conditional jumps/moves.
zero = 0x4,
notZero = 0x5,
equal = 0x4,
notEqual = 0x5,
less = 0xc,
lessEqual = 0xe,
greater = 0xf,
greaterEqual = 0xd,
below = 0x2,
belowEqual = 0x6,
above = 0x7,
aboveEqual = 0x3,
overflow = 0x0,
noOverflow = 0x1,
carrySet = 0x2,
carryClear = 0x3,
negative = 0x8,
positive = 0x9,
parity = 0xa,
noParity = 0xb
};
enum Prefix {
// segment overrides
CS_segment = 0x2e,
SS_segment = 0x36,
DS_segment = 0x3e,
ES_segment = 0x26,
FS_segment = 0x64,
GS_segment = 0x65,
REX = 0x40,
REX_B = 0x41,
REX_X = 0x42,
REX_XB = 0x43,
REX_R = 0x44,
REX_RB = 0x45,
REX_RX = 0x46,
REX_RXB = 0x47,
REX_W = 0x48,
REX_WB = 0x49,
REX_WX = 0x4A,
REX_WXB = 0x4B,
REX_WR = 0x4C,
REX_WRB = 0x4D,
REX_WRX = 0x4E,
REX_WRXB = 0x4F,
VEX_3bytes = 0xC4,
VEX_2bytes = 0xC5,
EVEX_4bytes = 0x62,
Prefix_EMPTY = 0x0
};
enum VexPrefix {
VEX_B = 0x20,
VEX_X = 0x40,
VEX_R = 0x80,
VEX_W = 0x80
};
enum ExexPrefix {
EVEX_F = 0x04,
EVEX_V = 0x08,
EVEX_Rb = 0x10,
EVEX_X = 0x40,
EVEX_Z = 0x80
};
enum VexSimdPrefix {
VEX_SIMD_NONE = 0x0,
VEX_SIMD_66 = 0x1,
VEX_SIMD_F3 = 0x2,
VEX_SIMD_F2 = 0x3
};
enum VexOpcode {
VEX_OPCODE_NONE = 0x0,
VEX_OPCODE_0F = 0x1,
VEX_OPCODE_0F_38 = 0x2,
VEX_OPCODE_0F_3A = 0x3,
VEX_OPCODE_MASK = 0x1F
};
enum AvxVectorLen {
AVX_128bit = 0x0,
AVX_256bit = 0x1,
AVX_512bit = 0x2,
AVX_NoVec = 0x4
};
enum EvexTupleType {
EVEX_FV = 0,
EVEX_HV = 4,
EVEX_FVM = 6,
EVEX_T1S = 7,
EVEX_T1F = 11,
EVEX_T2 = 13,
EVEX_T4 = 15,
EVEX_T8 = 17,
EVEX_HVM = 18,
EVEX_QVM = 19,
EVEX_OVM = 20,
EVEX_M128 = 21,
EVEX_DUP = 22,
EVEX_ETUP = 23
};
enum EvexInputSizeInBits {
EVEX_8bit = 0,
EVEX_16bit = 1,
EVEX_32bit = 2,
EVEX_64bit = 3,
EVEX_NObit = 4
};
enum WhichOperand {
// input to locate_operand, and format code for relocations
imm_operand = 0, // embedded 32-bit|64-bit immediate operand
disp32_operand = 1, // embedded 32-bit displacement or address
call32_operand = 2, // embedded 32-bit self-relative displacement
#ifndef _LP64
_WhichOperand_limit = 3
#else
narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
_WhichOperand_limit = 4
#endif
};
enum ComparisonPredicate {
eq = 0,
lt = 1,
le = 2,
_false = 3,
neq = 4,
nlt = 5,
nle = 6,
_true = 7
};
//---< calculate length of instruction >---
// As instruction size can't be found out easily on x86/x64,
// we just use '4' for len and maxlen.
// instruction must start at passed address
static unsigned int instr_len(unsigned char *instr) { return 4; }
//---< longest instructions >---
// Max instruction length is not specified in architecture documentation.
// We could use a "safe enough" estimate (15), but just default to
// instruction length guess from above.
static unsigned int instr_maxlen() { return 4; }
// NOTE: The general philopsophy of the declarations here is that 64bit versions
// of instructions are freely declared without the need for wrapping them an ifdef.
// (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
// In the .cpp file the implementations are wrapped so that they are dropped out
// of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
// to the size it was prior to merging up the 32bit and 64bit assemblers.
