7043461: VM crashes in void LinkResolver::runtime_resolve_virtual_method
Reviewed-by: kvn, coleenp
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright 2007, 2008, 2009, 2010, 2011 Red Hat, Inc.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/cppInterpreter.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodDataOop.hpp"
#include "oops/methodOop.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "stack_zero.inline.hpp"
#include "utilities/debug.hpp"
#ifdef SHARK
#include "shark/shark_globals.hpp"
#endif
#ifdef CC_INTERP
#define fixup_after_potential_safepoint() \
method = istate->method()
#define CALL_VM_NOCHECK_NOFIX(func) \
thread->set_last_Java_frame(); \
func; \
thread->reset_last_Java_frame();
#define CALL_VM_NOCHECK(func) \
CALL_VM_NOCHECK_NOFIX(func) \
fixup_after_potential_safepoint()
int CppInterpreter::normal_entry(methodOop method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
// Allocate and initialize our frame.
InterpreterFrame *frame = InterpreterFrame::build(method, CHECK_0);
thread->push_zero_frame(frame);
// Execute those bytecodes!
main_loop(0, THREAD);
// No deoptimized frames on the stack
return 0;
}
void CppInterpreter::main_loop(int recurse, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// If we are entering from a deopt we may need to call
// ourself a few times in order to get to our frame.
if (recurse)
main_loop(recurse - 1, THREAD);
InterpreterFrame *frame = thread->top_zero_frame()->as_interpreter_frame();
interpreterState istate = frame->interpreter_state();
methodOop method = istate->method();
intptr_t *result = NULL;
int result_slots = 0;
while (true) {
// We can set up the frame anchor with everything we want at
// this point as we are thread_in_Java and no safepoints can
// occur until we go to vm mode. We do have to clear flags
// on return from vm but that is it.
thread->set_last_Java_frame();
// Call the interpreter
if (JvmtiExport::can_post_interpreter_events())
BytecodeInterpreter::runWithChecks(istate);
else
BytecodeInterpreter::run(istate);
fixup_after_potential_safepoint();
// Clear the frame anchor
thread->reset_last_Java_frame();
// Examine the message from the interpreter to decide what to do
if (istate->msg() == BytecodeInterpreter::call_method) {
methodOop callee = istate->callee();
// Trim back the stack to put the parameters at the top
stack->set_sp(istate->stack() + 1);
// Make the call
Interpreter::invoke_method(callee, istate->callee_entry_point(), THREAD);
fixup_after_potential_safepoint();
// Convert the result
istate->set_stack(stack->sp() - 1);
// Restore the stack
stack->set_sp(istate->stack_limit() + 1);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::method_resume);
}
else if (istate->msg() == BytecodeInterpreter::more_monitors) {
int monitor_words = frame::interpreter_frame_monitor_size();
// Allocate the space
stack->overflow_check(monitor_words, THREAD);
if (HAS_PENDING_EXCEPTION)
break;
stack->alloc(monitor_words * wordSize);
// Move the expression stack contents
for (intptr_t *p = istate->stack() + 1; p < istate->stack_base(); p++)
*(p - monitor_words) = *p;
// Move the expression stack pointers
istate->set_stack_limit(istate->stack_limit() - monitor_words);
istate->set_stack(istate->stack() - monitor_words);
istate->set_stack_base(istate->stack_base() - monitor_words);
// Zero the new monitor so the interpreter can find it.
((BasicObjectLock *) istate->stack_base())->set_obj(NULL);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::got_monitors);
}
else if (istate->msg() == BytecodeInterpreter::return_from_method) {
// Copy the result into the caller's frame
result_slots = type2size[result_type_of(method)];
assert(result_slots >= 0 && result_slots <= 2, "what?");
result = istate->stack() + result_slots;
break;
}
else if (istate->msg() == BytecodeInterpreter::throwing_exception) {
assert(HAS_PENDING_EXCEPTION, "should do");
break;
}
else if (istate->msg() == BytecodeInterpreter::do_osr) {
// Unwind the current frame
thread->pop_zero_frame();
// Remove any extension of the previous frame
int extra_locals = method->max_locals() - method->size_of_parameters();
stack->set_sp(stack->sp() + extra_locals);
// Jump into the OSR method
Interpreter::invoke_osr(
method, istate->osr_entry(), istate->osr_buf(), THREAD);
return;
}
else if (istate->msg() == BytecodeInterpreter::call_method_handle) {
oop method_handle = istate->callee();
// Trim back the stack to put the parameters at the top
stack->set_sp(istate->stack() + 1);
// Make the call
process_method_handle(method_handle, THREAD);
fixup_after_potential_safepoint();
// Convert the result
istate->set_stack(stack->sp() - 1);
// Restore the stack
stack->set_sp(istate->stack_limit() + 1);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::method_resume);
}
else {
ShouldNotReachHere();
