8193460: Take tools/launcher/TestXcheckJNIWarnings.java back off the ProblemList
Reviewed-by: mchung, psandoz
/*
* Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "c1/c1_Defs.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_arm.hpp"
#include "oops/compiledICHolder.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "register_arm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/signature.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/align.hpp"
#include "vmreg_arm.inline.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#endif
// Note: Rtemp usage is this file should not impact C2 and should be
// correct as long as it is not implicitly used in lower layers (the
// arm [macro]assembler) and used with care in the other C1 specific
// files.
// Implementation of StubAssembler
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
mov(R0, Rthread);
int call_offset = set_last_Java_frame(SP, FP, false, Rtemp);
call(entry);
if (call_offset == -1) { // PC not saved
call_offset = offset();
}
reset_last_Java_frame(Rtemp);
assert(frame_size() != no_frame_size, "frame must be fixed");
if (_stub_id != Runtime1::forward_exception_id) {
ldr(R3, Address(Rthread, Thread::pending_exception_offset()));
}
if (oop_result1->is_valid()) {
assert_different_registers(oop_result1, R3, Rtemp);
get_vm_result(oop_result1, Rtemp);
}
if (metadata_result->is_valid()) {
assert_different_registers(metadata_result, R3, Rtemp);
get_vm_result_2(metadata_result, Rtemp);
}
// Check for pending exception
// unpack_with_exception_in_tls path is taken through
// Runtime1::exception_handler_for_pc
if (_stub_id != Runtime1::forward_exception_id) {
assert(frame_size() != no_frame_size, "cannot directly call forward_exception_id");
#ifdef AARCH64
Label skip;
cbz(R3, skip);
jump(Runtime1::entry_for(Runtime1::forward_exception_id), relocInfo::runtime_call_type, Rtemp);
bind(skip);
#else
cmp(R3, 0);
jump(Runtime1::entry_for(Runtime1::forward_exception_id), relocInfo::runtime_call_type, Rtemp, ne);
#endif // AARCH64
} else {
#ifdef ASSERT
// Should not have pending exception in forward_exception stub
ldr(R3, Address(Rthread, Thread::pending_exception_offset()));
cmp(R3, 0);
breakpoint(ne);
#endif // ASSERT
}
return call_offset;
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
if (arg1 != R1) {
mov(R1, arg1);
}
return call_RT(oop_result1, metadata_result, entry, 1);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
assert(arg1 == R1 && arg2 == R2, "cannot handle otherwise");
return call_RT(oop_result1, metadata_result, entry, 2);
}
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
assert(arg1 == R1 && arg2 == R2 && arg3 == R3, "cannot handle otherwise");
return call_RT(oop_result1, metadata_result, entry, 3);
}
#define __ sasm->
// TODO: ARM - does this duplicate RegisterSaver in SharedRuntime?
#ifdef AARCH64
//
// On AArch64 registers save area has the following layout:
//
// |---------------------|
// | return address (LR) |
// | FP |
// |---------------------|
// | D31 |
// | ... |
// | D0 |
// |---------------------|
// | padding |
// |---------------------|
// | R28 |
// | ... |
// | R0 |
// |---------------------| <-- SP
//
enum RegisterLayout {
number_of_saved_gprs = 29,
number_of_saved_fprs = FloatRegisterImpl::number_of_registers,
R0_offset = 0,
D0_offset = R0_offset + number_of_saved_gprs + 1,
FP_offset = D0_offset + number_of_saved_fprs,
LR_offset = FP_offset + 1,
reg_save_size = LR_offset + 1,
arg1_offset = reg_save_size * wordSize,
arg2_offset = (reg_save_size + 1) * wordSize
};
#else
enum RegisterLayout {
fpu_save_size = pd_nof_fpu_regs_reg_alloc,
#ifndef __SOFTFP__
D0_offset = 0,
#endif
R0_offset = fpu_save_size,
R1_offset,
R2_offset,
R3_offset,
R4_offset,
R5_offset,
R6_offset,
#if (FP_REG_NUM != 7)
R7_offset,
#endif
R8_offset,
R9_offset,
R10_offset,
#if (FP_REG_NUM != 11)
R11_offset,
#endif
R12_offset,
FP_offset,
LR_offset,
reg_save_size,
arg1_offset = reg_save_size * wordSize,
arg2_offset = (reg_save_size + 1) * wordSize
};
#endif // AARCH64
static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers = HaveVFP) {
sasm->set_frame_size(reg_save_size /* in words */);
// Record saved value locations in an OopMap.