//
// This does mean you'll get a linker/runtime error if you use a 64bit only instruction
// in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
private:
bool _legacy_mode_bw;
bool _legacy_mode_dq;
bool _legacy_mode_vl;
bool _legacy_mode_vlbw;
bool _is_managed;
bool _vector_masking; // For stub code use only
class InstructionAttr *_attributes;
// 64bit prefixes
int prefix_and_encode(int reg_enc, bool byteinst = false);
int prefixq_and_encode(int reg_enc);
int prefix_and_encode(int dst_enc, int src_enc) {
return prefix_and_encode(dst_enc, false, src_enc, false);
}
int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte);
int prefixq_and_encode(int dst_enc, int src_enc);
void prefix(Register reg);
void prefix(Register dst, Register src, Prefix p);
void prefix(Register dst, Address adr, Prefix p);
void prefix(Address adr);
void prefixq(Address adr);
void prefix(Address adr, Register reg, bool byteinst = false);
void prefix(Address adr, XMMRegister reg);
void prefixq(Address adr, Register reg);
void prefixq(Address adr, XMMRegister reg);
void prefetch_prefix(Address src);
void rex_prefix(Address adr, XMMRegister xreg,
VexSimdPrefix pre, VexOpcode opc, bool rex_w);
int rex_prefix_and_encode(int dst_enc, int src_enc,
VexSimdPrefix pre, VexOpcode opc, bool rex_w);
void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc);
void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v,
int nds_enc, VexSimdPrefix pre, VexOpcode opc);
void vex_prefix(Address adr, int nds_enc, int xreg_enc,
VexSimdPrefix pre, VexOpcode opc,
InstructionAttr *attributes);
int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
VexSimdPrefix pre, VexOpcode opc,
InstructionAttr *attributes);
void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
VexOpcode opc, InstructionAttr *attributes);
int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
VexOpcode opc, InstructionAttr *attributes);
// Helper functions for groups of instructions
void emit_arith_b(int op1, int op2, Register dst, int imm8);
void emit_arith(int op1, int op2, Register dst, int32_t imm32);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
void emit_arith(int op1, int op2, Register dst, Register src);
bool emit_compressed_disp_byte(int &disp);
void emit_operand(Register reg,
Register base, Register index, Address::ScaleFactor scale,
int disp,
RelocationHolder const& rspec,
int rip_relative_correction = 0);
void emit_operand(XMMRegister reg, Register base, XMMRegister index,
Address::ScaleFactor scale,
int disp, RelocationHolder const& rspec);
void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
// operands that only take the original 32bit registers
void emit_operand32(Register reg, Address adr);
void emit_operand(XMMRegister reg,
Register base, Register index, Address::ScaleFactor scale,
int disp,
RelocationHolder const& rspec);
void emit_operand(XMMRegister reg, Address adr);
void emit_operand(MMXRegister reg, Address adr);
// workaround gcc (3.2.1-7) bug
void emit_operand(Address adr, MMXRegister reg);
// Immediate-to-memory forms
void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
void emit_farith(int b1, int b2, int i);
protected:
#ifdef ASSERT
void check_relocation(RelocationHolder const& rspec, int format);
#endif
void emit_data(jint data, relocInfo::relocType rtype, int format);
void emit_data(jint data, RelocationHolder const& rspec, int format);
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
// These are all easily abused and hence protected
// 32BIT ONLY SECTION
#ifndef _LP64
// Make these disappear in 64bit mode since they would never be correct
void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
#else
// 64BIT ONLY SECTION
void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
#endif // _LP64
// These are unique in that we are ensured by the caller that the 32bit
// relative in these instructions will always be able to reach the potentially
// 64bit address described by entry. Since they can take a 64bit address they
// don't have the 32 suffix like the other instructions in this class.
void call_literal(address entry, RelocationHolder const& rspec);
void jmp_literal(address entry, RelocationHolder const& rspec);
// Avoid using directly section
// Instructions in this section are actually usable by anyone without danger
// of failure but have performance issues that are addressed my enhanced
// instructions which will do the proper thing base on the particular cpu.
// We protect them because we don't trust you...
// Don't use next inc() and dec() methods directly. INC & DEC instructions
// could cause a partial flag stall since they don't set CF flag.
// Use MacroAssembler::decrement() & MacroAssembler::increment() methods
// which call inc() & dec() or add() & sub() in accordance with
// the product flag UseIncDec value.
void decl(Register dst);
void decl(Address dst);
void decq(Register dst);
void decq(Address dst);
void incl(Register dst);
void incl(Address dst);
void incq(Register dst);
void incq(Address dst);
// New cpus require use of movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
// Move Scalar Single-Precision Floating-Point Values
void movss(XMMRegister dst, Address src);
void movss(XMMRegister dst, XMMRegister src);
void movss(Address dst, XMMRegister src);
// Move Scalar Double-Precision Floating-Point Values
void movsd(XMMRegister dst, Address src);
void movsd(XMMRegister dst, XMMRegister src);
void movsd(Address dst, XMMRegister src);
void movlpd(XMMRegister dst, Address src);
// New cpus require use of movaps and movapd to avoid partial register stall
// when moving between registers.
void movaps(XMMRegister dst, XMMRegister src);
void movapd(XMMRegister dst, XMMRegister src);
// End avoid using directly
// Instruction prefixes
void prefix(Prefix p);
public:
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
init_attributes();
}
// Decoding
static address locate_operand(address inst, WhichOperand which);
static address locate_next_instruction(address inst);
// Utilities
static bool is_polling_page_far() NOT_LP64({ return false;});
static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
int cur_tuple_type, int in_size_in_bits, int cur_encoding);
// Generic instructions
// Does 32bit or 64bit as needed for the platform. In some sense these
// belong in macro assembler but there is no need for both varieties to exist
void init_attributes(void) {
_legacy_mode_bw = (VM_Version::supports_avx512bw() == false);
_legacy_mode_dq = (VM_Version::supports_avx512dq() == false);
_legacy_mode_vl = (VM_Version::supports_avx512vl() == false);
_legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false);
_is_managed = false;
_vector_masking = false;