}
}
// Unwind the current frame
thread->pop_zero_frame();
// Pop our local variables
stack->set_sp(stack->sp() + method->max_locals());
// Push our result
for (int i = 0; i < result_slots; i++)
stack->push(result[-i]);
}
int CppInterpreter::native_entry(methodOop method, intptr_t UNUSED, TRAPS) {
// Make sure method is native and not abstract
assert(method->is_native() && !method->is_abstract(), "should be");
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Allocate and initialize our frame
InterpreterFrame *frame = InterpreterFrame::build(method, CHECK_0);
thread->push_zero_frame(frame);
interpreterState istate = frame->interpreter_state();
intptr_t *locals = istate->locals();
// Update the invocation counter
if ((UseCompiler || CountCompiledCalls) && !method->is_synchronized()) {
InvocationCounter *counter = method->invocation_counter();
counter->increment();
if (counter->reached_InvocationLimit()) {
CALL_VM_NOCHECK(
InterpreterRuntime::frequency_counter_overflow(thread, NULL));
if (HAS_PENDING_EXCEPTION)
goto unwind_and_return;
}
}
// Lock if necessary
BasicObjectLock *monitor;
monitor = NULL;
if (method->is_synchronized()) {
monitor = (BasicObjectLock*) istate->stack_base();
oop lockee = monitor->obj();
markOop disp = lockee->mark()->set_unlocked();
monitor->lock()->set_displaced_header(disp);
if (Atomic::cmpxchg_ptr(monitor, lockee->mark_addr(), disp) != disp) {
if (thread->is_lock_owned((address) disp->clear_lock_bits())) {
monitor->lock()->set_displaced_header(NULL);
}
else {
CALL_VM_NOCHECK(InterpreterRuntime::monitorenter(thread, monitor));
if (HAS_PENDING_EXCEPTION)
goto unwind_and_return;
}
}
}
// Get the signature handler
InterpreterRuntime::SignatureHandler *handler; {
address handlerAddr = method->signature_handler();
if (handlerAddr == NULL) {
CALL_VM_NOCHECK(InterpreterRuntime::prepare_native_call(thread, method));
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
handlerAddr = method->signature_handler();
assert(handlerAddr != NULL, "eh?");
}
if (handlerAddr == (address) InterpreterRuntime::slow_signature_handler) {
CALL_VM_NOCHECK(handlerAddr =
InterpreterRuntime::slow_signature_handler(thread, method, NULL,NULL));
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
}
handler = \
InterpreterRuntime::SignatureHandler::from_handlerAddr(handlerAddr);
}
// Get the native function entry point
address function;
function = method->native_function();
assert(function != NULL, "should be set if signature handler is");
// Build the argument list
stack->overflow_check(handler->argument_count() * 2, THREAD);
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
void **arguments;
void *mirror; {
arguments =
(void **) stack->alloc(handler->argument_count() * sizeof(void **));
void **dst = arguments;
void *env = thread->jni_environment();
*(dst++) = &env;
if (method->is_static()) {
istate->set_oop_temp(
method->constants()->pool_holder()->java_mirror());
mirror = istate->oop_temp_addr();
*(dst++) = &mirror;
}
intptr_t *src = locals;
for (int i = dst - arguments; i < handler->argument_count(); i++) {
ffi_type *type = handler->argument_type(i);
if (type == &ffi_type_pointer) {
if (*src) {
stack->push((intptr_t) src);
*(dst++) = stack->sp();
}
else {
*(dst++) = src;
}
src--;
}
else if (type->size == 4) {
*(dst++) = src--;
}
else if (type->size == 8) {
src--;
*(dst++) = src--;
}
else {
ShouldNotReachHere();
}
}
}
// Set up the Java frame anchor
thread->set_last_Java_frame();
// Change the thread state to _thread_in_native
ThreadStateTransition::transition_from_java(thread, _thread_in_native);
// Make the call
intptr_t result[4 - LogBytesPerWord];
ffi_call(handler->cif(), (void (*)()) function, result, arguments);
// Change the thread state back to _thread_in_Java.
// ThreadStateTransition::transition_from_native() cannot be used
// here because it does not check for asynchronous exceptions.
// We have to manage the transition ourself.
thread->set_thread_state(_thread_in_native_trans);
// Make sure new state is visible in the GC thread
if (os::is_MP()) {
if (UseMembar) {
OrderAccess::fence();
}
else {
InterfaceSupport::serialize_memory(thread);
}
}
// Handle safepoint operations, pending suspend requests,
// and pending asynchronous exceptions.
if (SafepointSynchronize::do_call_back() ||
thread->has_special_condition_for_native_trans()) {
JavaThread::check_special_condition_for_native_trans(thread);
CHECK_UNHANDLED_OOPS_ONLY(thread->clear_unhandled_oops());
}
// Finally we can change the thread state to _thread_in_Java.
thread->set_thread_state(_thread_in_Java);
fixup_after_potential_safepoint();
// Clear the frame anchor
thread->reset_last_Java_frame();
// If the result was an oop then unbox it and store it in
// oop_temp where the garbage collector can see it before
// we release the handle it might be protected by.
