author | serb |
Mon, 31 Aug 2015 16:56:09 +0300 | |
changeset 32493 | 31bd2a308840 |
parent 32491 | 7b3783f9484d |
permissions | -rw-r--r-- |
/* * Copyright (c) 2006, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.awt; import java.awt.MultipleGradientPaint.CycleMethod; import java.awt.MultipleGradientPaint.ColorSpaceType; import java.awt.color.ColorSpace; import java.awt.geom.AffineTransform; import java.awt.geom.NoninvertibleTransformException; import java.awt.geom.Rectangle2D; import java.awt.image.ColorModel; import java.awt.image.DataBuffer; import java.awt.image.DataBufferInt; import java.awt.image.DirectColorModel; import java.awt.image.Raster; import java.awt.image.SinglePixelPackedSampleModel; import java.awt.image.WritableRaster; import java.lang.ref.SoftReference; import java.lang.ref.WeakReference; import java.util.Arrays; /** * This is the superclass for all PaintContexts which use a multiple color * gradient to fill in their raster. It provides the actual color * interpolation functionality. Subclasses only have to deal with using * the gradient to fill pixels in a raster. * * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans */ abstract class MultipleGradientPaintContext implements PaintContext { /** * The PaintContext's ColorModel. This is ARGB if colors are not all * opaque, otherwise it is RGB. */ protected ColorModel model; /** Color model used if gradient colors are all opaque. */ private static ColorModel xrgbmodel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); /** The cached ColorModel. */ protected static ColorModel cachedModel; /** The cached raster, which is reusable among instances. */ protected static WeakReference<Raster> cached; /** Raster is reused whenever possible. */ protected Raster saved; /** The method to use when painting out of the gradient bounds. */ protected CycleMethod cycleMethod; /** The ColorSpace in which to perform the interpolation */ protected ColorSpaceType colorSpace; /** Elements of the inverse transform matrix. */ protected float a00, a01, a10, a11, a02, a12; /** * This boolean specifies whether we are in simple lookup mode, where an * input value between 0 and 1 may be used to directly index into a single * array of gradient colors. If this boolean value is false, then we have * to use a 2-step process where we have to determine which gradient array * we fall into, then determine the index into that array. */ protected boolean isSimpleLookup; /** * Size of gradients array for scaling the 0-1 index when looking up * colors the fast way. */ protected int fastGradientArraySize; /** * Array which contains the interpolated color values for each interval, * used by calculateSingleArrayGradient(). It is protected for possible * direct access by subclasses. */ protected int[] gradient; /** * Array of gradient arrays, one array for each interval. Used by * calculateMultipleArrayGradient(). */ private int[][] gradients; /** Normalized intervals array. */ private float[] normalizedIntervals; /** Fractions array. */ private float[] fractions; /** Used to determine if gradient colors are all opaque. */ private int transparencyTest; /** Color space conversion lookup tables. */ private static final int SRGBtoLinearRGB[] = new int[256]; private static final int LinearRGBtoSRGB[] = new int[256]; static { // build the tables for (int k = 0; k < 256; k++) { SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k); LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k); } } /** * Constant number of max colors between any 2 arbitrary colors. * Used for creating and indexing gradients arrays. */ protected static final int GRADIENT_SIZE = 256; protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1; /** * Maximum length of the fast single-array. If the estimated array size * is greater than this, switch over to the slow lookup method. * No particular reason for choosing this number, but it seems to provide * satisfactory performance for the common case (fast lookup). */ private static final int MAX_GRADIENT_ARRAY_SIZE = 5000; /** * Constructor for MultipleGradientPaintContext superclass. */ protected MultipleGradientPaintContext(MultipleGradientPaint mgp, ColorModel cm, Rectangle deviceBounds, Rectangle2D userBounds, AffineTransform t, RenderingHints hints, float[] fractions, Color[] colors, CycleMethod cycleMethod, ColorSpaceType colorSpace) { if (deviceBounds == null) { throw new NullPointerException("Device bounds cannot be null"); } if (userBounds == null) { throw new NullPointerException("User bounds cannot be null"); } if (t == null) { throw new NullPointerException("Transform cannot be null"); } if (hints == null) { throw new NullPointerException("RenderingHints cannot be null"); } // The inverse transform is needed to go from device to user space. // Get all the components of the inverse transform matrix. AffineTransform tInv; try { // the following assumes that the caller has copied the incoming // transform and is not concerned about it being modified t.invert(); tInv = t; } catch (NoninvertibleTransformException