8193460: Take tools/launcher/TestXcheckJNIWarnings.java back off the ProblemList
Reviewed-by: mchung, psandoz
/*
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_ARM_VM_ASSEMBLER_ARM_32_HPP
#define CPU_ARM_VM_ASSEMBLER_ARM_32_HPP
// ARM Addressing Mode 1 - Data processing operands
class AsmOperand VALUE_OBJ_CLASS_SPEC {
private:
int _encoding;
void initialize_rotated_imm(unsigned int imm);
void encode(int imm_8) {
if ((imm_8 >> 8) == 0) {
_encoding = 1 << 25 | imm_8; // the most common case
} else {
initialize_rotated_imm((unsigned int)imm_8); // slow case
}
}
void encode(Register rm, AsmShift shift, int shift_imm) {
assert((shift_imm >> 5) == 0, "encoding constraint");
_encoding = shift_imm << 7 | shift << 5 | rm->encoding();
}
public:
AsmOperand(Register reg) {
_encoding = reg->encoding();
}
AsmOperand(int imm_8) {
encode(imm_8);
}
#ifdef ASSERT
AsmOperand(ByteSize bytesize_8) {
const int imm_8 = in_bytes(bytesize_8);
encode(imm_8);
}
#endif // ASSERT
AsmOperand(Register rm, AsmShift shift, int shift_imm) {
encode(rm,shift,shift_imm);
}
AsmOperand(Register rm, AsmShift shift, Register rs) {
assert(rm != PC && rs != PC, "unpredictable instruction");
_encoding = rs->encoding() << 8 | shift << 5 | 1 << 4 | rm->encoding();
}
AsmOperand(RegisterOrConstant offset, AsmShift shift = lsl, int shift_imm = 0) {
if (offset.is_register()) {
encode(offset.as_register(), shift, shift_imm);
} else {
assert(shift == lsl,"shift type not yet encoded");
int imm_8 = ((int)offset.as_constant()) << shift_imm;
encode(imm_8);
}
}
int encoding() const {
return _encoding;
}
bool is_immediate() const {
return _encoding & (1 << 25) ? true : false;
}
Register base_register() const {
assert(!is_immediate(), "is_immediate, no base reg");
return as_Register(_encoding & 15);
}
static bool is_rotated_imm(unsigned int imm);
};
// ARM Addressing Mode 4 - Load and store multiple
class RegisterSet VALUE_OBJ_CLASS_SPEC {
private:
int _encoding;
RegisterSet(int encoding) {
_encoding = encoding;
}
public:
RegisterSet(Register reg) {
_encoding = 1 << reg->encoding();
}
RegisterSet() {
_encoding = 0;
}
RegisterSet(Register first, Register last) {
assert(first < last, "encoding constraint");
_encoding = (1 << (last->encoding() + 1)) - (1 << first->encoding());
}
friend RegisterSet operator | (const RegisterSet set1, const RegisterSet set2) {
assert((set1._encoding & set2._encoding) == 0,
"encoding constraint");
return RegisterSet(set1._encoding | set2._encoding);
}
int encoding() const {
return _encoding;
}
bool contains(Register reg) const {
return (_encoding & (1 << reg->encoding())) != 0;
}
// number of registers in the set
int size() const {
int count = 0;
unsigned int remaining = (unsigned int) _encoding;
while (remaining != 0) {
if ((remaining & 1) != 0) count++;
remaining >>= 1;
}
return count;
}
};
#if R9_IS_SCRATCHED
#define R9ifScratched RegisterSet(R9)
#else
#define R9ifScratched RegisterSet()
#endif
// ARM Addressing Mode 5 - Load and store multiple VFP registers
class FloatRegisterSet VALUE_OBJ_CLASS_SPEC {
private:
int _encoding;
public:
FloatRegisterSet(FloatRegister reg) {
if (reg->hi_bit() == 0) {
_encoding = reg->hi_bits() << 12 | reg->lo_bit() << 22 | 1;
} else {
assert (reg->lo_bit() == 0, "impossible encoding");
_encoding = reg->hi_bits() << 12 | reg->hi_bit() << 22 | 1;
}
}
FloatRegisterSet(FloatRegister first, int count) {
assert(count >= 1, "encoding constraint");
if (first->hi_bit() == 0) {
_encoding = first->hi_bits() << 12 | first->lo_bit() << 22 | count;
} else {
assert (first->lo_bit() == 0, "impossible encoding");
_encoding = first->hi_bits() << 12 | first->hi_bit() << 22 | count;
}
}
int encoding_s() const {
return _encoding;
}
int encoding_d() const {
assert((_encoding & 0xFF) <= 16, "no more than 16 double registers" );
return (_encoding & 0xFFFFFF00) | ((_encoding & 0xFF) << 1);
}
};
class Assembler : public AbstractAssembler {
public:
static const int LogInstructionSize = 2;
static const int InstructionSize = 1 << LogInstructionSize;
static inline AsmCondition inverse(AsmCondition cond) {
assert ((cond != al) && (cond != nv), "AL and NV conditions cannot be inversed");
return (AsmCondition)((int)cond ^ 1);
}
// Returns true if given value can be used as immediate in arithmetic (add/sub/cmp/cmn) instructions.
