8156500: Move Reference pending list into VM to prevent deadlocks
Summary: Move reference pending list and locking into VM
Reviewed-by: coleenp, dholmes, dcubed, mchung, plevart
Contributed-by: kim.barrett@oracle.com, per.liden@oracle.com
/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/bufferingOopClosure.hpp"
#include "memory/iterator.hpp"
#include "utilities/debug.hpp"
/////////////// Unit tests ///////////////
#ifndef PRODUCT
class TestBufferingOopClosure {
// Helper class to fake a set of oop*s and narrowOop*s.
class FakeRoots {
public:
// Used for sanity checking of the values passed to the do_oops functions in the test.
static const uintptr_t NarrowOopMarker = uintptr_t(1) << (BitsPerWord -1);
int _num_narrow;
int _num_full;
void** _narrow;
void** _full;
FakeRoots(int num_narrow, int num_full) :
_num_narrow(num_narrow),
_num_full(num_full),
_narrow((void**)::malloc(sizeof(void*) * num_narrow)),
_full((void**)::malloc(sizeof(void*) * num_full)) {
for (int i = 0; i < num_narrow; i++) {
_narrow[i] = (void*)(NarrowOopMarker + (uintptr_t)i);
}
for (int i = 0; i < num_full; i++) {
_full[i] = (void*)(uintptr_t)i;
}
}
~FakeRoots() {
::free(_narrow);
::free(_full);
}
void oops_do_narrow_then_full(OopClosure* cl) {
for (int i = 0; i < _num_narrow; i++) {
cl->do_oop((narrowOop*)_narrow[i]);
}
for (int i = 0; i < _num_full; i++) {
cl->do_oop((oop*)_full[i]);
}
}
void oops_do_full_then_narrow(OopClosure* cl) {
for (int i = 0; i < _num_full; i++) {
cl->do_oop((oop*)_full[i]);
}
for (int i = 0; i < _num_narrow; i++) {
cl->do_oop((narrowOop*)_narrow[i]);
}
}
void oops_do_mixed(OopClosure* cl) {
int i;
for (i = 0; i < _num_full && i < _num_narrow; i++) {
cl->do_oop((oop*)_full[i]);
cl->do_oop((narrowOop*)_narrow[i]);
}
for (int j = i; j < _num_full; j++) {
cl->do_oop((oop*)_full[i]);
}
for (int j = i; j < _num_narrow; j++) {
cl->do_oop((narrowOop*)_narrow[i]);
}
}
static const int MaxOrder = 2;
void oops_do(OopClosure* cl, int do_oop_order) {
switch(do_oop_order) {
case 0:
oops_do_narrow_then_full(cl);
break;
case 1:
oops_do_full_then_narrow(cl);
break;
case 2:
oops_do_mixed(cl);
break;
default:
oops_do_narrow_then_full(cl);
break;
}
}
};
class CountOopClosure : public OopClosure {
int _narrow_oop_count;
int _full_oop_count;
public:
CountOopClosure() : _narrow_oop_count(0), _full_oop_count(0) {}
void do_oop(narrowOop* p) {
assert((uintptr_t(p) & FakeRoots::NarrowOopMarker) != 0,
"The narrowOop was unexpectedly not marked with the NarrowOopMarker");
_narrow_oop_count++;
}
void do_oop(oop* p){
assert((uintptr_t(p) & FakeRoots::NarrowOopMarker) == 0,
"The oop was unexpectedly marked with the NarrowOopMarker");
_full_oop_count++;
}
int narrow_oop_count() { return _narrow_oop_count; }
int full_oop_count() { return _full_oop_count; }
int all_oop_count() { return _narrow_oop_count + _full_oop_count; }
};
class DoNothingOopClosure : public OopClosure {
public:
void do_oop(narrowOop* p) {}
void do_oop(oop* p) {}
};
static void testCount(int num_narrow, int num_full, int do_oop_order) {
FakeRoots fr(num_narrow, num_full);
CountOopClosure coc;
BufferingOopClosure boc(&coc);
fr.oops_do(&boc, do_oop_order);
boc.done();
#define assert_testCount(got, expected) \
assert((got) == (expected), \