// Locations are offsets from sp after runtime call.
OopMap* map = new OopMap(VMRegImpl::slots_per_word * reg_save_size, 0);
#ifdef AARCH64
for (int i = 0; i < number_of_saved_gprs; i++) {
map->set_callee_saved(VMRegImpl::stack2reg((R0_offset + i) * VMRegImpl::slots_per_word), as_Register(i)->as_VMReg());
}
map->set_callee_saved(VMRegImpl::stack2reg(FP_offset * VMRegImpl::slots_per_word), FP->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(LR_offset * VMRegImpl::slots_per_word), LR->as_VMReg());
if (save_fpu_registers) {
for (int i = 0; i < number_of_saved_fprs; i++) {
map->set_callee_saved(VMRegImpl::stack2reg((D0_offset + i) * VMRegImpl::slots_per_word), as_FloatRegister(i)->as_VMReg());
}
}
#else
int j=0;
for (int i = R0_offset; i < R10_offset; i++) {
if (j == FP_REG_NUM) {
// skip the FP register, saved below
j++;
}
map->set_callee_saved(VMRegImpl::stack2reg(i), as_Register(j)->as_VMReg());
j++;
}
assert(j == R10->encoding(), "must be");
#if (FP_REG_NUM != 11)
// add R11, if not saved as FP
map->set_callee_saved(VMRegImpl::stack2reg(R11_offset), R11->as_VMReg());
#endif
map->set_callee_saved(VMRegImpl::stack2reg(FP_offset), FP->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(LR_offset), LR->as_VMReg());
if (save_fpu_registers) {
for (int i = 0; i < fpu_save_size; i++) {
map->set_callee_saved(VMRegImpl::stack2reg(i), as_FloatRegister(i)->as_VMReg());
}
}
#endif // AARCH64
return map;
}
static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = HaveVFP) {
__ block_comment("save_live_registers");
sasm->set_frame_size(reg_save_size /* in words */);
#ifdef AARCH64
assert((reg_save_size * wordSize) % StackAlignmentInBytes == 0, "SP should be aligned");
__ raw_push(FP, LR);
__ sub(SP, SP, (reg_save_size - 2) * wordSize);
for (int i = 0; i < align_down((int)number_of_saved_gprs, 2); i += 2) {
__ stp(as_Register(i), as_Register(i+1), Address(SP, (R0_offset + i) * wordSize));
}
if (is_odd(number_of_saved_gprs)) {
int i = number_of_saved_gprs - 1;
__ str(as_Register(i), Address(SP, (R0_offset + i) * wordSize));
}
if (save_fpu_registers) {
assert (is_even(number_of_saved_fprs), "adjust this code");
for (int i = 0; i < number_of_saved_fprs; i += 2) {
__ stp_d(as_FloatRegister(i), as_FloatRegister(i+1), Address(SP, (D0_offset + i) * wordSize));
}
}
#else
__ push(RegisterSet(FP) | RegisterSet(LR));
__ push(RegisterSet(R0, R6) | RegisterSet(R8, R10) | R12 | altFP_7_11);
if (save_fpu_registers) {
__ fstmdbd(SP, FloatRegisterSet(D0, fpu_save_size / 2), writeback);
} else {
__ sub(SP, SP, fpu_save_size * wordSize);
}
#endif // AARCH64
return generate_oop_map(sasm, save_fpu_registers);
}
static void restore_live_registers(StubAssembler* sasm,
bool restore_R0,
bool restore_FP_LR,
bool do_return,
bool restore_fpu_registers = HaveVFP) {
__ block_comment("restore_live_registers");
#ifdef AARCH64
if (restore_R0) {
__ ldr(R0, Address(SP, R0_offset * wordSize));
}
assert(is_odd(number_of_saved_gprs), "adjust this code");
for (int i = 1; i < number_of_saved_gprs; i += 2) {
__ ldp(as_Register(i), as_Register(i+1), Address(SP, (R0_offset + i) * wordSize));
}
if (restore_fpu_registers) {
assert (is_even(number_of_saved_fprs), "adjust this code");
for (int i = 0; i < number_of_saved_fprs; i += 2) {
__ ldp_d(as_FloatRegister(i), as_FloatRegister(i+1), Address(SP, (D0_offset + i) * wordSize));
}
}
__ add(SP, SP, (reg_save_size - 2) * wordSize);
if (restore_FP_LR) {
__ raw_pop(FP, LR);
if (do_return) {
__ ret();
}
} else {
assert (!do_return, "return without restoring FP/LR");
}
#else
if (restore_fpu_registers) {