static inline bool is_arith_imm_in_range(intx value) {
return AsmOperand::is_rotated_imm(value);
}
// Arithmetic instructions
#define F(mnemonic, opcode) \
void mnemonic(Register rd, Register rn, AsmOperand operand, AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | rn->encoding() << 16 | \
rd->encoding() << 12 | operand.encoding()); \
} \
void mnemonic##s(Register rd, Register rn, AsmOperand operand, AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rn->encoding() << 16 | \
rd->encoding() << 12 | operand.encoding()); \
}
F(andr, 0)
F(eor, 1)
F(sub, 2)
F(rsb, 3)
F(add, 4)
F(adc, 5)
F(sbc, 6)
F(rsc, 7)
F(orr, 12)
F(bic, 14)
#undef F
#define F(mnemonic, opcode) \
void mnemonic(Register rn, AsmOperand operand, AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rn->encoding() << 16 | \
operand.encoding()); \
}
F(tst, 8)
F(teq, 9)
F(cmp, 10)
F(cmn, 11)
#undef F
#define F(mnemonic, opcode) \
void mnemonic(Register rd, AsmOperand operand, AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | rd->encoding() << 12 | \
operand.encoding()); \
} \
void mnemonic##s(Register rd, AsmOperand operand, AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rd->encoding() << 12 | \
operand.encoding()); \
}
F(mov, 13)
F(mvn, 15)
#undef F
void msr(uint fields, AsmOperand operand, AsmCondition cond = al) {
assert((operand.encoding() & (1<<25)) || ((operand.encoding() & 0xff0) == 0), "invalid addressing mode");
emit_int32(cond << 28 | 1 << 24 | 1 << 21 | fields << 16 | 0xf << 12 | operand.encoding());
}
void mrs(uint fields, Register Rd, AsmCondition cond = al) {
emit_int32(cond << 28 | 1 << 24 | (fields|0xf) << 16 | (Rd->encoding() << 12));
}
enum {
CPSR = 0x00, CPSR_c = 0x01, CPSR_x = 0x02, CPSR_xc = 0x03,
CPSR_s = 0x004, CPSR_sc = 0x05, CPSR_sx = 0x06, CPSR_sxc = 0x07,
CPSR_f = 0x08, CPSR_fc = 0x09, CPSR_fx = 0x0a, CPSR_fxc = 0x0b,
CPSR_fs = 0x0c, CPSR_fsc = 0x0d, CPSR_fsx = 0x0e, CPSR_fsxc = 0x0f,
SPSR = 0x40, SPSR_c = 0x41, SPSR_x = 0x42, SPSR_xc = 0x43,
SPSR_s = 0x44, SPSR_sc = 0x45, SPSR_sx = 0x46, SPSR_sxc = 0x47,
SPSR_f = 0x48, SPSR_fc = 0x49, SPSR_fx = 0x4a, SPSR_fxc = 0x4b,
SPSR_fs = 0x4c, SPSR_fsc = 0x4d, SPSR_fsx = 0x4e, SPSR_fsxc = 0x4f
};
#define F(mnemonic, opcode) \
void mnemonic(Register rdlo, Register rdhi, Register rm, Register rs, \
AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | rdhi->encoding() << 16 | \
rdlo->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding()); \
} \
void mnemonic##s(Register rdlo, Register rdhi, Register rm, Register rs, \
AsmCondition cond = al) { \
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rdhi->encoding() << 16 | \
rdlo->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding()); \
}
F(umull, 4)
F(umlal, 5)
F(smull, 6)
F(smlal, 7)
#undef F
void mul(Register rd, Register rm, Register rs, AsmCondition cond = al) {
emit_int32(cond << 28 | rd->encoding() << 16 |
rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
}
void muls(Register rd, Register rm, Register rs, AsmCondition cond = al) {
emit_int32(cond << 28 | 1 << 20 | rd->encoding() << 16 |
rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
}
void mla(Register rd, Register rm, Register rs, Register rn, AsmCondition cond = al) {
emit_int32(cond << 28 | 1 << 21 | rd->encoding() << 16 |
rn->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
}
void mlas(Register rd, Register rm, Register rs, Register rn, AsmCondition cond = al) {
emit_int32(cond << 28 | 1 << 21 | 1 << 20 | rd->encoding() << 16 |
rn->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
}
// Loads and stores
#define F(mnemonic, l, b) \
void mnemonic(Register rd, Address addr, AsmCondition cond = al) { \
emit_int32(cond << 28 | 1 << 26 | b << 22 | l << 20 | \
rd->encoding() << 12 | addr.encoding2()); \
}
F(ldr, 1, 0)
F(ldrb, 1, 1)
F(str, 0, 0)
F(strb, 0, 1)
#undef F
#undef F
#define F(mnemonic, l, sh, even) \
void mnemonic(Register rd, Address addr, AsmCondition cond = al) { \
assert(!even || (rd->encoding() & 1) == 0, "must be even"); \
emit_int32(cond << 28 | l << 20 | rd->encoding() << 12 | \
1 << 7 | sh << 5 | 1 << 4 | addr.encoding3()); \
}
F(strh, 0, 1, false)
F(ldrh, 1, 1, false)
F(ldrsb, 1, 2, false)
F(ldrsh, 1, 3, false)