"Expected: %d, got: %d, when running testCount(%d, %d, %d)", \
(got), (expected), num_narrow, num_full, do_oop_order)
assert_testCount(num_narrow, coc.narrow_oop_count());
assert_testCount(num_full, coc.full_oop_count());
assert_testCount(num_narrow + num_full, coc.all_oop_count());
}
static void testCount() {
int buffer_length = BufferingOopClosure::BufferLength;
for (int order = 0; order < FakeRoots::MaxOrder; order++) {
testCount(0, 0, order);
testCount(10, 0, order);
testCount(0, 10, order);
testCount(10, 10, order);
testCount(buffer_length, 10, order);
testCount(10, buffer_length, order);
testCount(buffer_length, buffer_length, order);
testCount(buffer_length + 1, 10, order);
testCount(10, buffer_length + 1, order);
testCount(buffer_length + 1, buffer_length, order);
testCount(buffer_length, buffer_length + 1, order);
testCount(buffer_length + 1, buffer_length + 1, order);
}
}
static void testIsBufferEmptyOrFull(int num_narrow, int num_full, bool expect_empty, bool expect_full) {
FakeRoots fr(num_narrow, num_full);
DoNothingOopClosure cl;
BufferingOopClosure boc(&cl);
fr.oops_do(&boc, 0);
#define assert_testIsBufferEmptyOrFull(got, expected) \
assert((got) == (expected), \
"Expected: %d, got: %d. testIsBufferEmptyOrFull(%d, %d, %s, %s)", \
(got), (expected), num_narrow, num_full, \
BOOL_TO_STR(expect_empty), BOOL_TO_STR(expect_full))
assert_testIsBufferEmptyOrFull(expect_empty, boc.is_buffer_empty());
assert_testIsBufferEmptyOrFull(expect_full, boc.is_buffer_full());
}
static void testIsBufferEmptyOrFull() {
int bl = BufferingOopClosure::BufferLength;
testIsBufferEmptyOrFull(0, 0, true, false);
testIsBufferEmptyOrFull(1, 0, false, false);
testIsBufferEmptyOrFull(0, 1, false, false);
testIsBufferEmptyOrFull(1, 1, false, false);
testIsBufferEmptyOrFull(10, 0, false, false);
testIsBufferEmptyOrFull(0, 10, false, false);
testIsBufferEmptyOrFull(10, 10, false, false);
testIsBufferEmptyOrFull(0, bl, false, true);
testIsBufferEmptyOrFull(bl, 0, false, true);
testIsBufferEmptyOrFull(bl/2, bl/2, false, true);
testIsBufferEmptyOrFull(bl-1, 1, false, true);
testIsBufferEmptyOrFull(1, bl-1, false, true);
// Processed
testIsBufferEmptyOrFull(bl+1, 0, false, false);
testIsBufferEmptyOrFull(bl*2, 0, false, true);
}
static void testEmptyAfterDone(int num_narrow, int num_full) {
FakeRoots fr(num_narrow, num_full);
DoNothingOopClosure cl;
BufferingOopClosure boc(&cl);
fr.oops_do(&boc, 0);
// Make sure all get processed.
boc.done();
assert(boc.is_buffer_empty(),
"Should be empty after call to done(). testEmptyAfterDone(%d, %d)",
num_narrow, num_full);
}
static void testEmptyAfterDone() {
int bl = BufferingOopClosure::BufferLength;
testEmptyAfterDone(0, 0);
testEmptyAfterDone(1, 0);
testEmptyAfterDone(0, 1);
testEmptyAfterDone(1, 1);
testEmptyAfterDone(10, 0);
testEmptyAfterDone(0, 10);
testEmptyAfterDone(10, 10);
testEmptyAfterDone(0, bl);
testEmptyAfterDone(bl, 0);
testEmptyAfterDone(bl/2, bl/2);
testEmptyAfterDone(bl-1, 1);
testEmptyAfterDone(1, bl-1);
// Processed
testEmptyAfterDone(bl+1, 0);
testEmptyAfterDone(bl*2, 0);
}
public:
static void test() {
testCount();
testIsBufferEmptyOrFull();
testEmptyAfterDone();
}
};
void TestBufferingOopClosure_test() {
TestBufferingOopClosure::test();
}
#endif