8146467: Integrate JSR 166 jck tests into JDK repo
Reviewed-by: martin, psandoz, chegar, fyuan, jjg
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
import java.util.SplittableRandom;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.LongAdder;
import junit.framework.Test;
import junit.framework.TestSuite;
public class SplittableRandomTest extends JSR166TestCase {
public static void main(String[] args) {
main(suite(), args);
}
public static Test suite() {
return new TestSuite(SplittableRandomTest.class);
}
/*
* Testing coverage notes:
*
* 1. Many of the test methods are adapted from ThreadLocalRandomTest.
*
* 2. These tests do not check for random number generator quality.
* But we check for minimal API compliance by requiring that
* repeated calls to nextX methods, up to NCALLS tries, produce at
* least two distinct results. (In some possible universe, a
* "correct" implementation might fail, but the odds are vastly
* less than that of encountering a hardware failure while running
* the test.) For bounded nextX methods, we sample various
* intervals across multiples of primes. In other tests, we repeat
* under REPS different values.
*/
// max numbers of calls to detect getting stuck on one value
static final int NCALLS = 10000;
// max sampled int bound
static final int MAX_INT_BOUND = (1 << 26);
// max sampled long bound
static final long MAX_LONG_BOUND = (1L << 40);
// Number of replications for other checks
static final int REPS =
Integer.getInteger("SplittableRandomTest.reps", 4);
/**
* Repeated calls to nextInt produce at least two distinct results
*/
public void testNextInt() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt();
int i = 0;
while (i < NCALLS && sr.nextInt() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Repeated calls to nextLong produce at least two distinct results
*/
public void testNextLong() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong();
int i = 0;
while (i < NCALLS && sr.nextLong() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Repeated calls to nextDouble produce at least two distinct results
*/
public void testNextDouble() {
SplittableRandom sr = new SplittableRandom();
double f = sr.nextDouble();
int i = 0;
while (i < NCALLS && sr.nextDouble() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Two SplittableRandoms created with the same seed produce the
* same values for nextLong.
*/
public void testSeedConstructor() {
for (long seed = 2; seed < MAX_LONG_BOUND; seed += 15485863) {
SplittableRandom sr1 = new SplittableRandom(seed);
SplittableRandom sr2 = new SplittableRandom(seed);
for (int i = 0; i < REPS; ++i)
assertEquals(sr1.nextLong(), sr2.nextLong());
}
}
/**
* A SplittableRandom produced by split() of a default-constructed
* SplittableRandom generates a different sequence
*/
public void testSplit1() {
SplittableRandom sr = new SplittableRandom();
for (int reps = 0; reps < REPS; ++reps) {
SplittableRandom sc = sr.split();
int i = 0;
while (i < NCALLS && sr.nextLong() == sc.nextLong())
++i;
assertTrue(i < NCALLS);
}
}
/**
* A SplittableRandom produced by split() of a seeded-constructed
* SplittableRandom generates a different sequence
*/
public void testSplit2() {
SplittableRandom sr = new SplittableRandom(12345);
for (int reps = 0; reps < REPS; ++reps) {
SplittableRandom sc = sr.split();
int i = 0;
while (i < NCALLS && sr.nextLong() == sc.nextLong())
++i;
assertTrue(i < NCALLS);
}
}
/**
* nextInt(non-positive) throws IllegalArgumentException
*/
public void testNextIntBoundNonPositive() {
SplittableRandom sr = new SplittableRandom();
Runnable[] throwingActions = {
() -> sr.nextInt(-17),
() -> sr.nextInt(0),
() -> sr.nextInt(Integer.MIN_VALUE),
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* nextInt(least >= bound) throws IllegalArgumentException