if (handler->result_type() == &ffi_type_pointer) {
if (result[0])
istate->set_oop_temp(*(oop *) result[0]);
else
istate->set_oop_temp(NULL);
}
// Reset handle block
thread->active_handles()->clear();
unlock_unwind_and_return:
// Unlock if necessary
if (monitor) {
BasicLock *lock = monitor->lock();
markOop header = lock->displaced_header();
oop rcvr = monitor->obj();
monitor->set_obj(NULL);
if (header != NULL) {
if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
monitor->set_obj(rcvr); {
HandleMark hm(thread);
CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(thread, monitor));
}
}
}
}
unwind_and_return:
// Unwind the current activation
thread->pop_zero_frame();
// Pop our parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// Push our result
if (!HAS_PENDING_EXCEPTION) {
BasicType type = result_type_of(method);
stack->set_sp(stack->sp() - type2size[type]);
switch (type) {
case T_VOID:
break;
case T_BOOLEAN:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerByte);
#endif
SET_LOCALS_INT(*(jboolean *) result != 0, 0);
break;
case T_CHAR:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerShort);
#endif
SET_LOCALS_INT(*(jchar *) result, 0);
break;
case T_BYTE:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerByte);
#endif
SET_LOCALS_INT(*(jbyte *) result, 0);
break;
case T_SHORT:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerShort);
#endif
SET_LOCALS_INT(*(jshort *) result, 0);
break;
case T_INT:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerInt);
#endif
SET_LOCALS_INT(*(jint *) result, 0);
break;
case T_LONG:
SET_LOCALS_LONG(*(jlong *) result, 0);
break;
case T_FLOAT:
SET_LOCALS_FLOAT(*(jfloat *) result, 0);
break;
case T_DOUBLE:
SET_LOCALS_DOUBLE(*(jdouble *) result, 0);
break;
case T_OBJECT:
case T_ARRAY:
SET_LOCALS_OBJECT(istate->oop_temp(), 0);
break;
default:
ShouldNotReachHere();
}
}
// No deoptimized frames on the stack
return 0;
}
int CppInterpreter::accessor_entry(methodOop method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
intptr_t *locals = stack->sp();
// Drop into the slow path if we need a safepoint check
if (SafepointSynchronize::do_call_back()) {
return normal_entry(method, 0, THREAD);
}
// Load the object pointer and drop into the slow path
// if we have a NullPointerException
oop object = LOCALS_OBJECT(0);
if (object == NULL) {
return normal_entry(method, 0, THREAD);
}
// Read the field index from the bytecode, which looks like this:
// 0: aload_0
// 1: getfield
// 2: index
// 3: index
// 4: ireturn/areturn
// NB this is not raw bytecode: index is in machine order
u1 *code = method->code_base();
assert(code[0] == Bytecodes::_aload_0 &&
code[1] == Bytecodes::_getfield &&
(code[4] == Bytecodes::_ireturn ||
code[4] == Bytecodes::_areturn), "should do");
u2 index = Bytes::get_native_u2(&code[2]);
// Get the entry from the constant pool cache, and drop into
// the slow path if it has not been resolved
constantPoolCacheOop cache = method->constants()->cache();
ConstantPoolCacheEntry* entry = cache->entry_at(index);
if (!entry->is_resolved(Bytecodes::_getfield)) {
return normal_entry(method, 0, THREAD);
}
// Get the result and push it onto the stack
switch (entry->flag_state()) {
case ltos:
case dtos:
stack->overflow_check(1, CHECK_0);
stack->alloc(wordSize);
break;
}
if (entry->is_volatile()) {
switch (entry->flag_state()) {
case ctos:
SET_LOCALS_INT(object->char_field_acquire(entry->f2()), 0);
break;
case btos:
SET_LOCALS_INT(object->byte_field_acquire(entry->f2()), 0);
break;
case stos:
SET_LOCALS_INT(object->short_field_acquire(entry->f2()), 0);
break;
case itos:
SET_LOCALS_INT(object->int_field_acquire(entry->f2()), 0);
break;
case ltos:
SET_LOCALS_LONG(object->long_field_acquire(entry->f2()), 0);
break;
case ftos:
SET_LOCALS_FLOAT(object->float_field_acquire(entry->f2()), 0);
break;
case dtos:
SET_LOCALS_DOUBLE(object->double_field_acquire(entry->f2()), 0);
break;
case atos:
SET_LOCALS_OBJECT(object->obj_field_acquire(entry->f2()), 0);
break;
default:
ShouldNotReachHere();
}
}
else {
switch (entry->flag_state()) {
case ctos:
SET_LOCALS_INT(object->char_field(entry->f2()), 0);
break;
case btos:
SET_LOCALS_INT(object->byte_field(entry->f2()), 0);
break;
case stos:
SET_LOCALS_INT(object->short_field(entry->f2()), 0);
break;
case itos:
SET_LOCALS_INT(object->int_field(entry->f2()), 0);
break;
case ltos:
SET_LOCALS_LONG(object->long_field(entry->f2()), 0);
break;
case ftos:
SET_LOCALS_FLOAT(object->float_field(entry->f2()), 0);
break;
case dtos:
SET_LOCALS_DOUBLE(object->double_field(entry->f2()), 0);
break;
case atos:
SET_LOCALS_OBJECT(object->obj_field(entry->f2()), 0);
break;
default:
ShouldNotReachHere();
}
}
// No deoptimized frames on the stack
return 0;
}
int CppInterpreter::empty_entry(methodOop method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Drop into the slow path if we need a safepoint check
if (SafepointSynchronize::do_call_back()) {
return normal_entry(method, 0, THREAD);
}
// Pop our parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// No deoptimized frames on the stack
return 0;
}
int CppInterpreter::method_handle_entry(methodOop method,
intptr_t UNUSED, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
int argument_slots = method->size_of_parameters();
int result_slots = type2size[result_type_of(method)];
intptr_t *vmslots = stack->sp();
intptr_t *unwind_sp = vmslots + argument_slots;
// Find the MethodType
address p = (address) method;
for (jint* pc = method->method_type_offsets_chain(); (*pc) != -1; pc++) {
p = *(address*)(p + (*pc));
}
oop method_type = (oop) p;
// The MethodHandle is in the slot after the arguments
oop form = java_lang_invoke_MethodType::form(method_type);
int num_vmslots = java_lang_invoke_MethodTypeForm::vmslots(form);
assert(argument_slots == num_vmslots + 1, "should be");
oop method_handle = VMSLOTS_OBJECT(num_vmslots);
// InvokeGeneric requires some extra shuffling
oop mhtype = java_lang_invoke_MethodHandle::type(method_handle);
bool is_exact = mhtype == method_type;
if (!is_exact) {
if (method->intrinsic_id() == vmIntrinsics::_invokeExact) {
CALL_VM_NOCHECK_NOFIX(
InterpreterRuntime::throw_WrongMethodTypeException(
thread, method_type, mhtype));
// NB all oops trashed!