F(strd, 0, 3, true)
#undef F
void ldrd(Register rd, Address addr, AsmCondition cond = al) {
assert((rd->encoding() & 1) == 0, "must be even");
assert(!addr.index()->is_valid() ||
(addr.index()->encoding() != rd->encoding() &&
addr.index()->encoding() != (rd->encoding()+1)), "encoding constraint");
emit_int32(cond << 28 | rd->encoding() << 12 | 0xD /* 0b1101 */ << 4 | addr.encoding3());
}
#define F(mnemonic, l, pu) \
void mnemonic(Register rn, RegisterSet reg_set, \
AsmWriteback w = no_writeback, AsmCondition cond = al) { \
assert(reg_set.encoding() != 0 && (w == no_writeback || \
(reg_set.encoding() & (1 << rn->encoding())) == 0), \
"unpredictable instruction"); \
emit_int32(cond << 28 | 4 << 25 | pu << 23 | w << 21 | l << 20 | \
rn->encoding() << 16 | reg_set.encoding()); \
}
F(ldmda, 1, 0) F(ldmfa, 1, 0)
F(ldmia, 1, 1) F(ldmfd, 1, 1)
F(ldmdb, 1, 2) F(ldmea, 1, 2)
F(ldmib, 1, 3) F(ldmed, 1, 3)
F(stmda, 0, 0) F(stmed, 0, 0)
F(stmia, 0, 1) F(stmea, 0, 1)
F(stmdb, 0, 2) F(stmfd, 0, 2)
F(stmib, 0, 3) F(stmfa, 0, 3)
#undef F
void ldrex(Register rd, Address addr, AsmCondition cond = al) {
assert(rd != PC, "unpredictable instruction");
emit_int32(cond << 28 | 0x19 << 20 | addr.encoding_ex() |
rd->encoding() << 12 | 0xf9f);
}
void strex(Register rs, Register rd, Address addr, AsmCondition cond = al) {
assert(rd != PC && rs != PC &&
rs != rd && rs != addr.base(), "unpredictable instruction");
emit_int32(cond << 28 | 0x18 << 20 | addr.encoding_ex() |
rs->encoding() << 12 | 0xf90 | rd->encoding());
}
void ldrexd(Register rd, Address addr, AsmCondition cond = al) {
assert(rd != PC, "unpredictable instruction");
emit_int32(cond << 28 | 0x1B << 20 | addr.encoding_ex() |
rd->encoding() << 12 | 0xf9f);
}
void strexd(Register rs, Register rd, Address addr, AsmCondition cond = al) {
assert(rd != PC && rs != PC &&
rs != rd && rs != addr.base(), "unpredictable instruction");
emit_int32(cond << 28 | 0x1A << 20 | addr.encoding_ex() |
rs->encoding() << 12 | 0xf90 | rd->encoding());
}
void clrex() {
emit_int32(0xF << 28 | 0x57 << 20 | 0xFF << 12 | 0x01f);
}
// Miscellaneous instructions
void clz(Register rd, Register rm, AsmCondition cond = al) {
emit_int32(cond << 28 | 0x016f0f10 | rd->encoding() << 12 | rm->encoding());
}
void rev(Register rd, Register rm, AsmCondition cond = al) {
emit_int32(cond << 28 | 0x06bf0f30 | rd->encoding() << 12 | rm->encoding());
}
void rev16(Register rd, Register rm, AsmCondition cond = al) {
emit_int32(cond << 28 | 0x6bf0fb0 | rd->encoding() << 12 | rm->encoding());
}
void revsh(Register rd, Register rm, AsmCondition cond = al) {
emit_int32(cond << 28 | 0x6ff0fb0 | rd->encoding() << 12 | rm->encoding());
}
void rbit(Register rd, Register rm, AsmCondition cond = al) {
emit_int32(cond << 28 | 0x6ff0f30 | rd->encoding() << 12 | rm->encoding());
}
void pld(Address addr) {
emit_int32(0xf550f000 | addr.encoding2());
}
void pldw(Address addr) {
assert(VM_Version::arm_arch() >= 7 && os::is_MP(), "no pldw on this processor");
emit_int32(0xf510f000 | addr.encoding2());
}
void svc(int imm_24, AsmCondition cond = al) {
assert((imm_24 >> 24) == 0, "encoding constraint");
emit_int32(cond << 28 | 0xf << 24 | imm_24);
}
void ubfx(Register rd, Register rn, unsigned int lsb, unsigned int width, AsmCondition cond = al) {
assert(VM_Version::arm_arch() >= 7, "no ubfx on this processor");
assert(width > 0, "must be");
assert(lsb < 32, "must be");
emit_int32(cond << 28 | 0x3f << 21 | (width - 1) << 16 | rd->encoding() << 12 |
lsb << 7 | 0x5 << 4 | rn->encoding());
}
void uxtb(Register rd, Register rm, unsigned int rotation = 0, AsmCondition cond = al) {
assert(VM_Version::arm_arch() >= 7, "no uxtb on this processor");
assert((rotation % 8) == 0 && (rotation <= 24), "encoding constraint");
emit_int32(cond << 28 | 0x6e << 20 | 0xf << 16 | rd->encoding() << 12 |
(rotation >> 3) << 10 | 0x7 << 4 | rm->encoding());
}
// ARM Memory Barriers
//
// There are two types of memory barriers defined for the ARM processor
// DataSynchronizationBarrier and DataMemoryBarrier
//
// The Linux kernel uses the DataMemoryBarrier for all of it's
// memory barrier operations (smp_mb, smp_rmb, smp_wmb)
//
// There are two forms of each barrier instruction.