*/
public void testNextIntBadBounds() {
SplittableRandom sr = new SplittableRandom();
Runnable[] throwingActions = {
() -> sr.nextInt(17, 2),
() -> sr.nextInt(-42, -42),
() -> sr.nextInt(Integer.MAX_VALUE, Integer.MIN_VALUE),
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* nextInt(bound) returns 0 <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextIntBounded() {
SplittableRandom sr = new SplittableRandom();
for (int i = 0; i < 2; i++) assertEquals(0, sr.nextInt(1));
// sample bound space across prime number increments
for (int bound = 2; bound < MAX_INT_BOUND; bound += 524959) {
int f = sr.nextInt(bound);
assertTrue(0 <= f && f < bound);
int i = 0;
int j;
while (i < NCALLS &&
(j = sr.nextInt(bound)) == f) {
assertTrue(0 <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
/**
* nextInt(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextIntBounded2() {
SplittableRandom sr = new SplittableRandom();
for (int least = -15485863; least < MAX_INT_BOUND; least += 524959) {
for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 49979687) {
int f = sr.nextInt(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
int j;
while (i < NCALLS &&
(j = sr.nextInt(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* nextLong(non-positive) throws IllegalArgumentException
*/
public void testNextLongBoundNonPositive() {
SplittableRandom sr = new SplittableRandom();
Runnable[] throwingActions = {
() -> sr.nextLong(-17L),
() -> sr.nextLong(0L),
() -> sr.nextLong(Long.MIN_VALUE),
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* nextLong(least >= bound) throws IllegalArgumentException
*/
public void testNextLongBadBounds() {
SplittableRandom sr = new SplittableRandom();
Runnable[] throwingActions = {
() -> sr.nextLong(17L, 2L),
() -> sr.nextLong(-42L, -42L),
() -> sr.nextLong(Long.MAX_VALUE, Long.MIN_VALUE),
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* nextLong(bound) returns 0 <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextLongBounded() {
SplittableRandom sr = new SplittableRandom();
for (int i = 0; i < 2; i++) assertEquals(0L, sr.nextLong(1L));
for (long bound = 2; bound < MAX_LONG_BOUND; bound += 15485863) {
long f = sr.nextLong(bound);
assertTrue(0 <= f && f < bound);
int i = 0;
long j;
while (i < NCALLS &&
(j = sr.nextLong(bound)) == f) {
assertTrue(0 <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
/**
* nextLong(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextLongBounded2() {
SplittableRandom sr = new SplittableRandom();
for (long least = -86028121; least < MAX_LONG_BOUND; least += 982451653L) {
for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
long f = sr.nextLong(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
long j;
while (i < NCALLS &&
(j = sr.nextLong(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* nextDouble(non-positive) throws IllegalArgumentException
*/
public void testNextDoubleBoundNonPositive() {
SplittableRandom sr = new SplittableRandom();
Runnable[] throwingActions = {
() -> sr.nextDouble(-17.0d),
() -> sr.nextDouble(0.0d),
() -> sr.nextDouble(-Double.MIN_VALUE),
() -> sr.nextDouble(Double.NEGATIVE_INFINITY),
() -> sr.nextDouble(Double.NaN),
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* nextDouble(! (least < bound)) throws IllegalArgumentException
*/
public void testNextDoubleBadBounds() {
SplittableRandom sr = new SplittableRandom();
Runnable[] throwingActions = {
() -> sr.nextDouble(17.0d, 2.0d),
() -> sr.nextDouble(-42.0d, -42.0d),
() -> sr.nextDouble(Double.MAX_VALUE, Double.MIN_VALUE),
() -> sr.nextDouble(Double.NaN, 0.0d),
() -> sr.nextDouble(0.0d, Double.NaN),
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
// TODO: Test infinite bounds!
