8056084: Refactor Hashtable to allow implementations without rehashing support
Reviewed-by: gziemski, jmasa, brutisso, coleenp, tschatzl
/*
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_HASHTABLE_HPP
#define SHARE_VM_UTILITIES_HASHTABLE_HPP
#include "classfile/classLoaderData.hpp"
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
#include "oops/symbol.hpp"
#include "runtime/handles.hpp"
// This is a generic hashtable, designed to be used for the symbol
// and string tables.
//
// It is implemented as an open hash table with a fixed number of buckets.
//
// %note:
// - TableEntrys are allocated in blocks to reduce the space overhead.
template <MEMFLAGS F> class BasicHashtableEntry : public CHeapObj<F> {
friend class VMStructs;
private:
unsigned int _hash; // 32-bit hash for item
// Link to next element in the linked list for this bucket. EXCEPT
// bit 0 set indicates that this entry is shared and must not be
// unlinked from the table. Bit 0 is set during the dumping of the
// archive. Since shared entries are immutable, _next fields in the
// shared entries will not change. New entries will always be
// unshared and since pointers are align, bit 0 will always remain 0
// with no extra effort.
BasicHashtableEntry<F>* _next;
// Windows IA64 compiler requires subclasses to be able to access these
protected:
// Entry objects should not be created, they should be taken from the
// free list with BasicHashtable.new_entry().
BasicHashtableEntry() { ShouldNotReachHere(); }
// Entry objects should not be destroyed. They should be placed on
// the free list instead with BasicHashtable.free_entry().
~BasicHashtableEntry() { ShouldNotReachHere(); }
public:
unsigned int hash() const { return _hash; }
void set_hash(unsigned int hash) { _hash = hash; }
unsigned int* hash_addr() { return &_hash; }
static BasicHashtableEntry<F>* make_ptr(BasicHashtableEntry<F>* p) {
return (BasicHashtableEntry*)((intptr_t)p & -2);
}
BasicHashtableEntry<F>* next() const {
return make_ptr(_next);
}
void set_next(BasicHashtableEntry<F>* next) {
_next = next;
}
BasicHashtableEntry<F>** next_addr() {
return &_next;
}
bool is_shared() const {
return ((intptr_t)_next & 1) != 0;
}
void set_shared() {
_next = (BasicHashtableEntry<F>*)((intptr_t)_next | 1);
}
};
template <class T, MEMFLAGS F> class HashtableEntry : public BasicHashtableEntry<F> {
friend class VMStructs;
private:
T _literal; // ref to item in table.
public:
// Literal
T literal() const { return _literal; }
T* literal_addr() { return &_literal; }
void set_literal(T s) { _literal = s; }
HashtableEntry* next() const {
return (HashtableEntry*)BasicHashtableEntry<F>::next();
}
HashtableEntry** next_addr() {
return (HashtableEntry**)BasicHashtableEntry<F>::next_addr();
}
};
template <MEMFLAGS F> class HashtableBucket : public CHeapObj<F> {
friend class VMStructs;
private:
// Instance variable
BasicHashtableEntry<F>* _entry;
public:
// Accessing
void clear() { _entry = NULL; }
// The following methods use order access methods to avoid race
// conditions in multiprocessor systems.
BasicHashtableEntry<F>* get_entry() const;
void set_entry(BasicHashtableEntry<F>* l);
// The following method is not MT-safe and must be done under lock.
BasicHashtableEntry<F>** entry_addr() { return &_entry; }
};
template <MEMFLAGS F> class BasicHashtable : public CHeapObj<F> {
friend class VMStructs;
public:
BasicHashtable(int table_size, int entry_size);
BasicHashtable(int table_size, int entry_size,
HashtableBucket<F>* buckets, int number_of_entries);
// Sharing support.
void copy_buckets(char** top, char* end);
void copy_table(char** top, char* end);
// Bucket handling
int hash_to_index(unsigned int full_hash) {
int h = full_hash % _table_size;
assert(h >= 0 && h < _table_size, "Illegal hash value");
return h;
}
// Reverse the order of elements in each of the buckets.
void reverse();
private:
// Instance variables
int _table_size;
HashtableBucket<F>* _buckets;
BasicHashtableEntry<F>* _free_list;
char* _first_free_entry;
char* _end_block;
int _entry_size;
int _number_of_entries;
protected:
#ifdef ASSERT
int _lookup_count;
int _lookup_length;
void verify_lookup_length(double load);
#endif
void initialize(int table_size, int entry_size, int number_of_entries);
// Accessor
int entry_size() const { return _entry_size; }
// The following method is MT-safe and may be used with caution.
BasicHashtableEntry<F>* bucket(int i);
// The following method is not MT-safe and must be done under lock.