// The mcr forms are supported on armv5 and newer architectures
//
// The dmb, dsb instructions were added in armv7
// architectures and are compatible with their mcr
// predecessors.
//
// Here are the encodings for future reference:
//
// DataSynchronizationBarrier (dsb)
// on ARMv7 - emit_int32(0xF57FF04F)
//
// on ARMv5+ - mcr p15, 0, Rtmp, c7, c10, 4 on earlier processors
// emit_int32(0xe << 28 | 0xe << 24 | 0x7 << 16 | Rtmp->encoding() << 12 |
// 0xf << 8 | 0x9 << 4 | 0xa);
//
// DataMemoryBarrier (dmb)
// on ARMv7 - emit_int32(0xF57FF05F)
//
// on ARMv5+ - mcr p15, 0, Rtmp, c7, c10, 5 on earlier processors
// emit_int32(0xe << 28 | 0xe << 24 | 0x7 << 16 | Rtmp->encoding() << 12 |
// 0xf << 8 | 0xb << 4 | 0xa);
//
enum DMB_Opt {
DMB_all = 0xf,
DMB_st = 0xe,
};
void dmb(DMB_Opt opt, Register reg) {
if (VM_Version::arm_arch() >= 7) {
emit_int32(0xF57FF050 | opt);
} else {
bool preserve_tmp = (reg == noreg);
if(preserve_tmp) {
reg = Rtemp;
str(reg, Address(SP, -wordSize, pre_indexed));
}
mov(reg, 0);
// DataMemoryBarrier
emit_int32(0xe << 28 |
0xe << 24 |
0x7 << 16 |
reg->encoding() << 12 |
0xf << 8 |
0xb << 4 |
0xa);
if(preserve_tmp) {
ldr(reg, Address(SP, wordSize, post_indexed));
}
}
}
void dsb(Register reg) {
if (VM_Version::arm_arch() >= 7) {
emit_int32(0xF57FF04F);
} else {
bool preserve_tmp = (reg == noreg);
if(preserve_tmp) {
reg = Rtemp;
str(reg, Address(SP, -wordSize, pre_indexed));
}
mov(reg, 0);
// DataSynchronizationBarrier
emit_int32(0xe << 28 |
0xe << 24 |
0x7 << 16 |
reg->encoding() << 12 |
0xf << 8 |
0x9 << 4 |
0xa);
if(preserve_tmp) {
ldr(reg, Address(SP, wordSize, post_indexed));
}
}
}
#define F(mnemonic, b) \
void mnemonic(Register rd, Register rm, Register rn, AsmCondition cond = al) { \
assert(rn != rm && rn != rd, "unpredictable instruction"); \
emit_int32(cond << 28 | 0x2 << 23 | b << 22 | rn->encoding() << 16 | \
rd->encoding() << 12 | 9 << 4 | rm->encoding()); \
}
F(swp, 0)
F(swpb, 1)
#undef F
// Branches
#define F(mnemonic, l) \
void mnemonic(Register rm, AsmCondition cond = al) { \
emit_int32(cond << 28 | 0x012fff10 | l << 5 | rm->encoding()); \
}
F(bx, 0)
F(blx, 1)
#undef F
#define F(mnemonic, l) \
void mnemonic(address target, AsmCondition cond = al) { \
unsigned int offset = (unsigned int)(target - pc() - 8); \
assert((offset & 3) == 0, "bad alignment"); \
assert((offset >> 25) == 0 || ((int)offset >> 25) == -1, "offset is too large"); \
emit_int32(cond << 28 | l << 24 | offset << 6 >> 8); \
}
F(b, 0xa)
F(bl, 0xb)
#undef F
void udf(int imm_16) {
assert((imm_16 >> 16) == 0, "encoding constraint");
emit_int32(0xe7f000f0 | (imm_16 & 0xfff0) << 8 | (imm_16 & 0xf));
}
// ARMv7 instructions
#define F(mnemonic, wt) \
void mnemonic(Register rd, int imm_16, AsmCondition cond = al) { \
assert((imm_16 >> 16) == 0, "encoding constraint"); \
emit_int32(cond << 28 | wt << 20 | rd->encoding() << 12 | \
(imm_16 & 0xf000) << 4 | (imm_16 & 0xfff)); \
}
F(movw, 0x30)
F(movt, 0x34)
#undef F
// VFP Support
// Checks that VFP instructions are not used in SOFTFP mode.