assert(HAS_PENDING_EXCEPTION, "should do");
stack->set_sp(unwind_sp);
return 0;
}
assert(method->intrinsic_id() == vmIntrinsics::_invokeGeneric, "should be");
// Load up an adapter from the calling type
// NB the x86 code for this (in methodHandles_x86.cpp, search for
// "genericInvoker") is really really odd. I'm hoping it's trying
// to accomodate odd VM/class library combinations I can ignore.
oop adapter = java_lang_invoke_MethodTypeForm::genericInvoker(form);
if (adapter == NULL) {
CALL_VM_NOCHECK_NOFIX(
InterpreterRuntime::throw_WrongMethodTypeException(
thread, method_type, mhtype));
// NB all oops trashed!
assert(HAS_PENDING_EXCEPTION, "should do");
stack->set_sp(unwind_sp);
return 0;
}
// Adapters are shared among form-families of method-type. The
// type being called is passed as a trusted first argument so that
// the adapter knows the actual types of its arguments and return
// values.
insert_vmslots(num_vmslots + 1, 1, THREAD);
if (HAS_PENDING_EXCEPTION) {
// NB all oops trashed!
stack->set_sp(unwind_sp);
return 0;
}
vmslots = stack->sp();
num_vmslots++;
SET_VMSLOTS_OBJECT(method_type, num_vmslots);
method_handle = adapter;
}
// Start processing
process_method_handle(method_handle, THREAD);
if (HAS_PENDING_EXCEPTION)
result_slots = 0;
// If this is an invokeExact then the eventual callee will not
// have unwound the method handle argument so we have to do it.
// If a result is being returned the it will be above the method
// handle argument we're unwinding.
if (is_exact) {
intptr_t result[2];
for (int i = 0; i < result_slots; i++)
result[i] = stack->pop();
stack->pop();
for (int i = result_slots - 1; i >= 0; i--)
stack->push(result[i]);
}
// Check
assert(stack->sp() == unwind_sp - result_slots, "should be");
// No deoptimized frames on the stack
return 0;
}
void CppInterpreter::process_method_handle(oop method_handle, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
intptr_t *vmslots = stack->sp();
bool direct_to_method = false;
BasicType src_rtype = T_ILLEGAL;
BasicType dst_rtype = T_ILLEGAL;
MethodHandleEntry *entry =
java_lang_invoke_MethodHandle::vmentry(method_handle);
MethodHandles::EntryKind entry_kind =
(MethodHandles::EntryKind) (((intptr_t) entry) & 0xffffffff);
methodOop method = NULL;
switch (entry_kind) {
case MethodHandles::_invokestatic_mh:
direct_to_method = true;
break;
case MethodHandles::_invokespecial_mh:
case MethodHandles::_invokevirtual_mh:
case MethodHandles::_invokeinterface_mh:
{
oop receiver =
VMSLOTS_OBJECT(
java_lang_invoke_MethodHandle::vmslots(method_handle) - 1);
if (receiver == NULL) {
stack->set_sp(calculate_unwind_sp(stack, method_handle));
CALL_VM_NOCHECK_NOFIX(
throw_exception(
thread, vmSymbols::java_lang_NullPointerException()));
// NB all oops trashed!
assert(HAS_PENDING_EXCEPTION, "should do");
return;
}
if (entry_kind != MethodHandles::_invokespecial_mh) {
int index = java_lang_invoke_DirectMethodHandle::vmindex(method_handle);
instanceKlass* rcvrKlass =
(instanceKlass *) receiver->klass()->klass_part();
if (entry_kind == MethodHandles::_invokevirtual_mh) {
method = (methodOop) rcvrKlass->start_of_vtable()[index];
}
else {
oop iclass = java_lang_invoke_MethodHandle::vmtarget(method_handle);
itableOffsetEntry* ki =
(itableOffsetEntry *) rcvrKlass->start_of_itable();
int i, length = rcvrKlass->itable_length();
for (i = 0; i < length; i++, ki++ ) {
if (ki->interface_klass() == iclass)
break;
}
if (i == length) {
stack->set_sp(calculate_unwind_sp(stack, method_handle));
CALL_VM_NOCHECK_NOFIX(
throw_exception(
thread, vmSymbols::java_lang_IncompatibleClassChangeError()));
// NB all oops trashed!
assert(HAS_PENDING_EXCEPTION, "should do");
return;
}
itableMethodEntry* im = ki->first_method_entry(receiver->klass());
method = im[index].method();
if (method == NULL) {
stack->set_sp(calculate_unwind_sp(stack, method_handle));
CALL_VM_NOCHECK_NOFIX(
throw_exception(
thread, vmSymbols::java_lang_AbstractMethodError()));
// NB all oops trashed!