__ fldmiad(SP, FloatRegisterSet(D0, fpu_save_size / 2), writeback);
if (!restore_R0) {
__ add(SP, SP, (R1_offset - fpu_save_size) * wordSize);
}
} else {
__ add(SP, SP, (restore_R0 ? fpu_save_size : R1_offset) * wordSize);
}
__ pop(RegisterSet((restore_R0 ? R0 : R1), R6) | RegisterSet(R8, R10) | R12 | altFP_7_11);
if (restore_FP_LR) {
__ pop(RegisterSet(FP) | RegisterSet(do_return ? PC : LR));
} else {
assert (!do_return, "return without restoring FP/LR");
}
#endif // AARCH64
}
static void restore_live_registers_except_R0(StubAssembler* sasm, bool restore_fpu_registers = HaveVFP) {
restore_live_registers(sasm, false, true, true, restore_fpu_registers);
}
static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = HaveVFP) {
restore_live_registers(sasm, true, true, true, restore_fpu_registers);
}
#ifndef AARCH64
static void restore_live_registers_except_FP_LR(StubAssembler* sasm, bool restore_fpu_registers = HaveVFP) {
restore_live_registers(sasm, true, false, false, restore_fpu_registers);
}
#endif // !AARCH64
static void restore_live_registers_without_return(StubAssembler* sasm, bool restore_fpu_registers = HaveVFP) {
restore_live_registers(sasm, true, true, false, restore_fpu_registers);
}
void Runtime1::initialize_pd() {
}
OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
OopMap* oop_map = save_live_registers(sasm);
if (has_argument) {
__ ldr(R1, Address(SP, arg1_offset));
}
int call_offset = __ call_RT(noreg, noreg, target);
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
DEBUG_ONLY(STOP("generate_exception_throw");) // Should not reach here
return oop_maps;
}
static void restore_sp_for_method_handle(StubAssembler* sasm) {
// Restore SP from its saved reg (FP) if the exception PC is a MethodHandle call site.
__ ldr_s32(Rtemp, Address(Rthread, JavaThread::is_method_handle_return_offset()));
#ifdef AARCH64
Label skip;
__ cbz(Rtemp, skip);
__ mov(SP, Rmh_SP_save);
__ bind(skip);
#else
__ cmp(Rtemp, 0);
__ mov(SP, Rmh_SP_save, ne);
#endif // AARCH64
}
OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler* sasm) {
__ block_comment("generate_handle_exception");
bool save_fpu_registers = false;
// Save registers, if required.
OopMapSet* oop_maps = new OopMapSet();
OopMap* oop_map = NULL;
switch (id) {
case forward_exception_id: {
save_fpu_registers = HaveVFP;
oop_map = generate_oop_map(sasm);
__ ldr(Rexception_obj, Address(Rthread, Thread::pending_exception_offset()));
__ ldr(Rexception_pc, Address(SP, LR_offset * wordSize));
Register zero = __ zero_register(Rtemp);
__ str(zero, Address(Rthread, Thread::pending_exception_offset()));
break;
}
case handle_exception_id:
save_fpu_registers = HaveVFP;
// fall-through
case handle_exception_nofpu_id:
// At this point all registers MAY be live.
oop_map = save_live_registers(sasm, save_fpu_registers);
break;
case handle_exception_from_callee_id:
// At this point all registers except exception oop (R4/R19) and
// exception pc (R5/R20) are dead.
oop_map = save_live_registers(sasm); // TODO it's not required to save all registers
break;
default: ShouldNotReachHere();
}
__ str(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
__ str(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
__ str(Rexception_pc, Address(SP, LR_offset * wordSize)); // patch throwing pc into return address
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
oop_maps->add_gc_map(call_offset, oop_map);
// Exception handler found
__ str(R0, Address(SP, LR_offset * wordSize)); // patch the return address
// Restore the registers that were saved at the beginning, remove
// frame and jump to the exception handler.