_attributes = NULL;
}
void set_attributes(InstructionAttr *attributes) { _attributes = attributes; }
void clear_attributes(void) { _attributes = NULL; }
void set_managed(void) { _is_managed = true; }
void clear_managed(void) { _is_managed = false; }
bool is_managed(void) { return _is_managed; }
void lea(Register dst, Address src);
void mov(Register dst, Register src);
void pusha();
void popa();
void pushf();
void popf();
void push(int32_t imm32);
void push(Register src);
void pop(Register dst);
// These are dummies to prevent surprise implicit conversions to Register
void push(void* v);
void pop(void* v);
// These do register sized moves/scans
void rep_mov();
void rep_stos();
void rep_stosb();
void repne_scan();
#ifdef _LP64
void repne_scanl();
#endif
// Vanilla instructions in lexical order
void adcl(Address dst, int32_t imm32);
void adcl(Address dst, Register src);
void adcl(Register dst, int32_t imm32);
void adcl(Register dst, Address src);
void adcl(Register dst, Register src);
void adcq(Register dst, int32_t imm32);
void adcq(Register dst, Address src);
void adcq(Register dst, Register src);
void addb(Address dst, int imm8);
void addw(Address dst, int imm16);
void addl(Address dst, int32_t imm32);
void addl(Address dst, Register src);
void addl(Register dst, int32_t imm32);
void addl(Register dst, Address src);
void addl(Register dst, Register src);
void addq(Address dst, int32_t imm32);
void addq(Address dst, Register src);
void addq(Register dst, int32_t imm32);
void addq(Register dst, Address src);
void addq(Register dst, Register src);
#ifdef _LP64
//Add Unsigned Integers with Carry Flag
void adcxq(Register dst, Register src);
//Add Unsigned Integers with Overflow Flag
void adoxq(Register dst, Register src);
#endif
void addr_nop_4();
void addr_nop_5();
void addr_nop_7();
void addr_nop_8();
// Add Scalar Double-Precision Floating-Point Values
void addsd(XMMRegister dst, Address src);
void addsd(XMMRegister dst, XMMRegister src);
// Add Scalar Single-Precision Floating-Point Values
void addss(XMMRegister dst, Address src);
void addss(XMMRegister dst, XMMRegister src);
// AES instructions
void aesdec(XMMRegister dst, Address src);
void aesdec(XMMRegister dst, XMMRegister src);
void aesdeclast(XMMRegister dst, Address src);
void aesdeclast(XMMRegister dst, XMMRegister src);
void aesenc(XMMRegister dst, Address src);
void aesenc(XMMRegister dst, XMMRegister src);
void aesenclast(XMMRegister dst, Address src);
void aesenclast(XMMRegister dst, XMMRegister src);
// Vector AES instructions
void vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void andl(Address dst, int32_t imm32);
void andl(Register dst, int32_t imm32);
void andl(Register dst, Address src);
void andl(Register dst, Register src);
void andq(Address dst, int32_t imm32);
void andq(Register dst, int32_t imm32);
void andq(Register dst, Address src);
void andq(Register dst, Register src);
// BMI instructions
void andnl(Register dst, Register src1, Register src2);
void andnl(Register dst, Register src1, Address src2);
void andnq(Register dst, Register src1, Register src2);
void andnq(Register dst, Register src1, Address src2);
void blsil(Register dst, Register src);
void blsil(Register dst, Address src);
void blsiq(Register dst, Register src);
void blsiq(Register dst, Address src);
void blsmskl(Register dst, Register src);
void blsmskl(Register dst, Address src);
void blsmskq(Register dst, Register src);
void blsmskq(Register dst, Address src);
void blsrl(Register dst, Register src);
void blsrl(Register dst, Address src);
void blsrq(Register dst, Register src);
void blsrq(Register dst, Address src);
void bsfl(Register dst, Register src);
void bsrl(Register dst, Register src);
#ifdef _LP64
void bsfq(Register dst, Register src);
void bsrq(Register dst, Register src);
#endif
void bswapl(Register reg);
void bswapq(Register reg);
void call(Label& L, relocInfo::relocType rtype);
void call(Register reg); // push pc; pc <- reg
void call(Address adr); // push pc; pc <- adr
void cdql();
void cdqq();
void cld();
void clflush(Address adr);
void clflushopt(Address adr);
void clwb(Address adr);
void cmovl(Condition cc, Register dst, Register src);
void cmovl(Condition cc, Register dst, Address src);
void cmovq(Condition cc, Register dst, Register src);
void cmovq(Condition cc, Register dst, Address src);
void cmpb(Address dst, int imm8);
void cmpl(Address dst, int32_t imm32);
void cmpl(Register dst, int32_t imm32);
void cmpl(Register dst, Register src);
void cmpl(Register dst, Address src);
void cmpq(Address dst, int32_t imm32);
void cmpq(Address dst, Register src);
void cmpq(Register dst, int32_t imm32);
void cmpq(Register dst, Register src);
void cmpq(Register dst, Address src);
// these are dummies used to catch attempting to convert NULL to Register
void cmpl(Register dst, void* junk); // dummy
void cmpq(Register dst, void* junk); // dummy
void cmpw(Address dst, int imm16);
void cmpxchg8 (Address adr);
void cmpxchgb(Register reg, Address adr);
void cmpxchgl(Register reg, Address adr);
void cmpxchgq(Register reg, Address adr);
// Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
void comisd(XMMRegister dst, Address src);
void comisd(XMMRegister dst, XMMRegister src);
// Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
void comiss(XMMRegister dst, Address src);
void comiss(XMMRegister dst, XMMRegister src);
// Identify processor type and features
void cpuid();
// CRC32C
void crc32(Register crc, Register v, int8_t sizeInBytes);
void crc32(Register crc, Address adr, int8_t sizeInBytes);
// Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
void cvtsd2ss(XMMRegister dst, XMMRegister src);
void cvtsd2ss(XMMRegister dst, Address src);
// Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
void cvtsi2sdl(XMMRegister dst, Register src);
void cvtsi2sdl(XMMRegister dst, Address src);
void cvtsi2sdq(XMMRegister dst, Register src);
void cvtsi2sdq(XMMRegister dst, Address src);
// Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
void cvtsi2ssl(XMMRegister dst, Register src);
void cvtsi2ssl(XMMRegister dst, Address src);
void cvtsi2ssq(XMMRegister dst, Register src);
void cvtsi2ssq(XMMRegister dst, Address src);
// Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
void cvtdq2pd(XMMRegister dst, XMMRegister src);
// Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
void cvtdq2ps(XMMRegister dst, XMMRegister src);
// Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtss2sd(XMMRegister dst, Address src);
// Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
void cvttsd2sil(Register dst, Address src);
void cvttsd2sil(Register dst, XMMRegister src);