assert(HAS_PENDING_EXCEPTION, "should do");
return;
}
}
}
}
direct_to_method = true;
break;
case MethodHandles::_bound_ref_direct_mh:
case MethodHandles::_bound_int_direct_mh:
case MethodHandles::_bound_long_direct_mh:
direct_to_method = true;
// fall through
case MethodHandles::_bound_ref_mh:
case MethodHandles::_bound_int_mh:
case MethodHandles::_bound_long_mh:
{
BasicType arg_type = T_ILLEGAL;
int arg_mask = -1;
int arg_slots = -1;
MethodHandles::get_ek_bound_mh_info(
entry_kind, arg_type, arg_mask, arg_slots);
int arg_slot =
java_lang_invoke_BoundMethodHandle::vmargslot(method_handle);
// Create the new slot(s)
intptr_t *unwind_sp = calculate_unwind_sp(stack, method_handle);
insert_vmslots(arg_slot, arg_slots, THREAD);
if (HAS_PENDING_EXCEPTION) {
// all oops trashed
stack->set_sp(unwind_sp);
return;
}
vmslots = stack->sp();
// Store bound argument into new stack slot
oop arg = java_lang_invoke_BoundMethodHandle::argument(method_handle);
if (arg_type == T_OBJECT) {
assert(arg_slots == 1, "should be");
SET_VMSLOTS_OBJECT(arg, arg_slot);
}
else {
jvalue arg_value;
arg_type = java_lang_boxing_object::get_value(arg, &arg_value);
switch (arg_type) {
case T_BOOLEAN:
SET_VMSLOTS_INT(arg_value.z, arg_slot);
break;
case T_CHAR:
SET_VMSLOTS_INT(arg_value.c, arg_slot);
break;
case T_BYTE:
SET_VMSLOTS_INT(arg_value.b, arg_slot);
break;
case T_SHORT:
SET_VMSLOTS_INT(arg_value.s, arg_slot);
break;
case T_INT:
SET_VMSLOTS_INT(arg_value.i, arg_slot);
break;
case T_FLOAT:
SET_VMSLOTS_FLOAT(arg_value.f, arg_slot);
break;
case T_LONG:
SET_VMSLOTS_LONG(arg_value.j, arg_slot + 1);
break;
case T_DOUBLE:
SET_VMSLOTS_DOUBLE(arg_value.d, arg_slot + 1);
break;
default:
tty->print_cr("unhandled type %s", type2name(arg_type));
ShouldNotReachHere();
}
}
}
break;
case MethodHandles::_adapter_retype_only:
case MethodHandles::_adapter_retype_raw:
src_rtype = result_type_of_handle(
java_lang_invoke_MethodHandle::vmtarget(method_handle));
dst_rtype = result_type_of_handle(method_handle);
break;
case MethodHandles::_adapter_check_cast:
{
int arg_slot =
java_lang_invoke_AdapterMethodHandle::vmargslot(method_handle);
oop arg = VMSLOTS_OBJECT(arg_slot);
if (arg != NULL) {
klassOop objKlassOop = arg->klass();
klassOop klassOf = java_lang_Class::as_klassOop(
java_lang_invoke_AdapterMethodHandle::argument(method_handle));
if (objKlassOop != klassOf &&
!objKlassOop->klass_part()->is_subtype_of(klassOf)) {
ResourceMark rm(THREAD);
const char* objName = Klass::cast(objKlassOop)->external_name();
const char* klassName = Klass::cast(klassOf)->external_name();
char* message = SharedRuntime::generate_class_cast_message(
objName, klassName);
stack->set_sp(calculate_unwind_sp(stack, method_handle));
CALL_VM_NOCHECK_NOFIX(
throw_exception(
thread, vmSymbols::java_lang_ClassCastException(), message));
// NB all oops trashed!
assert(HAS_PENDING_EXCEPTION, "should do");
return;
}
}
}
break;
case MethodHandles::_adapter_dup_args:
{
int arg_slot =
java_lang_invoke_AdapterMethodHandle::vmargslot(method_handle);
int conv =
java_lang_invoke_AdapterMethodHandle::conversion(method_handle);
int num_slots = -MethodHandles::adapter_conversion_stack_move(conv);
assert(num_slots > 0, "should be");
// Create the new slot(s)
intptr_t *unwind_sp = calculate_unwind_sp(stack, method_handle);
stack->overflow_check(num_slots, THREAD);
if (HAS_PENDING_EXCEPTION) {
// all oops trashed
stack->set_sp(unwind_sp);
return;
}
// Duplicate the arguments
for (int i = num_slots - 1; i >= 0; i--)
stack->push(*VMSLOTS_SLOT(arg_slot + i));
vmslots = stack->sp(); // unused, but let the compiler figure that out
}
break;
case MethodHandles::_adapter_drop_args:
{
int arg_slot =
java_lang_invoke_AdapterMethodHandle::vmargslot(method_handle);
int conv =
java_lang_invoke_AdapterMethodHandle::conversion(method_handle);
int num_slots = MethodHandles::adapter_conversion_stack_move(conv);
assert(num_slots > 0, "should be");
remove_vmslots(arg_slot, num_slots, THREAD); // doesn't trap
vmslots = stack->sp(); // unused, but let the compiler figure that out
}
break;
case MethodHandles::_adapter_opt_swap_1:
case MethodHandles::_adapter_opt_swap_2:
case MethodHandles::_adapter_opt_rot_1_up:
case MethodHandles::_adapter_opt_rot_1_down:
case MethodHandles::_adapter_opt_rot_2_up:
case MethodHandles::_adapter_opt_rot_2_down:
{
int arg1 =
java_lang_invoke_AdapterMethodHandle::vmargslot(method_handle);
int conv =
java_lang_invoke_AdapterMethodHandle::conversion(method_handle);
int arg2 = MethodHandles::adapter_conversion_vminfo(conv);
int swap_bytes = 0, rotate = 0;
MethodHandles::get_ek_adapter_opt_swap_rot_info(
entry_kind, swap_bytes, rotate);
int swap_slots = swap_bytes >> LogBytesPerWord;
intptr_t tmp;
switch (rotate) {
case 0: // swap
for (int i = 0; i < swap_slots; i++) {
tmp = *VMSLOTS_SLOT(arg1 + i);
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(arg2 + i), arg1 + i);
SET_VMSLOTS_SLOT(&tmp, arg2 + i);
}
break;
case 1: // up
assert(arg1 - swap_slots > arg2, "should be");
tmp = *VMSLOTS_SLOT(arg1);
for (int i = arg1 - swap_slots; i >= arg2; i--)
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(i), i + swap_slots);
SET_VMSLOTS_SLOT(&tmp, arg2);
break;
case -1: // down
assert(arg2 - swap_slots > arg1, "should be");
tmp = *VMSLOTS_SLOT(arg1);
for (int i = arg1 + swap_slots; i <= arg2; i++)
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(i), i - swap_slots);
SET_VMSLOTS_SLOT(&tmp, arg2);
break;
default:
ShouldNotReachHere();
}
}
break;
case MethodHandles::_adapter_opt_i2l:
{
int arg_slot =
java_lang_invoke_AdapterMethodHandle::vmargslot(method_handle);
int arg = VMSLOTS_INT(arg_slot);
intptr_t *unwind_sp = calculate_unwind_sp(stack, method_handle);
insert_vmslots(arg_slot, 1, THREAD);
if (HAS_PENDING_EXCEPTION) {
// all oops trashed
stack->set_sp(unwind_sp);
return;
}
vmslots = stack->sp();
arg_slot++;
SET_VMSLOTS_LONG(arg, arg_slot);
}
break;
case MethodHandles::_adapter_opt_unboxi:
case MethodHandles::_adapter_opt_unboxl:
{
int arg_slot =
java_lang_invoke_AdapterMethodHandle::vmargslot(method_handle);
oop arg = VMSLOTS_OBJECT(arg_slot);
jvalue arg_value;
BasicType arg_type = java_lang_boxing_object::get_value(arg, &arg_value);
if (arg_type == T_LONG || arg_type == T_DOUBLE) {
intptr_t *unwind_sp = calculate_unwind_sp(stack, method_handle);
insert_vmslots(arg_slot, 1, THREAD);
if (HAS_PENDING_EXCEPTION) {
// all oops trashed
stack->set_sp(unwind_sp);
return;
}
vmslots = stack->sp();
arg_slot++;
}
switch (arg_type) {
case T_BOOLEAN:
SET_VMSLOTS_INT(arg_value.z, arg_slot);
break;
case T_CHAR:
SET_VMSLOTS_INT(arg_value.c, arg_slot);
break;
case T_BYTE:
SET_VMSLOTS_INT(arg_value.b, arg_slot);
break;
case T_SHORT:
SET_VMSLOTS_INT(arg_value.s, arg_slot);
break;
case T_INT:
SET_VMSLOTS_INT(arg_value.i, arg_slot);
break;
case T_FLOAT:
SET_VMSLOTS_FLOAT(arg_value.f, arg_slot);
break;
case T_LONG:
SET_VMSLOTS_LONG(arg_value.j, arg_slot);
break;
case T_DOUBLE:
SET_VMSLOTS_DOUBLE(arg_value.d, arg_slot);
break;
default:
tty->print_cr("unhandled type %s", type2name(arg_type));
ShouldNotReachHere();
}
}
break;
default:
tty->print_cr("unhandled entry_kind %s",
MethodHandles::entry_name(entry_kind));
ShouldNotReachHere();
}
// Continue along the chain
if (direct_to_method) {
if (method == NULL) {
method =
(methodOop) java_lang_invoke_MethodHandle::vmtarget(method_handle);
}
address entry_point = method->from_interpreted_entry();
Interpreter::invoke_method(method, entry_point, THREAD);
}
else {
process_method_handle(
java_lang_invoke_MethodHandle::vmtarget(method_handle), THREAD);
}
// NB all oops now trashed
// Adapt the result type, if necessary
if (src_rtype != dst_rtype && !HAS_PENDING_EXCEPTION) {
switch (dst_rtype) {
case T_VOID:
for (int i = 0; i < type2size[src_rtype]; i++)
stack->pop();
return;
case T_INT:
switch (src_rtype) {
case T_VOID:
stack->overflow_check(1, CHECK);
stack->push(0);
return;
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
return;
}
}
tty->print_cr("unhandled conversion:");
tty->print_cr("src_rtype = %s", type2name(src_rtype));
tty->print_cr("dst_rtype = %s", type2name(dst_rtype));
ShouldNotReachHere();
}
}
// The new slots will be inserted before slot insert_before.
// Slots < insert_before will have the same slot number after the insert.
// Slots >= insert_before will become old_slot + num_slots.
