/* * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. *//* __ieee754_exp(x) * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Reme algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "fdlibm.h"#ifdef __STDC__static const double#elsestatic double#endifone = 1.0,halF[2] = {0.5,-0.5,},huge = 1.0e+300,twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */#ifdef __STDC__ double __ieee754_exp(double x) /* default IEEE double exp */#else double __ieee754_exp(x) /* default IEEE double exp */ double x;#endif{ double y,hi=0,lo=0,c,t; int k=0,xsb; unsigned hx; hx = __HI(x); /* high word of x */ xsb = (hx>>31)&1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if(hx >= 0x40862E42) { /* if |x|>=709.78... */ if(hx>=0x7ff00000) { if(((hx&0xfffff)|__LO(x))!=0) return x+x; /* NaN */ else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ } if(x > o_threshold) return huge*huge; /* overflow */ if(x < u_threshold) return twom1000*twom1000; /* underflow */ } /* argument reduction */ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; } else { k = invln2*x+halF[xsb]; t = k; hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ lo = t*ln2LO[0]; } x = hi - lo; } else if(hx < 0x3e300000) { /* when |x|<2**-28 */ if(huge+x>one) return one+x;/* trigger inexact */ } else k = 0; /* x is now in primary range */ t = x*x; c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); if(k==0) return one-((x*c)/(c-2.0)-x); else y = one-((lo-(x*c)/(2.0-c))-hi); if(k >= -1021) { __HI(y) += (k<<20); /* add k to y's exponent */ return y; } else { __HI(y) += ((k+1000)<<20);/* add k to y's exponent */ return y*twom1000; }}