switch (id) {
case forward_exception_id:
case handle_exception_nofpu_id:
case handle_exception_id:
restore_live_registers(sasm, save_fpu_registers);
// Note: the restore live registers includes the jump to LR (patched to R0)
break;
case handle_exception_from_callee_id:
restore_live_registers_without_return(sasm); // must not jump immediatly to handler
restore_sp_for_method_handle(sasm);
__ ret();
break;
default: ShouldNotReachHere();
}
DEBUG_ONLY(STOP("generate_handle_exception");) // Should not reach here
return oop_maps;
}
void Runtime1::generate_unwind_exception(StubAssembler* sasm) {
// FP no longer used to find the frame start
// on entry, remove_frame() has already been called (restoring FP and LR)
// search the exception handler address of the caller (using the return address)
__ mov(c_rarg0, Rthread);
__ mov(Rexception_pc, LR);
__ mov(c_rarg1, LR);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1);
// Exception oop should be still in Rexception_obj and pc in Rexception_pc
// Jump to handler
__ verify_not_null_oop(Rexception_obj);
// JSR292 extension
restore_sp_for_method_handle(sasm);
__ jump(R0);
}
OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
OopMap* oop_map = save_live_registers(sasm);
// call the runtime patching routine, returns non-zero if nmethod got deopted.
int call_offset = __ call_RT(noreg, noreg, target);
OopMapSet* oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ cmp_32(R0, 0);
#ifdef AARCH64
Label call_deopt;
restore_live_registers_without_return(sasm);
__ b(call_deopt, ne);
__ ret();
__ bind(call_deopt);
#else
restore_live_registers_except_FP_LR(sasm);
__ pop(RegisterSet(FP) | RegisterSet(PC), eq);
// Deoptimization needed
// TODO: ARM - no need to restore FP & LR because unpack_with_reexecution() stores them back
__ pop(RegisterSet(FP) | RegisterSet(LR));
#endif // AARCH64
__ jump(deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type, Rtemp);
DEBUG_ONLY(STOP("generate_patching");) // Should not reach here
return oop_maps;
}
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
const bool must_gc_arguments = true;
const bool dont_gc_arguments = false;
OopMapSet* oop_maps = NULL;
bool save_fpu_registers = HaveVFP;
switch (id) {
case forward_exception_id:
{
oop_maps = generate_handle_exception(id, sasm);
// does not return on ARM
}
break;
#if INCLUDE_ALL_GCS
case g1_pre_barrier_slow_id:
{
// Input:
// - pre_val pushed on the stack
__ set_info("g1_pre_barrier_slow_id", dont_gc_arguments);
// save at least the registers that need saving if the runtime is called
#ifdef AARCH64
__ raw_push(R0, R1);
__ raw_push(R2, R3);
const int nb_saved_regs = 4;
#else // AARCH64
const RegisterSet saved_regs = RegisterSet(R0,R3) | RegisterSet(R12) | RegisterSet(LR);
const int nb_saved_regs = 6;
assert(nb_saved_regs == saved_regs.size(), "fix nb_saved_regs");
__ push(saved_regs);
#endif // AARCH64
const Register r_pre_val_0 = R0; // must be R0, to be ready for the runtime call
const Register r_index_1 = R1;
const Register r_buffer_2 = R2;
Address queue_active(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address queue_index(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
Label done;
Label runtime;
// Is marking still active?
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldrb(R1, queue_active);
__ cbz(R1, done);
__ ldr(r_index_1, queue_index);
__ ldr(r_pre_val_0, Address(SP, nb_saved_regs*wordSize));
__ ldr(r_buffer_2, buffer);
__ subs(r_index_1, r_index_1, wordSize);
__ b(runtime, lt);
__ str(r_index_1, queue_index);
__ str(r_pre_val_0, Address(r_buffer_2, r_index_1));
__ bind(done);
#ifdef AARCH64
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
#else // AARCH64
__ pop(saved_regs);
#endif // AARCH64
__ ret();
__ bind(runtime);
save_live_registers(sasm);
assert(r_pre_val_0 == c_rarg0, "pre_val should be in R0");
__ mov(c_rarg1, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, c_rarg1);
restore_live_registers_without_return(sasm);
__ b(done);
}
break;
case g1_post_barrier_slow_id:
{
// Input:
// - store_addr, pushed on the stack
__ set_info("g1_post_barrier_slow_id", dont_gc_arguments);
BarrierSet* bs = Universe::heap()->barrier_set();
CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
Label done;
Label recheck;
Label runtime;
Address queue_index(Rthread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(Rthread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
// save at least the registers that need saving if the runtime is called
#ifdef AARCH64
__ raw_push(R0, R1);
__ raw_push(R2, R3);
const int nb_saved_regs = 4;
#else // AARCH64
const RegisterSet saved_regs = RegisterSet(R0,R3) | RegisterSet(R12) | RegisterSet(LR);
const int nb_saved_regs = 6;
assert(nb_saved_regs == saved_regs.size(), "fix nb_saved_regs");
__ push(saved_regs);
#endif // AARCH64
const Register r_card_addr_0 = R0; // must be R0 for the slow case
const Register r_obj_0 = R0;
const Register r_card_base_1 = R1;
const Register r_tmp2 = R2;
const Register r_index_2 = R2;
const Register r_buffer_3 = R3;
const Register tmp1 = Rtemp;
__ ldr(r_obj_0, Address(SP, nb_saved_regs*wordSize));
// Note: there is a comment in x86 code about not using
// ExternalAddress / lea, due to relocation not working
// properly for that address. Should be OK for arm, where we
// explicitly specify that 'cardtable' has a relocInfo::none
// type.