//() -> sr.nextDouble(Double.NEGATIVE_INFINITY, 0.0d),
//() -> sr.nextDouble(0.0d, Double.POSITIVE_INFINITY),
/**
* nextDouble(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextDoubleBounded2() {
SplittableRandom sr = new SplittableRandom();
for (double least = 0.0001; least < 1.0e20; least *= 8) {
for (double bound = least * 1.001; bound < 1.0e20; bound *= 16) {
double f = sr.nextDouble(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
double j;
while (i < NCALLS &&
(j = sr.nextDouble(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* Invoking sized ints, long, doubles, with negative sizes throws
* IllegalArgumentException
*/
public void testBadStreamSize() {
SplittableRandom r = new SplittableRandom();
Runnable[] throwingActions = {
() -> { java.util.stream.IntStream x = r.ints(-1L); },
() -> { java.util.stream.IntStream x = r.ints(-1L, 2, 3); },
() -> { java.util.stream.LongStream x = r.longs(-1L); },
() -> { java.util.stream.LongStream x = r.longs(-1L, -1L, 1L); },
() -> { java.util.stream.DoubleStream x = r.doubles(-1L); },
() -> { java.util.stream.DoubleStream x = r.doubles(-1L, .5, .6); },
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* Invoking bounded ints, long, doubles, with illegal bounds throws
* IllegalArgumentException
*/
public void testBadStreamBounds() {
SplittableRandom r = new SplittableRandom();
Runnable[] throwingActions = {
() -> { java.util.stream.IntStream x = r.ints(2, 1); },
() -> { java.util.stream.IntStream x = r.ints(10, 42, 42); },
() -> { java.util.stream.LongStream x = r.longs(-1L, -1L); },
() -> { java.util.stream.LongStream x = r.longs(10, 1L, -2L); },
() -> { java.util.stream.DoubleStream x = r.doubles(0.0, 0.0); },
() -> { java.util.stream.DoubleStream x = r.doubles(10, .5, .4); },
};
assertThrows(IllegalArgumentException.class, throwingActions);
}
/**
* A parallel sized stream of ints generates the given number of values
*/
public void testIntsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.ints(size).parallel().forEach(x -> counter.increment());
assertEquals(size, counter.sum());
size += 524959;
}
}
/**
* A parallel sized stream of longs generates the given number of values
*/
public void testLongsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.longs(size).parallel().forEach(x -> counter.increment());
assertEquals(size, counter.sum());
size += 524959;
}
}
/**
* A parallel sized stream of doubles generates the given number of values
*/
public void testDoublesCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.doubles(size).parallel().forEach(x -> counter.increment());
assertEquals(size, counter.sum());
size += 524959;
}
}
/**
* Each of a parallel sized stream of bounded ints is within bounds
*/
public void testBoundedInts() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 12345L;
for (int least = -15485867; least < MAX_INT_BOUND; least += 524959) {
for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 67867967) {
final int lo = least, hi = bound;
r.ints(size, lo, hi).parallel().forEach(
x -> {
if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(0, fails.get());
}
/**
* Each of a parallel sized stream of bounded longs is within bounds
*/
public void testBoundedLongs() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 123L;
for (long least = -86028121; least < MAX_LONG_BOUND; least += 1982451653L) {
for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
final long lo = least, hi = bound;
r.longs(size, lo, hi).parallel().forEach(
x -> {
if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(0, fails.get());
}
/**
* Each of a parallel sized stream of bounded doubles is within bounds
*/
public void testBoundedDoubles() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 456;
for (double least = 0.00011; least < 1.0e20; least *= 9) {
for (double bound = least * 1.0011; bound < 1.0e20; bound *= 17) {
final double lo = least, hi = bound;
r.doubles(size, lo, hi).parallel().forEach(
x -> {
if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(0, fails.get());
}
/**
* A parallel unsized stream of ints generates at least 100 values
*/
public void testUnsizedIntsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.ints().limit(size).parallel().forEach(x -> counter.increment());
assertEquals(size, counter.sum());
}
/**
* A parallel unsized stream of longs generates at least 100 values
*/
public void testUnsizedLongsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.longs().limit(size).parallel().forEach(x -> counter.increment());
assertEquals(size, counter.sum());
}
/**
* A parallel unsized stream of doubles generates at least 100 values
*/
public void testUnsizedDoublesCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.doubles().limit(size).parallel().forEach(x -> counter.increment());
assertEquals(size, counter.sum());
}
/**
* A sequential unsized stream of ints generates at least 100 values
*/
public void testUnsizedIntsCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.ints().limit(size).forEach(x -> counter.increment());
assertEquals(size, counter.sum());
}
/**
* A sequential unsized stream of longs generates at least 100 values
*/
public void testUnsizedLongsCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.longs().limit(size).forEach(x -> counter.increment());
assertEquals(size, counter.sum());
}
/**
* A sequential unsized stream of doubles generates at least 100 values
*/
public void testUnsizedDoublesCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.doubles().limit(size).forEach(x -> counter.increment());
assertEquals(size, counter.sum());
}
}