e) { // just use identity transform in this case; better to show // (incorrect) results than to throw an exception and/or no-op tInv = new AffineTransform(); } double m[] = new double[6]; tInv.getMatrix(m); a00 = (float)m[0]; a10 = (float)m[1]; a01 = (float)m[2]; a11 = (float)m[3]; a02 = (float)m[4]; a12 = (float)m[5]; // copy some flags this.cycleMethod = cycleMethod; this.colorSpace = colorSpace; // we can avoid copying this array since we do not modify its values this.fractions = fractions; // note that only one of these values can ever be non-null (we either // store the fast gradient array or the slow one, but never both // at the same time) int[] gradient = (mgp.gradient != null) ? mgp.gradient.get() : null; int[][] gradients = (mgp.gradients != null) ? mgp.gradients.get() : null; if (gradient == null && gradients == null) { // we need to (re)create the appropriate values calculateLookupData(colors); // now cache the calculated values in the // MultipleGradientPaint instance for future use mgp.model = this.model; mgp.normalizedIntervals = this.normalizedIntervals; mgp.isSimpleLookup = this.isSimpleLookup; if (isSimpleLookup) { // only cache the fast array mgp.fastGradientArraySize = this.fastGradientArraySize; mgp.gradient = new SoftReference<int[]>(this.gradient); } else { // only cache the slow array mgp.gradients = new SoftReference<int[][]>(this.gradients); } } else { // use the values cached in the MultipleGradientPaint instance this.model = mgp.model; this.normalizedIntervals = mgp.normalizedIntervals; this.isSimpleLookup = mgp.isSimpleLookup; this.gradient = gradient; this.fastGradientArraySize = mgp.fastGradientArraySize; this.gradients = gradients; } } /** * This function is the meat of this class. It calculates an array of * gradient colors based on an array of fractions and color values at * those fractions. */ private void calculateLookupData(Color[] colors) { Color[] normalizedColors; if (colorSpace == ColorSpaceType.LINEAR_RGB) { // create a new colors array normalizedColors = new Color[colors.length]; // convert the colors using the lookup table for (int i = 0; i < colors.length; i++) { int argb = colors[i].getRGB(); int a = argb >>> 24; int r = SRGBtoLinearRGB[(argb >> 16) & 0xff]; int g = SRGBtoLinearRGB[(argb >> 8) & 0xff]; int b = SRGBtoLinearRGB[(argb ) & 0xff]; normalizedColors[i] = new Color(r, g, b, a); } } else { // we can just use this array by reference since we do not // modify its values in the case of SRGB normalizedColors = colors; } // this will store the intervals (distances) between gradient stops normalizedIntervals = new float[fractions.length-1]; // convert from fractions into intervals for (int i = 0; i < normalizedIntervals.length; i++) { // interval distance is equal to the difference in positions normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i]; } // initialize to be fully opaque for ANDing with colors transparencyTest = 0xff000000; // array of interpolation arrays gradients = new int[normalizedIntervals.length][]; // find smallest interval float Imin = 1; for (int i = 0; i < normalizedIntervals.length; i++) { Imin = (Imin > normalizedIntervals[i]) ? normalizedIntervals[i] : Imin; } // Estimate the size of the entire gradients array. // This is to prevent a tiny interval from causing the size of array // to explode. If the estimated size is too large, break to using // separate arrays for each interval, and using an indexing scheme at // look-up time. int estimatedSize = 0; for (int i = 0; i < normalizedIntervals.length; i++) { estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE; } if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) { // slow method calculateMultipleArrayGradient(normalizedColors); } else { // fast method calculateSingleArrayGradient(normalizedColors, Imin); } // use the most "economical" model if ((transparencyTest >>> 24) == 0xff) { model = xrgbmodel; } else { model = ColorModel.getRGBdefault(); } } /** * FAST LOOKUP METHOD * * This method calculates the gradient color values and places them in a * single int array, gradient[]. It does this by allocating space for * each interval based on its size relative to the smallest interval in * the array. The smallest interval is allocated 255 interpolated values * (the maximum number of unique in-between colors in a 24 bit color * system), and all other intervals are allocated * size = (255 * the ratio of their size to the smallest interval). * * This scheme expedites a speedy retrieval because the colors are * distributed along the array according to their user-specified * distribution. All that is needed is a relative index from 0 to 1. * * The only problem with this method is that the possibility exists for * the array size to balloon in the case where there is a * disproportionately small gradient interval. In this case the other * intervals will be allocated huge space, but much of that data is * redundant. We thus need to use the space conserving scheme below. * * @param Imin the size of the smallest interval */ private void calculateSingleArrayGradient(Color[] colors, float