#ifdef __SOFTFP__
#define CHECK_VFP_PRESENT ShouldNotReachHere()
#else
#define CHECK_VFP_PRESENT
#endif // __SOFTFP__
static const int single_cp_num = 0xa00;
static const int double_cp_num = 0xb00;
// Bits P, Q, R, S collectively form the opcode
#define F(mnemonic, P, Q, R, S) \
void mnemonic##d(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fn->lo_bit() == 0 && fd->lo_bit() == 0 && fm->lo_bit() == 0, "single precision register?"); \
emit_int32(cond << 28 | 0x7 << 25 | double_cp_num | \
P << 23 | Q << 21 | R << 20 | S << 6 | \
fn->hi_bits() << 16 | fn->hi_bit() << 7 | \
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
fm->hi_bits() | fm->hi_bit() << 5); \
} \
void mnemonic##s(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
AsmCondition cond = al) { \
assert(fn->hi_bit() == 0 && fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
CHECK_VFP_PRESENT; \
emit_int32(cond << 28 | 0x7 << 25 | single_cp_num | \
P << 23 | Q << 21 | R << 20 | S << 6 | \
fn->hi_bits() << 16 | fn->lo_bit() << 7 | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
fm->hi_bits() | fm->lo_bit() << 5); \
}
F(fmac, 0, 0, 0, 0) // Fd = Fd + (Fn * Fm)
F(fnmac, 0, 0, 0, 1) // Fd = Fd - (Fn * Fm)
F(fmsc, 0, 0, 1, 0) // Fd = -Fd + (Fn * Fm)
F(fnmsc, 0, 0, 1, 1) // Fd = -Fd - (Fn * Fm)
F(fmul, 0, 1, 0, 0) // Fd = Fn * Fm
F(fnmul, 0, 1, 0, 1) // Fd = -(Fn * Fm)
F(fadd, 0, 1, 1, 0) // Fd = Fn + Fm
F(fsub, 0, 1, 1, 1) // Fd = Fn - Fm
F(fdiv, 1, 0, 0, 0) // Fd = Fn / Fm
#undef F
enum VElem_Size {
VELEM_SIZE_8 = 0x00,
VELEM_SIZE_16 = 0x01,
VELEM_SIZE_32 = 0x02,
VELEM_SIZE_64 = 0x03
};
enum VLD_Type {
VLD1_TYPE_1_REG = 0x7 /* 0b0111 */,
VLD1_TYPE_2_REGS = 0xA /* 0b1010 */,
VLD1_TYPE_3_REGS = 0x6 /* 0b0110 */,
VLD1_TYPE_4_REGS = 0x2 /* 0b0010 */
};
enum VFloat_Arith_Size {
VFA_SIZE_F32 = 0x0 /* 0b0 */,
};
// Bits P, Q, R, S collectively form the opcode
#define F(mnemonic, P, Q, R, S) \
void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
int size, int quad) { \
CHECK_VFP_PRESENT; \
assert(VM_Version::has_simd(), "simd instruction"); \
assert(fn->lo_bit() == 0 && fd->lo_bit() == 0 && fm->lo_bit() == 0, \
"single precision register?"); \
assert(!quad || ((fn->hi_bits() | fd->hi_bits() | fm->hi_bits()) & 1) == 0, \
"quad precision register?"); \
emit_int32(0xf << 28 | P << 23 | Q << 8 | R << 4 | \
S << 21 | size << 20 | quad << 6 | \
fn->hi_bits() << 16 | fn->hi_bit() << 7 | \
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
fm->hi_bits() | fm->hi_bit() << 5); \
}
F(vmulI, 0x4 /* 0b0100 */, 0x9 /* 0b1001 */, 1, 0) // Vd = Vn * Vm (int)
F(vaddI, 0x4 /* 0b0100 */, 0x8 /* 0b1000 */, 0, 0) // Vd = Vn + Vm (int)
F(vsubI, 0x6 /* 0b0110 */, 0x8 /* 0b1000 */, 0, 0) // Vd = Vn - Vm (int)
F(vaddF, 0x4 /* 0b0100 */, 0xD /* 0b1101 */, 0, 0) // Vd = Vn + Vm (float)
F(vsubF, 0x4 /* 0b0100 */, 0xD /* 0b1101 */, 0, 1) // Vd = Vn - Vm (float)
F(vmulF, 0x6 /* 0b0110 */, 0xD /* 0b1101 */, 1, 0) // Vd = Vn * Vm (float)
F(vshlSI, 0x4 /* 0b0100 */, 0x4 /* 0b0100 */, 0, 0) // Vd = ashift(Vm,Vn) (int)
F(vshlUI, 0x6 /* 0b0110 */, 0x4 /* 0b0100 */, 0, 0) // Vd = lshift(Vm,Vn) (int)
F(_vandI, 0x4 /* 0b0100 */, 0x1 /* 0b0001 */, 1, 0) // Vd = Vn & Vm (int)
F(_vorI, 0x4 /* 0b0100 */, 0x1 /* 0b0001 */, 1, 1) // Vd = Vn | Vm (int)
F(_vxorI, 0x6 /* 0b0110 */, 0x1 /* 0b0001 */, 1, 0) // Vd = Vn ^ Vm (int)
#undef F
void vandI(FloatRegister fd, FloatRegister fn, FloatRegister fm, int quad) {
_vandI(fd, fn, fm, 0, quad);
}
void vorI(FloatRegister fd, FloatRegister fn, FloatRegister fm, int quad) {
_vorI(fd, fn, fm, 0, quad);
}
void vxorI(FloatRegister fd, FloatRegister fn, FloatRegister fm, int quad) {
_vxorI(fd, fn, fm, 0, quad);
}
void vneg(FloatRegister fd, FloatRegister fm, int size, int flt, int quad) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0,
"single precision register?");
assert(!quad || ((fd->hi_bits() | fm->hi_bits()) & 1) == 0,
"quad precision register?");
emit_int32(0xf << 28 | 0x3B /* 0b00111011 */ << 20 | 0x1 /* 0b01 */ << 16 | 0x7 /* 0b111 */ << 7 |
size << 18 | quad << 6 | flt << 10 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 |
fm->hi_bits() << 0 | fm->hi_bit() << 5);
}
void vnegI(FloatRegister fd, FloatRegister fm, int size, int quad) {
int flt = 0;
vneg(fd, fm, size, flt, quad);