void cvttsd2siq(Register dst, XMMRegister src);
// Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
void cvttss2sil(Register dst, XMMRegister src);
void cvttss2siq(Register dst, XMMRegister src);
void cvttpd2dq(XMMRegister dst, XMMRegister src);
//Abs of packed Integer values
void pabsb(XMMRegister dst, XMMRegister src);
void pabsw(XMMRegister dst, XMMRegister src);
void pabsd(XMMRegister dst, XMMRegister src);
void vpabsb(XMMRegister dst, XMMRegister src, int vector_len);
void vpabsw(XMMRegister dst, XMMRegister src, int vector_len);
void vpabsd(XMMRegister dst, XMMRegister src, int vector_len);
void evpabsq(XMMRegister dst, XMMRegister src, int vector_len);
// Divide Scalar Double-Precision Floating-Point Values
void divsd(XMMRegister dst, Address src);
void divsd(XMMRegister dst, XMMRegister src);
// Divide Scalar Single-Precision Floating-Point Values
void divss(XMMRegister dst, Address src);
void divss(XMMRegister dst, XMMRegister src);
void emms();
void fabs();
void fadd(int i);
void fadd_d(Address src);
void fadd_s(Address src);
// "Alternate" versions of x87 instructions place result down in FPU
// stack instead of on TOS
void fadda(int i); // "alternate" fadd
void faddp(int i = 1);
void fchs();
void fcom(int i);
void fcomp(int i = 1);
void fcomp_d(Address src);
void fcomp_s(Address src);
void fcompp();
void fcos();
void fdecstp();
void fdiv(int i);
void fdiv_d(Address src);
void fdivr_s(Address src);
void fdiva(int i); // "alternate" fdiv
void fdivp(int i = 1);
void fdivr(int i);
void fdivr_d(Address src);
void fdiv_s(Address src);
void fdivra(int i); // "alternate" reversed fdiv
void fdivrp(int i = 1);
void ffree(int i = 0);
void fild_d(Address adr);
void fild_s(Address adr);
void fincstp();
void finit();
void fist_s (Address adr);
void fistp_d(Address adr);
void fistp_s(Address adr);
void fld1();
void fld_d(Address adr);
void fld_s(Address adr);
void fld_s(int index);
void fld_x(Address adr); // extended-precision (80-bit) format
void fldcw(Address src);
void fldenv(Address src);
void fldlg2();
void fldln2();
void fldz();
void flog();
void flog10();
void fmul(int i);
void fmul_d(Address src);
void fmul_s(Address src);
void fmula(int i); // "alternate" fmul
void fmulp(int i = 1);
void fnsave(Address dst);
void fnstcw(Address src);
void fnstsw_ax();
void fprem();
void fprem1();
void frstor(Address src);
void fsin();
void fsqrt();
void fst_d(Address adr);
void fst_s(Address adr);
void fstp_d(Address adr);
void fstp_d(int index);
void fstp_s(Address adr);
void fstp_x(Address adr); // extended-precision (80-bit) format
void fsub(int i);
void fsub_d(Address src);
void fsub_s(Address src);
void fsuba(int i); // "alternate" fsub
void fsubp(int i = 1);
void fsubr(int i);
void fsubr_d(Address src);
void fsubr_s(Address src);
void fsubra(int i); // "alternate" reversed fsub
void fsubrp(int i = 1);
void ftan();
void ftst();
void fucomi(int i = 1);
void fucomip(int i = 1);
void fwait();
void fxch(int i = 1);
void fxrstor(Address src);
void xrstor(Address src);
void fxsave(Address dst);
void xsave(Address dst);
void fyl2x();
void frndint();
void f2xm1();
void fldl2e();
void hlt();
void idivl(Register src);
void divl(Register src); // Unsigned division
#ifdef _LP64
void idivq(Register src);
#endif
void imull(Register src);
void imull(Register dst, Register src);
void imull(Register dst, Register src, int value);
void imull(Register dst, Address src);
#ifdef _LP64
void imulq(Register dst, Register src);
void imulq(Register dst, Register src, int value);
void imulq(Register dst, Address src);
#endif
// jcc is the generic conditional branch generator to run-
// time routines, jcc is used for branches to labels. jcc
// takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// jcc(cc, L); // forward branch to unbound label
// bind(L); // bind label to the current pc
// jcc(cc, L); // backward branch to bound label
// bind(L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void jcc(Condition cc, Label& L, bool maybe_short = true);
// Conditional jump to a 8-bit offset to L.
// WARNING: be very careful using this for forward jumps. If the label is
// not bound within an 8-bit offset of this instruction, a run-time error
// will occur.
// Use macro to record file and line number.
#define jccb(cc, L) jccb_0(cc, L, __FILE__, __LINE__)
void jccb_0(Condition cc, Label& L, const char* file, int line);
void jmp(Address entry); // pc <- entry
// Label operations & relative jumps (PPUM Appendix D)
void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
void jmp(Register entry); // pc <- entry
// Unconditional 8-bit offset jump to L.
// WARNING: be very careful using this for forward jumps. If the label is
// not bound within an 8-bit offset of this instruction, a run-time error
// will occur.
// Use macro to record file and line number.
#define jmpb(L) jmpb_0(L, __FILE__, __LINE__)
void jmpb_0(Label& L, const char* file, int line);
void ldmxcsr( Address src );
void leal(Register dst, Address src);
void leaq(Register dst, Address src);
void lfence();
void lock();
void lzcntl(Register dst, Register src);
#ifdef _LP64
void lzcntq(Register dst, Register src);
#endif
enum Membar_mask_bits {
StoreStore = 1 << 3,
LoadStore = 1 << 2,
StoreLoad = 1 << 1,
LoadLoad = 1 << 0
};
// Serializes memory and blows flags
void membar(Membar_mask_bits order_constraint) {
// We only have to handle StoreLoad
if (order_constraint & StoreLoad) {
// All usable chips support "locked" instructions which suffice
// as barriers, and are much faster than the alternative of
// using cpuid instruction. We use here a locked add [esp-C],0.
// This is conveniently otherwise a no-op except for blowing
// flags, and introducing a false dependency on target memory
// location. We can't do anything with flags, but we can avoid
// memory dependencies in the current method by locked-adding
// somewhere else on the stack. Doing [esp+C] will collide with
// something on stack in current method, hence we go for [esp-C].
// It is convenient since it is almost always in data cache, for
// any small C. We need to step back from SP to avoid data
// dependencies with other things on below SP (callee-saves, for
// example). Without a clear way to figure out the minimal safe
// distance from SP, it makes sense to step back the complete
// cache line, as this will also avoid possible second-order effects
// with locked ops against the cache line. Our choice of offset
// is bounded by x86 operand encoding, which should stay within
// [-128; +127] to have the 8-byte displacement encoding.
//
// Any change to this code may need to revisit other places in
// the code where this idiom is used, in particular the
// orderAccess code.