Imin) { // set the flag so we know later it is a simple (fast) lookup isSimpleLookup = true; // 2 colors to interpolate int rgb1, rgb2; //the eventual size of the single array int gradientsTot = 1; // for every interval (transition between 2 colors) for (int i = 0; i < gradients.length; i++) { // create an array whose size is based on the ratio to the // smallest interval int nGradients = (int)((normalizedIntervals[i]/Imin)*255f); gradientsTot += nGradients; gradients[i] = new int[nGradients]; // the 2 colors (keyframes) to interpolate between rgb1 = colors[i].getRGB(); rgb2 = colors[i+1].getRGB(); // fill this array with the colors in between rgb1 and rgb2 interpolate(rgb1, rgb2, gradients[i]); // if the colors are opaque, transparency should still // be 0xff000000 transparencyTest &= rgb1; transparencyTest &= rgb2; } // put all gradients in a single array gradient = new int[gradientsTot]; int curOffset = 0; for (int i = 0; i < gradients.length; i++){ System.arraycopy(gradients[i], 0, gradient, curOffset, gradients[i].length); curOffset += gradients[i].length; } gradient[gradient.length-1] = colors[colors.length-1].getRGB(); // if interpolation occurred in Linear RGB space, convert the // gradients back to sRGB using the lookup table if (colorSpace == ColorSpaceType.LINEAR_RGB) { for (int i = 0; i < gradient.length; i++) { gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]); } } fastGradientArraySize = gradient.length - 1; } /** * SLOW LOOKUP METHOD * * This method calculates the gradient color values for each interval and * places each into its own 255 size array. The arrays are stored in * gradients[][]. (255 is used because this is the maximum number of * unique colors between 2 arbitrary colors in a 24 bit color system.) * * This method uses the minimum amount of space (only 255 * number of * intervals), but it aggravates the lookup procedure, because now we * have to find out which interval to select, then calculate the index * within that interval. This causes a significant performance hit, * because it requires this calculation be done for every point in * the rendering loop. * * For those of you who are interested, this is a classic example of the * time-space tradeoff. */ private void calculateMultipleArrayGradient(Color[] colors) { // set the flag so we know later it is a non-simple lookup isSimpleLookup = false; // 2 colors to interpolate int rgb1, rgb2; // for every interval (transition between 2 colors) for (int i = 0; i < gradients.length; i++){ // create an array of the maximum theoretical size for // each interval gradients[i] = new int[GRADIENT_SIZE]; // get the 2 colors rgb1 = colors[i].getRGB(); rgb2 = colors[i+1].getRGB(); // fill this array with the colors in between rgb1 and rgb2 interpolate(rgb1, rgb2, gradients[i]); // if the colors are opaque, transparency should still // be 0xff000000 transparencyTest &= rgb1; transparencyTest &= rgb2; } // if interpolation occurred in Linear RGB space, convert the // gradients back to SRGB using the lookup table if (colorSpace == ColorSpaceType.LINEAR_RGB) { for (int j = 0; j < gradients.length; j++) { for (int i = 0; i < gradients[j].length; i++) { gradients[j][i] = convertEntireColorLinearRGBtoSRGB(gradients[j][i]); } } } } /** * Yet another helper function. This one linearly interpolates between * 2 colors, filling up the output array. * * @param rgb1 the start color * @param rgb2 the end color * @param output the output array of colors; must not be null */ private void interpolate(int rgb1, int rgb2, int[] output) { // color components int a1, r1, g1, b1, da, dr, dg, db; // step between interpolated values float stepSize = 1.0f / output.length; // extract color components from packed integer a1 = (rgb1 >> 24) & 0xff; r1 = (rgb1 >> 16) & 0xff; g1 = (rgb1 >> 8) & 0xff; b1 = (rgb1 ) & 0xff; // calculate the total change in alpha, red, green, blue da = ((rgb2 >> 24) & 0xff) - a1; dr = ((rgb2 >> 16) & 0xff) - r1; dg = ((rgb2 >> 8) & 0xff) - g1; db = ((rgb2 ) & 0xff) - b1; // for each step in the interval calculate the in-between color by // multiplying the normalized current position by the total color // change (0.5 is added to prevent truncation round-off error) for (int i = 0; i < output.length; i++) { output[i] = (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) | (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) | (((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) | (((int) ((b1 + i * db * stepSize) + 0.5) )); } } /** * Yet another helper function. This one extracts the color components * of an integer RGB triple, converts them from LinearRGB to SRGB, then * recompacts them into an int. */ private int convertEntireColorLinearRGBtoSRGB(int rgb) { // color components int a1, r1, g1, b1; // extract red, green, blue components a1 = (rgb >> 24) & 0xff; r1 = (rgb >> 16) & 0xff; g1 = (rgb >> 8) & 0xff; b1 = (rgb ) & 0xff; // use the lookup table r1 = LinearRGBtoSRGB[r1]; g1 = LinearRGBtoSRGB[g1]; b1 = LinearRGBtoSRGB[b1]; // re-compact the components return ((a1 << 24) | (r1 << 16) | (g1 << 8) | (b1 )); } /** * Helper function to index into the gradients array. This is necessary * because each interval has an array of colors with uniform size 255. * However, the color intervals are not necessarily of uniform length, so * a conversion is required. * * @param position the unmanipulated position, which will be mapped * into the range 0 to 1 * @return integer color to display */ protected final int indexIntoGradientsArrays(float position) { // first, manipulate position value depending on the cycle method if (cycleMethod == CycleMethod.NO_CYCLE) { if (position > 1) { // upper bound is 1 position = 1; } else if (position < 0) { // lower bound is 0 position = 0; } } else if (cycleMethod == CycleMethod.REPEAT) { // get the fractional part // (modulo behavior discards integer component) position = position - (int)position; //position should now be between -1 and 1 if (position < 0) { // force it to be in the range 0-1 position = position + 1; } } else { // cycleMethod == CycleMethod.REFLECT if (position < 0) { // take absolute value position = -position; } // get the integer part int part = (int)position; // get the fractional part position = position - part; if ((part & 1) == 1) { // integer part is odd, get reflected color instead position = 1 - position; } } // now, get the color based on this 0-1 position... if (isSimpleLookup) { // easy to compute: just scale index by array size return gradient[(int)(position * fastGradientArraySize)]; } else { // more complicated computation, to save space // for all the gradient interval arrays for (int i = 0; i < gradients.length; i++) { if (position < fractions[i+1]) { // this is the array we want float delta = position - fractions[i]; // this is the interval we want int index = (int)((delta / normalizedIntervals[i]) * (GRADIENT_SIZE_INDEX)); return gradients[i][index]; } } } return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX]; } /** * Helper function to convert a color component in sRGB space to linear * RGB space. Used to build a static lookup table. */ private static int convertSRGBtoLinearRGB(int color) { float input, output; input = color / 255.0f; if (input <= 0.04045f) { output = input / 12.92f; } else { output = (float)Math.pow((input + 0.055) / 1.055, 2.4); } return Math.round(output * 255.0f); } /** * Helper function to convert a color component in linear RGB space to * SRGB space. Used to build a static lookup table. */ private static int convertLinearRGBtoSRGB(int color) { float input, output; input = color/255.0f; if (input <= 0.0031308) { output = input * 12.92f; } else { output = (1.055f * ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f; } return Math.round(output * 255.0f); } /** * {@inheritDoc} */ public final Raster getRaster(int x, int y, int w, int h) { // If working raster is big enough, reuse it. Otherwise, // build a large enough new one. Raster raster = saved; if (raster == null || raster.getWidth() < w || raster.getHeight() < h) { raster = getCachedRaster(model, w, h); saved = raster; } // Access raster internal int array. Because we use a DirectColorModel, // we know the DataBuffer is of type DataBufferInt and the SampleModel // is SinglePixelPackedSampleModel. // Adjust for initial offset in DataBuffer and also for the scanline // stride. // These calls make the DataBuffer non-acceleratable, but the // Raster is never Stable long enough to accelerate anyway... DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer(); int[] pixels = rasterDB.getData(0); int off = rasterDB.getOffset(); int scanlineStride = ((SinglePixelPackedSampleModel) raster.getSampleModel()).getScanlineStride(); int adjust = scanlineStride - w; fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass return raster; } protected abstract void fillRaster(int pixels[], int off, int adjust, int x, int y, int w, int h); /** * Took this cacheRaster code from GradientPaint. It appears to recycle * rasters for use by any other instance, as long as they are sufficiently * large. */ private static synchronized Raster getCachedRaster(ColorModel cm, int w, int h) { if (cm == cachedModel) { if (cached != null) { Raster ras = cached.get(); if (ras != null && ras.getWidth() >= w && ras.getHeight() >= h) { cached = null; return ras; } } } return cm.createCompatibleWritableRaster(w, h); } /** * Took this cacheRaster code from GradientPaint. It appears to recycle * rasters for use by any other instance, as long as they are sufficiently * large. */ private static synchronized void putCachedRaster(ColorModel cm, Raster ras) { if (cached != null) { Raster cras = cached.get(); if (cras != null) { int cw = cras.getWidth(); int ch = cras.getHeight(); int iw = ras.getWidth(); int ih = ras.getHeight(); if (cw >= iw && ch >= ih) { return; } if (cw * ch >= iw * ih) { return; } } } cachedModel = cm; cached = new WeakReference<Raster>(ras); } /** * {@inheritDoc} */ public final void dispose() { if (saved != null) { putCachedRaster(model, saved); saved = null; } } /** * {@inheritDoc} */ public final ColorModel getColorModel() { return model; } }