}
void vshli(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0,
"single precision register?");
assert(!quad || ((fd->hi_bits() | fm->hi_bits()) & 1) == 0,
"quad precision register?");
if (imm >= size) {
// maximum shift gives all zeroes, direction doesn't matter,
// but only available for shift right
vshri(fd, fm, size, size, true /* unsigned */, quad);
return;
}
assert(imm >= 0 && imm < size, "out of range");
int imm6 = 0;
int L = 0;
switch (size) {
case 8:
case 16:
case 32:
imm6 = size + imm ;
break;
case 64:
L = 1;
imm6 = imm ;
break;
default:
ShouldNotReachHere();
}
emit_int32(0xf << 28 | 0x5 /* 0b00101 */ << 23 | 0x51 /* 0b01010001 */ << 4 |
imm6 << 16 | L << 7 | quad << 6 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 |
fm->hi_bits() << 0 | fm->hi_bit() << 5);
}
void vshri(FloatRegister fd, FloatRegister fm, int size, int imm,
bool U /* unsigned */, int quad) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0,
"single precision register?");
assert(!quad || ((fd->hi_bits() | fm->hi_bits()) & 1) == 0,
"quad precision register?");
assert(imm > 0, "out of range");
if (imm >= size) {
// maximum shift (all zeroes)
imm = size;
}
int imm6 = 0;
int L = 0;
switch (size) {
case 8:
case 16:
case 32:
imm6 = 2 * size - imm ;
break;
case 64:
L = 1;
imm6 = 64 - imm ;
break;
default:
ShouldNotReachHere();
}
emit_int32(0xf << 28 | 0x5 /* 0b00101 */ << 23 | 0x1 /* 0b00000001 */ << 4 |
imm6 << 16 | L << 7 | quad << 6 | U << 24 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 |
fm->hi_bits() << 0 | fm->hi_bit() << 5);
}
void vshrUI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
vshri(fd, fm, size, imm, true /* unsigned */, quad);
}
void vshrSI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
vshri(fd, fm, size, imm, false /* signed */, quad);
}
// Extension opcodes where P,Q,R,S = 1 opcode is in Fn
#define F(mnemonic, N, opcode) \
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->lo_bit() == 0 && fm->hi_bit() == 0, "incorrect register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
double_cp_num | \
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
fm->hi_bits() | fm->lo_bit() << 5); \
} \
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
single_cp_num | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
fm->hi_bits() | fm->lo_bit() << 5); \
}
F(fuito, 0, 0x8) // Unsigned integer to floating point conversion
F(fsito, 1, 0x8) // Signed integer to floating point conversion
#undef F
#define F(mnemonic, N, opcode) \
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0 && fm->lo_bit() == 0, "incorrect register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
double_cp_num | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
fm->hi_bits() | fm->hi_bit() << 5); \
} \
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
single_cp_num | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
fm->hi_bits() | fm->lo_bit() << 5); \
}
F(ftoui, 0, 0xc) // Float to unsigned int conversion
F(ftouiz, 1, 0xc) // Float to unsigned int conversion, RZ mode
F(ftosi, 0, 0xd) // Float to signed int conversion
F(ftosiz, 1, 0xd) // Float to signed int conversion, RZ mode
#undef F
#define F(mnemonic, N, opcode) \
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0 && fm->lo_bit() == 0, "incorrect register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
double_cp_num | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
fm->hi_bits() | fm->hi_bit() << 5); \
} \
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->lo_bit() == 0 && fm->hi_bit() == 0, "incorrect register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
single_cp_num | \
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
fm->hi_bits() | fm->lo_bit() << 5); \
}
F(fcvtd, 1, 0x7) // Single->Double conversion
F(fcvts, 1, 0x7) // Double->Single conversion
#undef F
#define F(mnemonic, N, opcode) \
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0, "single precision register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
double_cp_num | \
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
fm->hi_bits() | fm->hi_bit() << 5); \
} \
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
single_cp_num | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