void CppInterpreter::insert_vmslots(int insert_before, int num_slots, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Allocate the space
stack->overflow_check(num_slots, CHECK);
stack->alloc(num_slots * wordSize);
intptr_t *vmslots = stack->sp();
// Shuffle everything up
for (int i = 0; i < insert_before; i++)
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(i + num_slots), i);
}
void CppInterpreter::remove_vmslots(int first_slot, int num_slots, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
intptr_t *vmslots = stack->sp();
// Move everything down
for (int i = first_slot - 1; i >= 0; i--)
SET_VMSLOTS_SLOT(VMSLOTS_SLOT(i), i + num_slots);
// Deallocate the space
stack->set_sp(stack->sp() + num_slots);
}
BasicType CppInterpreter::result_type_of_handle(oop method_handle) {
oop method_type = java_lang_invoke_MethodHandle::type(method_handle);
oop return_type = java_lang_invoke_MethodType::rtype(method_type);
return java_lang_Class::as_BasicType(return_type, (klassOop *) NULL);
}
intptr_t* CppInterpreter::calculate_unwind_sp(ZeroStack* stack,
oop method_handle) {
oop method_type = java_lang_invoke_MethodHandle::type(method_handle);
oop form = java_lang_invoke_MethodType::form(method_type);
int argument_slots = java_lang_invoke_MethodTypeForm::vmslots(form);
return stack->sp() + argument_slots;
}
IRT_ENTRY(void, CppInterpreter::throw_exception(JavaThread* thread,
Symbol* name,
char* message))
THROW_MSG(name, message);
IRT_END
InterpreterFrame *InterpreterFrame::build(const methodOop method, TRAPS) {
JavaThread *thread = (JavaThread *) THREAD;
ZeroStack *stack = thread->zero_stack();
// Calculate the size of the frame we'll build, including
// any adjustments to the caller's frame that we'll make.
int extra_locals = 0;
int monitor_words = 0;
int stack_words = 0;
if (!method->is_native()) {
extra_locals = method->max_locals() - method->size_of_parameters();
stack_words = method->max_stack();
}
if (method->is_synchronized()) {
monitor_words = frame::interpreter_frame_monitor_size();
}
stack->overflow_check(
extra_locals + header_words + monitor_words + stack_words, CHECK_NULL);
// Adjust the caller's stack frame to accomodate any additional
// local variables we have contiguously with our parameters.
for (int i = 0; i < extra_locals; i++)
stack->push(0);
intptr_t *locals;
if (method->is_native())
locals = stack->sp() + (method->size_of_parameters() - 1);
else
locals = stack->sp() + (method->max_locals() - 1);
stack->push(0); // next_frame, filled in later
intptr_t *fp = stack->sp();
assert(fp - stack->sp() == next_frame_off, "should be");
stack->push(INTERPRETER_FRAME);
assert(fp - stack->sp() == frame_type_off, "should be");
interpreterState istate =
(interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
assert(fp - stack->sp() == istate_off, "should be");
istate->set_locals(locals);
istate->set_method(method);
istate->set_self_link(istate);
istate->set_prev_link(NULL);
istate->set_thread(thread);
istate->set_bcp(method->is_native() ? NULL : method->code_base());
istate->set_constants(method->constants()->cache());
istate->set_msg(BytecodeInterpreter::method_entry);
istate->set_oop_temp(NULL);
istate->set_mdx(NULL);
istate->set_callee(NULL);
istate->set_monitor_base((BasicObjectLock *) stack->sp());
if (method->is_synchronized()) {
BasicObjectLock *monitor =
(BasicObjectLock *) stack->alloc(monitor_words * wordSize);
oop object;
if (method->is_static())
object = method->constants()->pool_holder()->java_mirror();
else
object = (oop) locals[0];
monitor->set_obj(object);
}
istate->set_stack_base(stack->sp());
istate->set_stack(stack->sp() - 1);
if (stack_words)
stack->alloc(stack_words * wordSize);
istate->set_stack_limit(stack->sp() - 1);
return (InterpreterFrame *) fp;
}
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : i = 4; break;
case T_LONG : i = 5; break;
case T_VOID : i = 6; break;
case T_FLOAT : i = 7; break;
case T_DOUBLE : i = 8; break;
case T_OBJECT : i = 9; break;
case T_ARRAY : i = 9; break;
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
"index out of bounds");
return i;
}
BasicType CppInterpreter::result_type_of(methodOop method) {
BasicType t;
switch (method->result_index()) {
case 0 : t = T_BOOLEAN; break;
case 1 : t = T_CHAR; break;
case 2 : t = T_BYTE; break;
case 3 : t = T_SHORT; break;
case 4 : t = T_INT; break;
case 5 : t = T_LONG; break;
case 6 : t = T_VOID; break;
case 7 : t = T_FLOAT; break;
case 8 : t = T_DOUBLE; break;
case 9 : t = T_OBJECT; break;
default: ShouldNotReachHere();
}
assert(AbstractInterpreter::BasicType_as_index(t) == method->result_index(),
"out of step with AbstractInterpreter::BasicType_as_index");
return t;
}
address InterpreterGenerator::generate_empty_entry() {
if (!UseFastEmptyMethods)
return NULL;
return generate_entry((address) CppInterpreter::empty_entry);
}
address InterpreterGenerator::generate_accessor_entry() {
if (!UseFastAccessorMethods)
return NULL;
return generate_entry((address) CppInterpreter::accessor_entry);
}
address InterpreterGenerator::generate_Reference_get_entry(void) {
#ifndef SERIALGC
if (UseG1GC) {
// We need to generate have a routine that generates code to:
// * load the value in the referent field
// * passes that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
Unimplemented();
}
#endif // SERIALGC
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
address InterpreterGenerator::generate_native_entry(bool synchronized) {
assert(synchronized == false, "should be");
return generate_entry((address) CppInterpreter::native_entry);
}
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
assert(synchronized == false, "should be");
return generate_entry((address) CppInterpreter::normal_entry);
}
address AbstractInterpreterGenerator::generate_method_entry(
AbstractInterpreter::MethodKind kind) {
address entry_point = NULL;
switch (kind) {
case Interpreter::zerolocals:
case Interpreter::zerolocals_synchronized:
break;
case Interpreter::native:
entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false);
break;
case Interpreter::native_synchronized:
entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false);
break;
case Interpreter::empty:
entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();
break;
case Interpreter::accessor:
entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();
break;
case Interpreter::abstract:
entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();
break;
case Interpreter::method_handle:
entry_point = ((InterpreterGenerator*) this)->generate_method_handle_entry();
break;
case Interpreter::java_lang_math_sin:
case Interpreter::java_lang_math_cos:
case Interpreter::java_lang_math_tan:
case Interpreter::java_lang_math_abs:
case Interpreter::java_lang_math_log:
case Interpreter::java_lang_math_log10:
case Interpreter::java_lang_math_sqrt:
entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);
break;
case Interpreter::java_lang_ref_reference_get:
entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry();
break;
default:
ShouldNotReachHere();
}
if (entry_point == NULL)
entry_point = ((InterpreterGenerator*) this)->generate_normal_entry(false);
return entry_point;
}
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: CppInterpreterGenerator(code) {
generate_all();
}
// Deoptimization helpers
InterpreterFrame *InterpreterFrame::build(int size, TRAPS) {
ZeroStack *stack = ((JavaThread *) THREAD)->zero_stack();
int size_in_words = size >> LogBytesPerWord;
assert(size_in_words * wordSize == size, "unaligned");
assert(size_in_words >= header_words, "too small");
stack->overflow_check(size_in_words, CHECK_NULL);
stack->push(0); // next_frame, filled in later
intptr_t *fp = stack->sp();
assert(fp - stack->sp() == next_frame_off, "should be");
stack->push(INTERPRETER_FRAME);
assert(fp - stack->sp() == frame_type_off, "should be");
interpreterState istate =
(interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
assert(fp - stack->sp() == istate_off, "should be");
istate->set_self_link(NULL); // mark invalid
stack->alloc((size_in_words - header_words) * wordSize);
return (InterpreterFrame *) fp;
}
int AbstractInterpreter::layout_activation(methodOop method,
int tempcount,
int popframe_extra_args,
int moncount,
int caller_actual_parameters,
int callee_param_count,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame) {
assert(popframe_extra_args == 0, "what to do?");
assert(!is_top_frame || (!callee_locals && !callee_param_count),
"top frame should have no caller");
// This code must exactly match what InterpreterFrame::build
// does (the full InterpreterFrame::build, that is, not the
// one that creates empty frames for the deoptimizer).
//
// If interpreter_frame is not NULL then it will be filled in.
// It's size is determined by a previous call to this method,
// so it should be correct.
//
// Note that tempcount is the current size of the expression
// stack. For top most frames we will allocate a full sized
// expression stack and not the trimmed version that non-top
// frames have.
int header_words = InterpreterFrame::header_words;
int monitor_words = moncount * frame::interpreter_frame_monitor_size();
int stack_words = is_top_frame ? method->max_stack() : tempcount;
int callee_extra_locals = callee_locals - callee_param_count;
if (interpreter_frame) {
intptr_t *locals = interpreter_frame->fp() + method->max_locals();
interpreterState istate = interpreter_frame->get_interpreterState();
intptr_t *monitor_base = (intptr_t*) istate;
intptr_t *stack_base = monitor_base - monitor_words;
intptr_t *stack = stack_base - tempcount - 1;
BytecodeInterpreter::layout_interpreterState(istate,
caller,
NULL,
method,
locals,
stack,
stack_base,
monitor_base,
NULL,
is_top_frame);
}
return header_words + monitor_words + stack_words + callee_extra_locals;
}
void BytecodeInterpreter::layout_interpreterState(interpreterState istate,
frame* caller,
frame* current,
methodOop method,
intptr_t* locals,
intptr_t* stack,
intptr_t* stack_base,
intptr_t* monitor_base,
intptr_t* frame_bottom,
bool is_top_frame) {
istate->set_locals(locals);
istate->set_method(method);
istate->set_self_link(istate);
istate->set_prev_link(NULL);
// thread will be set by a hacky repurposing of frame::patch_pc()
// bcp will be set by vframeArrayElement::unpack_on_stack()
istate->set_constants(method->constants()->cache());
istate->set_msg(BytecodeInterpreter::method_resume);
istate->set_bcp_advance(0);
istate->set_oop_temp(NULL);
istate->set_mdx(NULL);
if (caller->is_interpreted_frame()) {
interpreterState prev = caller->get_interpreterState();
prev->set_callee(method);
if (*prev->bcp() == Bytecodes::_invokeinterface)
prev->set_bcp_advance(5);
else
prev->set_bcp_advance(3);
}
istate->set_callee(NULL);
istate->set_monitor_base((BasicObjectLock *) monitor_base);
istate->set_stack_base(stack_base);
istate->set_stack(stack);
istate->set_stack_limit(stack_base - method->max_stack() - 1);
}
address CppInterpreter::return_entry(TosState state, int length) {
ShouldNotCallThis();
}
address CppInterpreter::deopt_entry(TosState state, int length) {
return NULL;
}
// Helper for (runtime) stack overflow checks
int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
return 0;
}
// Helper for figuring out if frames are interpreter frames
bool CppInterpreter::contains(address pc) {
#ifdef PRODUCT
ShouldNotCallThis();
#else
return false; // make frame::print_value_on work
#endif // !PRODUCT
}
// Result handlers and convertors
address CppInterpreterGenerator::generate_result_handler_for(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
address CppInterpreterGenerator::generate_tosca_to_stack_converter(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
address CppInterpreterGenerator::generate_stack_to_stack_converter(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(
BasicType type) {
assembler()->advance(1);
return ShouldNotCallThisStub();
}
#endif // CC_INTERP