int offset = -VM_Version::L1_line_size();
if (offset < -128) {
offset = -128;
}
lock();
addl(Address(rsp, offset), 0);// Assert the lock# signal here
}
}
void mfence();
void sfence();
// Moves
void mov64(Register dst, int64_t imm64);
void movb(Address dst, Register src);
void movb(Address dst, int imm8);
void movb(Register dst, Address src);
void movddup(XMMRegister dst, XMMRegister src);
void kmovbl(KRegister dst, Register src);
void kmovbl(Register dst, KRegister src);
void kmovwl(KRegister dst, Register src);
void kmovwl(KRegister dst, Address src);
void kmovwl(Register dst, KRegister src);
void kmovdl(KRegister dst, Register src);
void kmovdl(Register dst, KRegister src);
void kmovql(KRegister dst, KRegister src);
void kmovql(Address dst, KRegister src);
void kmovql(KRegister dst, Address src);
void kmovql(KRegister dst, Register src);
void kmovql(Register dst, KRegister src);
void knotwl(KRegister dst, KRegister src);
void kortestbl(KRegister dst, KRegister src);
void kortestwl(KRegister dst, KRegister src);
void kortestdl(KRegister dst, KRegister src);
void kortestql(KRegister dst, KRegister src);
void ktestq(KRegister src1, KRegister src2);
void ktestd(KRegister src1, KRegister src2);
void ktestql(KRegister dst, KRegister src);
void movdl(XMMRegister dst, Register src);
void movdl(Register dst, XMMRegister src);
void movdl(XMMRegister dst, Address src);
void movdl(Address dst, XMMRegister src);
// Move Double Quadword
void movdq(XMMRegister dst, Register src);
void movdq(Register dst, XMMRegister src);
// Move Aligned Double Quadword
void movdqa(XMMRegister dst, XMMRegister src);
void movdqa(XMMRegister dst, Address src);
// Move Unaligned Double Quadword
void movdqu(Address dst, XMMRegister src);
void movdqu(XMMRegister dst, Address src);
void movdqu(XMMRegister dst, XMMRegister src);
// Move Unaligned 256bit Vector
void vmovdqu(Address dst, XMMRegister src);
void vmovdqu(XMMRegister dst, Address src);
void vmovdqu(XMMRegister dst, XMMRegister src);
// Move Unaligned 512bit Vector
void evmovdqub(Address dst, XMMRegister src, int vector_len);
void evmovdqub(XMMRegister dst, Address src, int vector_len);
void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len);
void evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len);
void evmovdquw(Address dst, XMMRegister src, int vector_len);
void evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len);
void evmovdquw(XMMRegister dst, Address src, int vector_len);
void evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len);
void evmovdqul(Address dst, XMMRegister src, int vector_len);
void evmovdqul(XMMRegister dst, Address src, int vector_len);
void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len);
void evmovdquq(Address dst, XMMRegister src, int vector_len);
void evmovdquq(XMMRegister dst, Address src, int vector_len);
void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len);
// Move lower 64bit to high 64bit in 128bit register
void movlhps(XMMRegister dst, XMMRegister src);
void movl(Register dst, int32_t imm32);
void movl(Address dst, int32_t imm32);
void movl(Register dst, Register src);
void movl(Register dst, Address src);
void movl(Address dst, Register src);
// These dummies prevent using movl from converting a zero (like NULL) into Register
// by giving the compiler two choices it can't resolve
void movl(Address dst, void* junk);
void movl(Register dst, void* junk);
#ifdef _LP64
void movq(Register dst, Register src);
void movq(Register dst, Address src);
void movq(Address dst, Register src);
#endif
void movq(Address dst, MMXRegister src );
void movq(MMXRegister dst, Address src );
#ifdef _LP64
// These dummies prevent using movq from converting a zero (like NULL) into Register
// by giving the compiler two choices it can't resolve
void movq(Address dst, void* dummy);
void movq(Register dst, void* dummy);
#endif
// Move Quadword
void movq(Address dst, XMMRegister src);
void movq(XMMRegister dst, Address src);
void movsbl(Register dst, Address src);
void movsbl(Register dst, Register src);
#ifdef _LP64
void movsbq(Register dst, Address src);
void movsbq(Register dst, Register src);
// Move signed 32bit immediate to 64bit extending sign
void movslq(Address dst, int32_t imm64);
void movslq(Register dst, int32_t imm64);
void movslq(Register dst, Address src);
void movslq(Register dst, Register src);
void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
#endif
void movswl(Register dst, Address src);
void movswl(Register dst, Register src);
#ifdef _LP64
void movswq(Register dst, Address src);
void movswq(Register dst, Register src);
#endif
void movw(Address dst, int imm16);
void movw(Register dst, Address src);
void movw(Address dst, Register src);
void movzbl(Register dst, Address src);
void movzbl(Register dst, Register src);
#ifdef _LP64
void movzbq(Register dst, Address src);
void movzbq(Register dst, Register src);
#endif
void movzwl(Register dst, Address src);
void movzwl(Register dst, Register src);
#ifdef _LP64
void movzwq(Register dst, Address src);
void movzwq(Register dst, Register src);
#endif
// Unsigned multiply with RAX destination register
void mull(Address src);
void mull(Register src);
#ifdef _LP64
void mulq(Address src);
void mulq(Register src);
void mulxq(Register dst1, Register dst2, Register src);
#endif
// Multiply Scalar Double-Precision Floating-Point Values
void mulsd(XMMRegister dst, Address src);
void mulsd(XMMRegister dst, XMMRegister src);
// Multiply Scalar Single-Precision Floating-Point Values
void mulss(XMMRegister dst, Address src);
void mulss(XMMRegister dst, XMMRegister src);
void negl(Register dst);
#ifdef _LP64
void negq(Register dst);
#endif
void nop(int i = 1);
void notl(Register dst);
#ifdef _LP64
void notq(Register dst);
#endif
void orl(Address dst, int32_t imm32);
void orl(Register dst, int32_t imm32);
void orl(Register dst, Address src);
void orl(Register dst, Register src);
void orl(Address dst, Register src);
void orb(Address dst, int imm8);
void orq(Address dst, int32_t imm32);
void orq(Register dst, int32_t imm32);
void orq(Register dst, Address src);
void orq(Register dst, Register src);
// Pack with unsigned saturation
void packuswb(XMMRegister dst, XMMRegister src);
void packuswb(XMMRegister dst, Address src);
void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Pemutation of 64bit words
void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
void vpermq(XMMRegister dst, XMMRegister src, int imm8);
void vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vperm2i128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8);
void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8);
void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void pause();