__ lea(r_card_base_1, cardtable);
__ add(r_card_addr_0, r_card_base_1, AsmOperand(r_obj_0, lsr, CardTableModRefBS::card_shift));
// first quick check without barrier
__ ldrb(r_tmp2, Address(r_card_addr_0));
__ cmp(r_tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
__ b(recheck, ne);
__ bind(done);
#ifdef AARCH64
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
#else // AARCH64
__ pop(saved_regs);
#endif // AARCH64
__ ret();
__ bind(recheck);
__ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad), tmp1);
// reload card state after the barrier that ensures the stored oop was visible
__ ldrb(r_tmp2, Address(r_card_addr_0));
assert(CardTableModRefBS::dirty_card_val() == 0, "adjust this code");
__ cbz(r_tmp2, done);
// storing region crossing non-NULL, card is clean.
// dirty card and log.
assert(0 == (int)CardTableModRefBS::dirty_card_val(), "adjust this code");
if (((intptr_t)ct->byte_map_base & 0xff) == 0) {
// Card table is aligned so the lowest byte of the table address base is zero.
__ strb(r_card_base_1, Address(r_card_addr_0));
} else {
__ strb(__ zero_register(r_tmp2), Address(r_card_addr_0));
}
__ ldr(r_index_2, queue_index);
__ ldr(r_buffer_3, buffer);
__ subs(r_index_2, r_index_2, wordSize);
__ b(runtime, lt); // go to runtime if now negative
__ str(r_index_2, queue_index);
__ str(r_card_addr_0, Address(r_buffer_3, r_index_2));
__ b(done);
__ bind(runtime);
save_live_registers(sasm);
assert(r_card_addr_0 == c_rarg0, "card_addr should be in R0");
__ mov(c_rarg1, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), c_rarg0, c_rarg1);
restore_live_registers_without_return(sasm);
__ b(done);
}
break;
#endif // INCLUDE_ALL_GCS
case new_instance_id:
case fast_new_instance_id:
case fast_new_instance_init_check_id:
{
const Register result = R0;
const Register klass = R1;
if (UseTLAB && FastTLABRefill && id != new_instance_id) {
// We come here when TLAB allocation failed.
// In this case we either refill TLAB or allocate directly from eden.
Label retry_tlab, try_eden, slow_case, slow_case_no_pop;
// Make sure the class is fully initialized
if (id == fast_new_instance_init_check_id) {
__ ldrb(result, Address(klass, InstanceKlass::init_state_offset()));
__ cmp(result, InstanceKlass::fully_initialized);
__ b(slow_case_no_pop, ne);
}
// Free some temporary registers
const Register obj_size = R4;
const Register tmp1 = R5;
const Register tmp2 = LR;
const Register obj_end = Rtemp;
__ raw_push(R4, R5, LR);
__ tlab_refill(result, obj_size, tmp1, tmp2, obj_end, try_eden, slow_case);
__ bind(retry_tlab);
__ ldr_u32(obj_size, Address(klass, Klass::layout_helper_offset()));
__ tlab_allocate(result, obj_end, tmp1, obj_size, slow_case); // initializes result and obj_end
__ initialize_object(result, obj_end, klass, noreg /* len */, tmp1, tmp2,
instanceOopDesc::header_size() * HeapWordSize, -1,
/* is_tlab_allocated */ true);
__ raw_pop_and_ret(R4, R5);
__ bind(try_eden);
__ ldr_u32(obj_size, Address(klass, Klass::layout_helper_offset()));
__ eden_allocate(result, obj_end, tmp1, tmp2, obj_size, slow_case); // initializes result and obj_end
__ incr_allocated_bytes(obj_size, tmp2);
__ initialize_object(result, obj_end, klass, noreg /* len */, tmp1, tmp2,
instanceOopDesc::header_size() * HeapWordSize, -1,
/* is_tlab_allocated */ false);
__ raw_pop_and_ret(R4, R5);
__ bind(slow_case);
__ raw_pop(R4, R5, LR);
__ bind(slow_case_no_pop);
}
OopMap* map = save_live_registers(sasm);
int call_offset = __ call_RT(result, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
// MacroAssembler::StoreStore useless (included in the runtime exit path)
restore_live_registers_except_R0(sasm);
}
break;
case counter_overflow_id:
{
OopMap* oop_map = save_live_registers(sasm);
__ ldr(R1, Address(SP, arg1_offset));
__ ldr(R2, Address(SP, arg2_offset));
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), R1, R2);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers(sasm);
}
break;
case new_type_array_id:
case new_object_array_id:
{
if (id == new_type_array_id) {
__ set_info("new_type_array", dont_gc_arguments);
} else {
__ set_info("new_object_array", dont_gc_arguments);
}
const Register result = R0;
const Register klass = R1;
const Register length = R2;
if (UseTLAB && FastTLABRefill) {
// We come here when TLAB allocation failed.