fm->hi_bits() | fm->lo_bit() << 5); \
}
F(fcpy, 0, 0x0) // Fd = Fm
F(fabs, 1, 0x0) // Fd = abs(Fm)
F(fneg, 0, 0x1) // Fd = -Fm
F(fsqrt, 1, 0x1) // Fd = sqrt(Fm)
F(fcmp, 0, 0x4) // Compare Fd with Fm no exceptions on quiet NANs
F(fcmpe, 1, 0x4) // Compare Fd with Fm with exceptions on quiet NANs
#undef F
// Opcodes with one operand only
#define F(mnemonic, N, opcode) \
void mnemonic##d(FloatRegister fd, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->lo_bit() == 0, "single precision register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
double_cp_num | fd->hi_bits() << 12 | fd->hi_bit() << 22); \
} \
void mnemonic##s(FloatRegister fd, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0, "double precision register?"); \
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
single_cp_num | fd->hi_bits() << 12 | fd->lo_bit() << 22); \
}
F(fcmpz, 0, 0x5) // Compare Fd with 0, no exceptions quiet NANs
F(fcmpez, 1, 0x5) // Compare Fd with 0, with exceptions quiet NANs
#undef F
// Float loads (L==1) and stores (L==0)
#define F(mnemonic, L) \
void mnemonic##d(FloatRegister fd, Address addr, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->lo_bit() == 0, "single precision register?"); \
emit_int32(cond << 28 | 0xd << 24 | L << 20 | \
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
double_cp_num | addr.encoding_vfp()); \
} \
void mnemonic##s(FloatRegister fd, Address addr, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(fd->hi_bit() == 0, "double precision register?"); \
emit_int32(cond << 28 | 0xd << 24 | L << 20 | \
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
single_cp_num | addr.encoding_vfp()); \
}
F(fst, 0) // Store 1 register
F(fld, 1) // Load 1 register
#undef F
// Float load and store multiple
#define F(mnemonic, l, pu) \
void mnemonic##d(Register rn, FloatRegisterSet reg_set, \
AsmWriteback w = no_writeback, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(w == no_writeback || rn != PC, "unpredictable instruction"); \
assert(!(w == no_writeback && pu == 2), "encoding constraint"); \
assert((reg_set.encoding_d() & 1) == 0, "encoding constraint"); \
emit_int32(cond << 28 | 6 << 25 | pu << 23 | w << 21 | l << 20 | \
rn->encoding() << 16 | reg_set.encoding_d() | double_cp_num); \
} \
void mnemonic##s(Register rn, FloatRegisterSet reg_set, \
AsmWriteback w = no_writeback, AsmCondition cond = al) { \
CHECK_VFP_PRESENT; \
assert(w == no_writeback || rn != PC, "unpredictable instruction"); \
assert(!(w == no_writeback && pu == 2), "encoding constraint"); \
emit_int32(cond << 28 | 6 << 25 | pu << 23 | w << 21 | l << 20 | \
rn->encoding() << 16 | reg_set.encoding_s() | single_cp_num); \
}
F(fldmia, 1, 1) F(fldmfd, 1, 1)
F(fldmdb, 1, 2) F(fldmea, 1, 2)
F(fstmia, 0, 1) F(fstmfd, 0, 1)
F(fstmdb, 0, 2) F(fstmea, 0, 2)
#undef F
// fconst{s,d} encoding:
// 31 28 27 23 22 21 20 19 16 15 12 10 9 8 7 4 3 0
// | cond | 11101 | D | 11 | imm4H | Vd | 101 | sz | 0000 | imm4L |
// sz = 0 for single precision, 1 otherwise
// Register number is Vd:D for single precision, D:Vd otherwise
// immediate value is imm4H:imm4L
void fconsts(FloatRegister fd, unsigned char imm_8, AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(fd->hi_bit() == 0, "double precision register?");
emit_int32(cond << 28 | 0xeb << 20 | single_cp_num |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | (imm_8 & 0xf) | (imm_8 >> 4) << 16);
}
void fconstd(FloatRegister fd, unsigned char imm_8, AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(fd->lo_bit() == 0, "double precision register?");
emit_int32(cond << 28 | 0xeb << 20 | double_cp_num |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | (imm_8 & 0xf) | (imm_8 >> 4) << 16);
}
// GPR <-> FPR transfers
void fmsr(FloatRegister fd, Register rd, AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(fd->hi_bit() == 0, "double precision register?");
emit_int32(cond << 28 | 0xe0 << 20 | single_cp_num | 1 << 4 |
fd->hi_bits() << 16 | fd->lo_bit() << 7 | rd->encoding() << 12);
}
void fmrs(Register rd, FloatRegister fd, AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(fd->hi_bit() == 0, "double precision register?");
emit_int32(cond << 28 | 0xe1 << 20 | single_cp_num | 1 << 4 |
fd->hi_bits() << 16 | fd->lo_bit() << 7 | rd->encoding() << 12);