// Undefined Instruction
void ud2();
// SSE4.2 string instructions
void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
void pcmpestri(XMMRegister xmm1, Address src, int imm8);
void pcmpeqb(XMMRegister dst, XMMRegister src);
void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len);
void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len);
void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len);
void evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate of, int vector_len);
void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len);
void pcmpeqw(XMMRegister dst, XMMRegister src);
void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len);
void pcmpeqd(XMMRegister dst, XMMRegister src);
void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len);
void pcmpeqq(XMMRegister dst, XMMRegister src);
void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len);
void pmovmskb(Register dst, XMMRegister src);
void vpmovmskb(Register dst, XMMRegister src);
// SSE 4.1 extract
void pextrd(Register dst, XMMRegister src, int imm8);
void pextrq(Register dst, XMMRegister src, int imm8);
void pextrd(Address dst, XMMRegister src, int imm8);
void pextrq(Address dst, XMMRegister src, int imm8);
void pextrb(Address dst, XMMRegister src, int imm8);
// SSE 2 extract
void pextrw(Register dst, XMMRegister src, int imm8);
void pextrw(Address dst, XMMRegister src, int imm8);
// SSE 4.1 insert
void pinsrd(XMMRegister dst, Register src, int imm8);
void pinsrq(XMMRegister dst, Register src, int imm8);
void pinsrd(XMMRegister dst, Address src, int imm8);
void pinsrq(XMMRegister dst, Address src, int imm8);
void pinsrb(XMMRegister dst, Address src, int imm8);
// SSE 2 insert
void pinsrw(XMMRegister dst, Register src, int imm8);
void pinsrw(XMMRegister dst, Address src, int imm8);
// SSE4.1 packed move
void pmovzxbw(XMMRegister dst, XMMRegister src);
void pmovzxbw(XMMRegister dst, Address src);
void vpmovzxbw( XMMRegister dst, Address src, int vector_len);
void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len);
void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len);
void evpmovwb(Address dst, XMMRegister src, int vector_len);
void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len);
void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len);
void evpmovdb(Address dst, XMMRegister src, int vector_len);
// Sign extend moves
void pmovsxbw(XMMRegister dst, XMMRegister src);
void vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len);
// Multiply add
void pmaddwd(XMMRegister dst, XMMRegister src);
void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Multiply add accumulate
void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
#ifndef _LP64 // no 32bit push/pop on amd64
void popl(Address dst);
#endif
#ifdef _LP64
void popq(Address dst);
#endif
void popcntl(Register dst, Address src);
void popcntl(Register dst, Register src);
void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len);
#ifdef _LP64
void popcntq(Register dst, Address src);
void popcntq(Register dst, Register src);
#endif
// Prefetches (SSE, SSE2, 3DNOW only)
void prefetchnta(Address src);
void prefetchr(Address src);
void prefetcht0(Address src);
void prefetcht1(Address src);
void prefetcht2(Address src);
void prefetchw(Address src);
// Shuffle Bytes
void pshufb(XMMRegister dst, XMMRegister src);
void pshufb(XMMRegister dst, Address src);
void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Shuffle Packed Doublewords
void pshufd(XMMRegister dst, XMMRegister src, int mode);
void pshufd(XMMRegister dst, Address src, int mode);
void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len);
// Shuffle Packed Low Words
void pshuflw(XMMRegister dst, XMMRegister src, int mode);
void pshuflw(XMMRegister dst, Address src, int mode);
// Shuffle packed values at 128 bit granularity
void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len);
// Shift Right by bytes Logical DoubleQuadword Immediate
void psrldq(XMMRegister dst, int shift);
// Shift Left by bytes Logical DoubleQuadword Immediate
void pslldq(XMMRegister dst, int shift);
// Logical Compare 128bit
void ptest(XMMRegister dst, XMMRegister src);
void ptest(XMMRegister dst, Address src);
// Logical Compare 256bit
void vptest(XMMRegister dst, XMMRegister src);
void vptest(XMMRegister dst, Address src);
// Interleave Low Bytes
void punpcklbw(XMMRegister dst, XMMRegister src);
void punpcklbw(XMMRegister dst, Address src);
// Interleave Low Doublewords
void punpckldq(XMMRegister dst, XMMRegister src);
void punpckldq(XMMRegister dst, Address src);
// Interleave Low Quadwords
void punpcklqdq(XMMRegister dst, XMMRegister src);
#ifndef _LP64 // no 32bit push/pop on amd64
void pushl(Address src);
#endif
void pushq(Address src);
void rcll(Register dst, int imm8);
void rclq(Register dst, int imm8);
void rcrq(Register dst, int imm8);
void rcpps(XMMRegister dst, XMMRegister src);
void rcpss(XMMRegister dst, XMMRegister src);
void rdtsc();
void ret(int imm16);
#ifdef _LP64
void rorq(Register dst, int imm8);
void rorxq(Register dst, Register src, int imm8);
void rorxd(Register dst, Register src, int imm8);
#endif
void sahf();
void sarl(Register dst, int imm8);
void sarl(Register dst);
void sarq(Register dst, int imm8);
void sarq(Register dst);
void sbbl(Address dst, int32_t imm32);
void sbbl(Register dst, int32_t imm32);
void sbbl(Register dst, Address src);
void sbbl(Register dst, Register src);
void sbbq(Address dst, int32_t imm32);
void sbbq(Register dst, int32_t imm32);
void sbbq(Register dst, Address src);
void sbbq(Register dst, Register src);
void setb(Condition cc, Register dst);
void palignr(XMMRegister dst, XMMRegister src, int imm8);
void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len);
void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void pblendw(XMMRegister dst, XMMRegister src, int imm8);
void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8);
void sha1nexte(XMMRegister dst, XMMRegister src);
void sha1msg1(XMMRegister dst, XMMRegister src);
void sha1msg2(XMMRegister dst, XMMRegister src);
// xmm0 is implicit additional source to the following instruction.
void sha256rnds2(XMMRegister dst, XMMRegister src);
void sha256msg1(XMMRegister dst, XMMRegister src);
void sha256msg2(XMMRegister dst, XMMRegister src);
void shldl(Register dst, Register src);
void shldl(Register dst, Register src, int8_t imm8);
void shll(Register dst, int imm8);
void shll(Register dst);
void shlq(Register dst, int imm8);
void shlq(Register dst);
void shrdl(Register dst, Register src);
void shrl(Register dst, int imm8);
void shrl(Register dst);
void shrq(Register dst, int imm8);
void shrq(Register dst);
void smovl(); // QQQ generic?