// In this case we either refill TLAB or allocate directly from eden.
Label retry_tlab, try_eden, slow_case, slow_case_no_pop;
#ifdef AARCH64
__ mov_slow(Rtemp, C1_MacroAssembler::max_array_allocation_length);
__ cmp_32(length, Rtemp);
#else
__ cmp_32(length, C1_MacroAssembler::max_array_allocation_length);
#endif // AARCH64
__ b(slow_case_no_pop, hs);
// Free some temporary registers
const Register arr_size = R4;
const Register tmp1 = R5;
const Register tmp2 = LR;
const Register tmp3 = Rtemp;
const Register obj_end = tmp3;
__ raw_push(R4, R5, LR);
__ tlab_refill(result, arr_size, tmp1, tmp2, tmp3, try_eden, slow_case);
__ bind(retry_tlab);
// Get the allocation size: round_up((length << (layout_helper & 0xff)) + header_size)
__ ldr_u32(tmp1, Address(klass, Klass::layout_helper_offset()));
__ mov(arr_size, MinObjAlignmentInBytesMask);
__ and_32(tmp2, tmp1, (unsigned int)(Klass::_lh_header_size_mask << Klass::_lh_header_size_shift));
#ifdef AARCH64
__ lslv_w(tmp3, length, tmp1);
__ add(arr_size, arr_size, tmp3);
#else
__ add(arr_size, arr_size, AsmOperand(length, lsl, tmp1));
#endif // AARCH64
__ add(arr_size, arr_size, AsmOperand(tmp2, lsr, Klass::_lh_header_size_shift));
__ align_reg(arr_size, arr_size, MinObjAlignmentInBytes);
// tlab_allocate initializes result and obj_end, and preserves tmp2 which contains header_size
__ tlab_allocate(result, obj_end, tmp1, arr_size, slow_case);
assert_different_registers(result, obj_end, klass, length, tmp1, tmp2);
__ initialize_header(result, klass, length, tmp1);
__ add(tmp2, result, AsmOperand(tmp2, lsr, Klass::_lh_header_size_shift));
if (!ZeroTLAB) {
__ initialize_body(tmp2, obj_end, tmp1);
}
__ membar(MacroAssembler::StoreStore, tmp1);
__ raw_pop_and_ret(R4, R5);
__ bind(try_eden);
// Get the allocation size: round_up((length << (layout_helper & 0xff)) + header_size)
__ ldr_u32(tmp1, Address(klass, Klass::layout_helper_offset()));
__ mov(arr_size, MinObjAlignmentInBytesMask);
__ and_32(tmp2, tmp1, (unsigned int)(Klass::_lh_header_size_mask << Klass::_lh_header_size_shift));
#ifdef AARCH64
__ lslv_w(tmp3, length, tmp1);
__ add(arr_size, arr_size, tmp3);
#else
__ add(arr_size, arr_size, AsmOperand(length, lsl, tmp1));
#endif // AARCH64
__ add(arr_size, arr_size, AsmOperand(tmp2, lsr, Klass::_lh_header_size_shift));
__ align_reg(arr_size, arr_size, MinObjAlignmentInBytes);
// eden_allocate destroys tmp2, so reload header_size after allocation
// eden_allocate initializes result and obj_end
__ eden_allocate(result, obj_end, tmp1, tmp2, arr_size, slow_case);
__ incr_allocated_bytes(arr_size, tmp2);
__ ldrb(tmp2, Address(klass, in_bytes(Klass::layout_helper_offset()) +
Klass::_lh_header_size_shift / BitsPerByte));
__ initialize_object(result, obj_end, klass, length, tmp1, tmp2, tmp2, -1, /* is_tlab_allocated */ false);
__ raw_pop_and_ret(R4, R5);
__ bind(slow_case);
__ raw_pop(R4, R5, LR);
__ bind(slow_case_no_pop);
}
OopMap* map = save_live_registers(sasm);
int call_offset;
if (id == new_type_array_id) {
call_offset = __ call_RT(result, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
} else {
call_offset = __ call_RT(result, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
}
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
// MacroAssembler::StoreStore useless (included in the runtime exit path)
restore_live_registers_except_R0(sasm);
}
break;
case new_multi_array_id:
{
__ set_info("new_multi_array", dont_gc_arguments);
// R0: klass
// R2: rank
// SP: address of 1st dimension
const Register result = R0;
OopMap* map = save_live_registers(sasm);
__ mov(R1, R0);
__ add(R3, SP, arg1_offset);
int call_offset = __ call_RT(result, noreg, CAST_FROM_FN_PTR(address, new_multi_array), R1, R2, R3);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