BasicHashtableEntry<F>** bucket_addr(int i) { return _buckets[i].entry_addr(); }
// Attempt to get an entry from the free list
BasicHashtableEntry<F>* new_entry_free_list();
// Table entry management
BasicHashtableEntry<F>* new_entry(unsigned int hashValue);
// Used when moving the entry to another table
// Clean up links, but do not add to free_list
void unlink_entry(BasicHashtableEntry<F>* entry) {
entry->set_next(NULL);
--_number_of_entries;
}
// Move over freelist and free block for allocation
void copy_freelist(BasicHashtable* src) {
_free_list = src->_free_list;
src->_free_list = NULL;
_first_free_entry = src->_first_free_entry;
src->_first_free_entry = NULL;
_end_block = src->_end_block;
src->_end_block = NULL;
}
// Free the buckets in this hashtable
void free_buckets();
public:
int table_size() { return _table_size; }
void set_entry(int index, BasicHashtableEntry<F>* entry);
void add_entry(int index, BasicHashtableEntry<F>* entry);
void free_entry(BasicHashtableEntry<F>* entry);
int number_of_entries() { return _number_of_entries; }
void verify() PRODUCT_RETURN;
};
template <class T, MEMFLAGS F> class Hashtable : public BasicHashtable<F> {
friend class VMStructs;
public:
Hashtable(int table_size, int entry_size)
: BasicHashtable<F>(table_size, entry_size) { }
Hashtable(int table_size, int entry_size,
HashtableBucket<F>* buckets, int number_of_entries)
: BasicHashtable<F>(table_size, entry_size, buckets, number_of_entries) { }
// Debugging
void print() PRODUCT_RETURN;
// Reverse the order of elements in each of the buckets. Hashtable
// entries which refer to objects at a lower address than 'boundary'
// are separated from those which refer to objects at higher
// addresses, and appear first in the list.
void reverse(void* boundary = NULL);
protected:
unsigned int compute_hash(Symbol* name) {
return (unsigned int) name->identity_hash();
}
int index_for(Symbol* name) {
return this->hash_to_index(compute_hash(name));
}
// Table entry management
HashtableEntry<T, F>* new_entry(unsigned int hashValue, T obj);
// The following method is MT-safe and may be used with caution.
HashtableEntry<T, F>* bucket(int i) {
return (HashtableEntry<T, F>*)BasicHashtable<F>::bucket(i);
}
// The following method is not MT-safe and must be done under lock.
HashtableEntry<T, F>** bucket_addr(int i) {
return (HashtableEntry<T, F>**)BasicHashtable<F>::bucket_addr(i);
}
};
template <class T, MEMFLAGS F> class RehashableHashtable : public Hashtable<T, F> {
protected:
enum {
rehash_count = 100,
rehash_multiple = 60
};
// Check that the table is unbalanced
bool check_rehash_table(int count);
public:
RehashableHashtable(int table_size, int entry_size)
: Hashtable<T, F>(table_size, entry_size) { }
RehashableHashtable(int table_size, int entry_size,
HashtableBucket<F>* buckets, int number_of_entries)
: Hashtable<T, F>(table_size, entry_size, buckets, number_of_entries) { }
// Function to move these elements into the new table.
void move_to(RehashableHashtable<T, F>* new_table);
static bool use_alternate_hashcode() { return _seed != 0; }
static juint seed() { return _seed; }
static int literal_size(Symbol *symbol);
static int literal_size(oop oop);
// The following two are currently not used, but are needed anyway because some
// C++ compilers (MacOS and Solaris) force the instantiation of
// Hashtable<ConstantPool*, mtClass>::dump_table() even though we never call this function
// in the VM code.
static int literal_size(ConstantPool *cp) {Unimplemented(); return 0;}
static int literal_size(Klass *k) {Unimplemented(); return 0;}
void dump_table(outputStream* st, const char *table_name);
private:
static juint _seed;
};
// Versions of hashtable where two handles are used to compute the index.
template <class T, MEMFLAGS F> class TwoOopHashtable : public Hashtable<T, F> {
friend class VMStructs;
protected:
TwoOopHashtable(int table_size, int entry_size)
: Hashtable<T, F>(table_size, entry_size) {}
TwoOopHashtable(int table_size, int entry_size, HashtableBucket<F>* t,
int number_of_entries)
: Hashtable<T, F>(table_size, entry_size, t, number_of_entries) {}
public:
unsigned int compute_hash(Symbol* name, ClassLoaderData* loader_data) {
unsigned int name_hash = name->identity_hash();
// loader is null with CDS
assert(loader_data != NULL || UseSharedSpaces || DumpSharedSpaces,
"only allowed with shared spaces");
unsigned int loader_hash = loader_data == NULL ? 0 : loader_data->identity_hash();
return name_hash ^ loader_hash;
}
int index_for(Symbol* name, ClassLoaderData* loader_data) {
return this->hash_to_index(compute_hash(name, loader_data));
}
};
#endif // SHARE_VM_UTILITIES_HASHTABLE_HPP