// Compute Square Root of Scalar Double-Precision Floating-Point Value
void sqrtsd(XMMRegister dst, Address src);
void sqrtsd(XMMRegister dst, XMMRegister src);
void roundsd(XMMRegister dst, Address src, int32_t rmode);
void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode);
// Compute Square Root of Scalar Single-Precision Floating-Point Value
void sqrtss(XMMRegister dst, Address src);
void sqrtss(XMMRegister dst, XMMRegister src);
void std();
void stmxcsr( Address dst );
void subl(Address dst, int32_t imm32);
void subl(Address dst, Register src);
void subl(Register dst, int32_t imm32);
void subl(Register dst, Address src);
void subl(Register dst, Register src);
void subq(Address dst, int32_t imm32);
void subq(Address dst, Register src);
void subq(Register dst, int32_t imm32);
void subq(Register dst, Address src);
void subq(Register dst, Register src);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void subl_imm32(Register dst, int32_t imm32);
void subq_imm32(Register dst, int32_t imm32);
// Subtract Scalar Double-Precision Floating-Point Values
void subsd(XMMRegister dst, Address src);
void subsd(XMMRegister dst, XMMRegister src);
// Subtract Scalar Single-Precision Floating-Point Values
void subss(XMMRegister dst, Address src);
void subss(XMMRegister dst, XMMRegister src);
void testb(Register dst, int imm8);
void testb(Address dst, int imm8);
void testl(Register dst, int32_t imm32);
void testl(Register dst, Register src);
void testl(Register dst, Address src);
void testq(Register dst, int32_t imm32);
void testq(Register dst, Register src);
void testq(Register dst, Address src);
// BMI - count trailing zeros
void tzcntl(Register dst, Register src);
void tzcntq(Register dst, Register src);
// Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
void ucomisd(XMMRegister dst, Address src);
void ucomisd(XMMRegister dst, XMMRegister src);
// Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
void ucomiss(XMMRegister dst, Address src);
void ucomiss(XMMRegister dst, XMMRegister src);
void xabort(int8_t imm8);
void xaddb(Address dst, Register src);
void xaddw(Address dst, Register src);
void xaddl(Address dst, Register src);
void xaddq(Address dst, Register src);
void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
void xchgb(Register reg, Address adr);
void xchgw(Register reg, Address adr);
void xchgl(Register reg, Address adr);
void xchgl(Register dst, Register src);
void xchgq(Register reg, Address adr);
void xchgq(Register dst, Register src);
void xend();
// Get Value of Extended Control Register
void xgetbv();
void xorl(Register dst, int32_t imm32);
void xorl(Register dst, Address src);
void xorl(Register dst, Register src);
void xorb(Register dst, Address src);
void xorq(Register dst, Address src);
void xorq(Register dst, Register src);
void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
// AVX 3-operands scalar instructions (encoded with VEX prefix)
void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vaddss(XMMRegister dst, XMMRegister nds, Address src);
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vdivss(XMMRegister dst, XMMRegister nds, Address src);
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vmulss(XMMRegister dst, XMMRegister nds, Address src);
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vsubss(XMMRegister dst, XMMRegister nds, Address src);
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vminss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void shlxl(Register dst, Register src1, Register src2);
void shlxq(Register dst, Register src1, Register src2);
//====================VECTOR ARITHMETIC=====================================
// Add Packed Floating-Point Values
void addpd(XMMRegister dst, XMMRegister src);
void addpd(XMMRegister dst, Address src);
void addps(XMMRegister dst, XMMRegister src);
void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Subtract Packed Floating-Point Values
void subpd(XMMRegister dst, XMMRegister src);
void subps(XMMRegister dst, XMMRegister src);
void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Multiply Packed Floating-Point Values
void mulpd(XMMRegister dst, XMMRegister src);
void mulpd(XMMRegister dst, Address src);
void mulps(XMMRegister dst, XMMRegister src);
void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Divide Packed Floating-Point Values
void divpd(XMMRegister dst, XMMRegister src);
void divps(XMMRegister dst, XMMRegister src);
void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Sqrt Packed Floating-Point Values
void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len);
void vsqrtpd(XMMRegister dst, Address src, int vector_len);
void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len);
void vsqrtps(XMMRegister dst, Address src, int vector_len);
// Round Packed Double precision value.
void vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len);
void vroundpd(XMMRegister dst, Address src, int32_t rmode, int vector_len);
void vrndscalepd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len);
void vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len);
// Bitwise Logical AND of Packed Floating-Point Values
void andpd(XMMRegister dst, XMMRegister src);
void andps(XMMRegister dst, XMMRegister src);
void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void unpckhpd(XMMRegister dst, XMMRegister src);
void unpcklpd(XMMRegister dst, XMMRegister src);
// Bitwise Logical XOR of Packed Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src);
void xorps(XMMRegister dst, XMMRegister src);
void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Add horizontal packed integers
void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void phaddw(XMMRegister dst, XMMRegister src);
void phaddd(XMMRegister dst, XMMRegister src);
// Add packed integers
void paddb(XMMRegister dst, XMMRegister src);
void paddw(XMMRegister dst, XMMRegister src);
void paddd(XMMRegister dst, XMMRegister src);
void paddd(XMMRegister dst, Address src);
void paddq(XMMRegister dst, XMMRegister src);
void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Sub packed integers
void psubb(XMMRegister dst, XMMRegister src);
void psubw(XMMRegister dst, XMMRegister src);
void psubd(XMMRegister dst, XMMRegister src);
void psubq(XMMRegister dst, XMMRegister src);
void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Multiply packed integers (only shorts and ints)
void pmullw(XMMRegister dst, XMMRegister src);
void pmulld(XMMRegister dst, XMMRegister src);
void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Shift left packed integers
void psllw(XMMRegister dst, int shift);
void pslld(XMMRegister dst, int shift);
void psllq(XMMRegister dst, int shift);
void psllw(XMMRegister dst, XMMRegister shift);
void pslld(XMMRegister dst, XMMRegister shift);
void psllq(XMMRegister dst, XMMRegister shift);
void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
// Logical shift right packed integers
void psrlw(XMMRegister dst, int shift);
void psrld(XMMRegister dst, int shift);
void psrlq(XMMRegister dst, int shift);
void psrlw(XMMRegister dst, XMMRegister shift);
void psrld(XMMRegister dst, XMMRegister shift);
void psrlq(XMMRegister dst, XMMRegister shift);
void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
void psraw(XMMRegister dst, int shift);
void psrad(XMMRegister dst, int shift);
void psraw(XMMRegister dst, XMMRegister shift);
void psrad(XMMRegister dst, XMMRegister shift);
void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
void evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
void evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