// MacroAssembler::StoreStore useless (included in the runtime exit path)
restore_live_registers_except_R0(sasm);
}
break;
case register_finalizer_id:
{
__ set_info("register_finalizer", dont_gc_arguments);
// Do not call runtime if JVM_ACC_HAS_FINALIZER flag is not set
__ load_klass(Rtemp, R0);
__ ldr_u32(Rtemp, Address(Rtemp, Klass::access_flags_offset()));
#ifdef AARCH64
Label L;
__ tbnz(Rtemp, exact_log2(JVM_ACC_HAS_FINALIZER), L);
__ ret();
__ bind(L);
#else
__ tst(Rtemp, JVM_ACC_HAS_FINALIZER);
__ bx(LR, eq);
#endif // AARCH64
// Call VM
OopMap* map = save_live_registers(sasm);
oop_maps = new OopMapSet();
int call_offset = __ call_RT(noreg, noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), R0);
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
}
break;
case throw_range_check_failed_id:
{
__ set_info("range_check_failed", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
}
break;
case throw_index_exception_id:
{
__ set_info("index_range_check_failed", dont_gc_arguments);
#ifdef AARCH64
__ NOT_TESTED();
#endif
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
case throw_div0_exception_id:
{
__ set_info("throw_div0_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
}
break;
case throw_null_pointer_exception_id:
{
__ set_info("throw_null_pointer_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
}
break;
case handle_exception_nofpu_id:
case handle_exception_id:
{
__ set_info("handle_exception", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case handle_exception_from_callee_id:
{
__ set_info("handle_exception_from_callee", dont_gc_arguments);
oop_maps = generate_handle_exception(id, sasm);
}
break;
case unwind_exception_id:
{
__ set_info("unwind_exception", dont_gc_arguments);
generate_unwind_exception(sasm);
}
break;
case throw_array_store_exception_id:
{
__ set_info("throw_array_store_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
}
break;
case throw_class_cast_exception_id:
{
__ set_info("throw_class_cast_exception", dont_gc_arguments);
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
}
break;
case throw_incompatible_class_change_error_id:
{
__ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments);
#ifdef AARCH64
__ NOT_TESTED();
#endif
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
case slow_subtype_check_id:
{
// (in) R0 - sub, destroyed,
// (in) R1 - super, not changed
// (out) R0 - result: 1 if check passed, 0 otherwise
__ raw_push(R2, R3, LR);
// Load an array of secondary_supers
__ ldr(R2, Address(R0, Klass::secondary_supers_offset()));
// Length goes to R3
__ ldr_s32(R3, Address(R2, Array<Klass*>::length_offset_in_bytes()));
__ add(R2, R2, Array<Klass*>::base_offset_in_bytes());
Label loop, miss;
__ bind(loop);
__ cbz(R3, miss);
__ ldr(LR, Address(R2, wordSize, post_indexed));
__ sub(R3, R3, 1);
__ cmp(LR, R1);
__ b(loop, ne);
// We get here if an equal cache entry is found
__ str(R1, Address(R0, Klass::secondary_super_cache_offset()));
__ mov(R0, 1);
__ raw_pop_and_ret(R2, R3);
// A cache entry not found - return false
__ bind(miss);
__ mov(R0, 0);
__ raw_pop_and_ret(R2, R3);
}
break;
case monitorenter_nofpu_id:
save_fpu_registers = false;
// fall through
case monitorenter_id:
{
__ set_info("monitorenter", dont_gc_arguments);
const Register obj = R1;
const Register lock = R2;
OopMap* map = save_live_registers(sasm, save_fpu_registers);
__ ldr(obj, Address(SP, arg1_offset));
__ ldr(lock, Address(SP, arg2_offset));
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), obj, lock);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case monitorexit_nofpu_id:
save_fpu_registers = false;
// fall through
case monitorexit_id:
{
__ set_info("monitorexit", dont_gc_arguments);
const Register lock = R1;
OopMap* map = save_live_registers(sasm, save_fpu_registers);
__ ldr(lock, Address(SP, arg1_offset));
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), lock);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm, save_fpu_registers);
}
break;
case deoptimize_id:
{
__ set_info("deoptimize", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
const Register trap_request = R1;
__ ldr(trap_request, Address(SP, arg1_offset));
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), trap_request);
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers_without_return(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ jump(deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type, AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg));
}
break;
case access_field_patching_id:
{
__ set_info("access_field_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
}
break;
case load_klass_patching_id:
{
__ set_info("load_klass_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
}
break;
case load_appendix_patching_id:
{
__ set_info("load_appendix_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case load_mirror_patching_id:
{
__ set_info("load_mirror_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
}
break;
case predicate_failed_trap_id:
{
__ set_info("predicate_failed_trap", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
restore_live_registers_without_return(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ jump(deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type, Rtemp);
}
break;
default:
{
__ set_info("unimplemented entry", dont_gc_arguments);
STOP("unimplemented entry");
}
break;
}
return oop_maps;
}
#undef __
#ifdef __SOFTFP__
const char *Runtime1::pd_name_for_address(address entry) {
#define FUNCTION_CASE(a, f) \
if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
FUNCTION_CASE(entry, __aeabi_fadd_glibc);
FUNCTION_CASE(entry, __aeabi_fmul);
FUNCTION_CASE(entry, __aeabi_fsub_glibc);
FUNCTION_CASE(entry, __aeabi_fdiv);
// __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
FUNCTION_CASE(entry, __aeabi_dadd_glibc);
FUNCTION_CASE(entry, __aeabi_dmul);
FUNCTION_CASE(entry, __aeabi_dsub_glibc);
FUNCTION_CASE(entry, __aeabi_ddiv);
FUNCTION_CASE(entry, __aeabi_f2d);
FUNCTION_CASE(entry, __aeabi_d2f);
FUNCTION_CASE(entry, __aeabi_i2f);
FUNCTION_CASE(entry, __aeabi_i2d);
FUNCTION_CASE(entry, __aeabi_f2iz);
FUNCTION_CASE(entry, SharedRuntime::fcmpl);
FUNCTION_CASE(entry, SharedRuntime::fcmpg);
FUNCTION_CASE(entry, SharedRuntime::dcmpl);
FUNCTION_CASE(entry, SharedRuntime::dcmpg);
FUNCTION_CASE(entry, SharedRuntime::unordered_fcmplt);
FUNCTION_CASE(entry, SharedRuntime::unordered_dcmplt);
FUNCTION_CASE(entry, SharedRuntime::unordered_fcmple);
FUNCTION_CASE(entry, SharedRuntime::unordered_dcmple);
FUNCTION_CASE(entry, SharedRuntime::unordered_fcmpge);
FUNCTION_CASE(entry, SharedRuntime::unordered_dcmpge);
FUNCTION_CASE(entry, SharedRuntime::unordered_fcmpgt);
FUNCTION_CASE(entry, SharedRuntime::unordered_dcmpgt);
FUNCTION_CASE(entry, SharedRuntime::fneg);
FUNCTION_CASE(entry, SharedRuntime::dneg);
FUNCTION_CASE(entry, __aeabi_fcmpeq);
FUNCTION_CASE(entry, __aeabi_fcmplt);
FUNCTION_CASE(entry, __aeabi_fcmple);
FUNCTION_CASE(entry, __aeabi_fcmpge);
FUNCTION_CASE(entry, __aeabi_fcmpgt);
FUNCTION_CASE(entry, __aeabi_dcmpeq);
FUNCTION_CASE(entry, __aeabi_dcmplt);
FUNCTION_CASE(entry, __aeabi_dcmple);
FUNCTION_CASE(entry, __aeabi_dcmpge);
FUNCTION_CASE(entry, __aeabi_dcmpgt);
#undef FUNCTION_CASE
return "";
}
#else // __SOFTFP__
const char *Runtime1::pd_name_for_address(address entry) {
return "<unknown function>";
}
#endif // __SOFTFP__