// And packed integers
void pand(XMMRegister dst, XMMRegister src);
void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Andn packed integers
void pandn(XMMRegister dst, XMMRegister src);
void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Or packed integers
void por(XMMRegister dst, XMMRegister src);
void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
// Xor packed integers
void pxor(XMMRegister dst, XMMRegister src);
void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// vinserti forms
void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
// vinsertf forms
void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);
void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8);
// vextracti forms
void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti128(Address dst, XMMRegister src, uint8_t imm8);
void vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti32x4(Address dst, XMMRegister src, uint8_t imm8);
void vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextracti64x4(Address dst, XMMRegister src, uint8_t imm8);
// vextractf forms
void vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf128(Address dst, XMMRegister src, uint8_t imm8);
void vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf32x4(Address dst, XMMRegister src, uint8_t imm8);
void vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8);
void vextractf64x4(Address dst, XMMRegister src, uint8_t imm8);
// xmm/mem sourced byte/word/dword/qword replicate
void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
void vpbroadcastb(XMMRegister dst, Address src, int vector_len);
void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
void vpbroadcastw(XMMRegister dst, Address src, int vector_len);
void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
void vpbroadcastd(XMMRegister dst, Address src, int vector_len);
void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
void vpbroadcastq(XMMRegister dst, Address src, int vector_len);
void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len);
void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len);
// scalar single/double precision replicate
void vpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
void vpbroadcastss(XMMRegister dst, Address src, int vector_len);
void vpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
void vpbroadcastsd(XMMRegister dst, Address src, int vector_len);
// gpr sourced byte/word/dword/qword replicate
void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
void evpgatherdd(XMMRegister dst, KRegister k1, Address src, int vector_len);
// Carry-Less Multiplication Quadword
void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len);
// AVX instruction which is used to clear upper 128 bits of YMM registers and
// to avoid transaction penalty between AVX and SSE states. There is no
// penalty if legacy SSE instructions are encoded using VEX prefix because
// they always clear upper 128 bits. It should be used before calling
// runtime code and native libraries.
void vzeroupper();
// AVX support for vectorized conditional move (float/double). The following two instructions used only coupled.
void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
void blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
void cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len);
void blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len);
void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len);
protected:
// Next instructions require address alignment 16 bytes SSE mode.
// They should be called only from corresponding MacroAssembler instructions.
void andpd(XMMRegister dst, Address src);
void andps(XMMRegister dst, Address src);
void xorpd(XMMRegister dst, Address src);
void xorps(XMMRegister dst, Address src);
};
// The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions.
// Specific set functions are for specialized use, else defaults or whatever was supplied to object construction
// are applied.
class InstructionAttr {
public:
InstructionAttr(
int vector_len, // The length of vector to be applied in encoding - for both AVX and EVEX
bool rex_vex_w, // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true
bool legacy_mode, // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX
bool no_reg_mask, // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used
bool uses_vl) // This instruction may have legacy constraints based on vector length for EVEX
:
_avx_vector_len(vector_len),
_rex_vex_w(rex_vex_w),
_rex_vex_w_reverted(false),
_legacy_mode(legacy_mode),
_no_reg_mask(no_reg_mask),
_uses_vl(uses_vl),
_tuple_type(Assembler::EVEX_ETUP),
_input_size_in_bits(Assembler::EVEX_NObit),
_is_evex_instruction(false),
_evex_encoding(0),
_is_clear_context(true),
_is_extended_context(false),
_embedded_opmask_register_specifier(0), // hard code k0
_current_assembler(NULL) {
if (UseAVX < 3) _legacy_mode = true;
}
~InstructionAttr() {
if (_current_assembler != NULL) {
_current_assembler->clear_attributes();
}
_current_assembler = NULL;
}
private:
int _avx_vector_len;
bool _rex_vex_w;
bool _rex_vex_w_reverted;
bool _legacy_mode;
bool _no_reg_mask;
bool _uses_vl;
int _tuple_type;
int _input_size_in_bits;
bool _is_evex_instruction;
int _evex_encoding;
bool _is_clear_context;
bool _is_extended_context;
int _embedded_opmask_register_specifier;
Assembler *_current_assembler;
public:
// query functions for field accessors
int get_vector_len(void) const { return _avx_vector_len; }
bool is_rex_vex_w(void) const { return _rex_vex_w; }
bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; }
bool is_legacy_mode(void) const { return _legacy_mode; }
bool is_no_reg_mask(void) const { return _no_reg_mask; }
bool uses_vl(void) const { return _uses_vl; }
int get_tuple_type(void) const { return _tuple_type; }
int get_input_size(void) const { return _input_size_in_bits; }
int is_evex_instruction(void) const { return _is_evex_instruction; }
int get_evex_encoding(void) const { return _evex_encoding; }
bool is_clear_context(void) const { return _is_clear_context; }
bool is_extended_context(void) const { return _is_extended_context; }
int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; }
// Set the vector len manually
void set_vector_len(int vector_len) { _avx_vector_len = vector_len; }
// Set revert rex_vex_w for avx encoding
void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; }
// Set rex_vex_w based on state
void set_rex_vex_w(bool state) { _rex_vex_w = state; }
// Set the instruction to be encoded in AVX mode
void set_is_legacy_mode(void) { _legacy_mode = true; }
// Set the current instuction to be encoded as an EVEX instuction
void set_is_evex_instruction(void) { _is_evex_instruction = true; }
// Internal encoding data used in compressed immediate offset programming
void set_evex_encoding(int value) { _evex_encoding = value; }
// Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components
void reset_is_clear_context(void) { _is_clear_context = false; }
// Map back to current asembler so that we can manage object level assocation
void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; }
// Address modifiers used for compressed displacement calculation
void set_address_attributes(int tuple_type, int input_size_in_bits) {
if (VM_Version::supports_evex()) {
_tuple_type = tuple_type;
_input_size_in_bits = input_size_in_bits;
}
}
// Set embedded opmask register specifier.
void set_embedded_opmask_register_specifier(KRegister mask) {
_embedded_opmask_register_specifier = (*mask).encoding() & 0x7;
}
};
#endif // CPU_X86_ASSEMBLER_X86_HPP