}
void fmdrr(FloatRegister fd, Register rd, Register rn, AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(fd->lo_bit() == 0, "single precision register?");
emit_int32(cond << 28 | 0xc4 << 20 | double_cp_num | 1 << 4 |
fd->hi_bits() | fd->hi_bit() << 5 |
rn->encoding() << 16 | rd->encoding() << 12);
}
void fmrrd(Register rd, Register rn, FloatRegister fd, AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(fd->lo_bit() == 0, "single precision register?");
emit_int32(cond << 28 | 0xc5 << 20 | double_cp_num | 1 << 4 |
fd->hi_bits() | fd->hi_bit() << 5 |
rn->encoding() << 16 | rd->encoding() << 12);
}
void fmstat(AsmCondition cond = al) {
CHECK_VFP_PRESENT;
emit_int32(cond << 28 | 0xef1fa10);
}
void vmrs(Register rt, VFPSystemRegister sr, AsmCondition cond = al) {
assert((sr->encoding() & (~0xf)) == 0, "what system register is that?");
emit_int32(cond << 28 | rt->encoding() << 12 | sr->encoding() << 16 | 0xef00a10);
}
void vmsr(VFPSystemRegister sr, Register rt, AsmCondition cond = al) {
assert((sr->encoding() & (~0xf)) == 0, "what system register is that?");
emit_int32(cond << 28 | rt->encoding() << 12 | sr->encoding() << 16 | 0xee00a10);
}
void vcnt(FloatRegister Dd, FloatRegister Dm) {
CHECK_VFP_PRESENT;
// emitted at VM startup to detect whether the instruction is available
assert(!VM_Version::is_initialized() || VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0 && Dm->lo_bit() == 0, "single precision registers?");
emit_int32(0xf3b00500 | Dd->hi_bit() << 22 | Dd->hi_bits() << 12 | Dm->hi_bit() << 5 | Dm->hi_bits());
}
void vpaddl(FloatRegister Dd, FloatRegister Dm, int size, bool s) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0 && Dm->lo_bit() == 0, "single precision registers?");
assert(size == 8 || size == 16 || size == 32, "unexpected size");
emit_int32(0xf3b00200 | Dd->hi_bit() << 22 | (size >> 4) << 18 | Dd->hi_bits() << 12 | (s ? 0 : 1) << 7 | Dm->hi_bit() << 5 | Dm->hi_bits());
}
void vld1(FloatRegister Dd, Address addr, VElem_Size size, int bits) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision registers?");
int align = 0;
assert(bits == 128, "code assumption");
VLD_Type type = VLD1_TYPE_2_REGS; // 2x64
emit_int32(0xf4200000 | Dd->hi_bit() << 22 | Dd->hi_bits() << 12 | type << 8 | size << 6 | align << 4 | addr.encoding_simd());
}
void vst1(FloatRegister Dd, Address addr, VElem_Size size, int bits) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision registers?");
int align = 0;
assert(bits == 128, "code assumption");
VLD_Type type = VLD1_TYPE_2_REGS; // 2x64
emit_int32(0xf4000000 | Dd->hi_bit() << 22 | Dd->hi_bits() << 12 | type << 8 | size << 6 | align << 4 | addr.encoding_simd());
}
void vmovI(FloatRegister Dd, int imm8, VElem_Size size, int quad) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision register?");
assert(!quad || (Dd->hi_bits() & 1) == 0, "quad precision register?");
assert(imm8 >= 0 && imm8 < 256, "out of range");
int op;
int cmode;
switch (size) {
case VELEM_SIZE_8:
op = 0;
cmode = 0xE /* 0b1110 */;
break;
case VELEM_SIZE_16:
op = 0;
cmode = 0x8 /* 0b1000 */;
break;
case VELEM_SIZE_32:
op = 0;
cmode = 0x0 /* 0b0000 */;
break;
default:
ShouldNotReachHere();
}
emit_int32(0xf << 28 | 0x1 << 25 | 0x1 << 23 | 0x1 << 4 |
(imm8 >> 7) << 24 | ((imm8 & 0x70) >> 4) << 16 | (imm8 & 0xf) |
quad << 6 | op << 5 | cmode << 8 |
Dd->hi_bits() << 12 | Dd->hi_bit() << 22);
}
void vdupI(FloatRegister Dd, Register Rs, VElem_Size size, int quad,
AsmCondition cond = al) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision register?");
assert(!quad || (Dd->hi_bits() & 1) == 0, "quad precision register?");
int b;
int e;
switch (size) {
case VELEM_SIZE_8:
b = 1;
e = 0;
break;
case VELEM_SIZE_16:
b = 0;
e = 1;
break;
case VELEM_SIZE_32:
b = 0;
e = 0;
break;
default:
ShouldNotReachHere();
}
emit_int32(cond << 28 | 0x1D /* 0b11101 */ << 23 | 0xB /* 0b1011 */ << 8 | 0x1 << 4 |
quad << 21 | b << 22 | e << 5 | Rs->encoding() << 12 |
Dd->hi_bits() << 16 | Dd->hi_bit() << 7);
}
void vdup(FloatRegister Dd, FloatRegister Ds, int index, int size, int quad) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision register?");
assert(Ds->lo_bit() == 0, "single precision register?");
assert(!quad || (Dd->hi_bits() & 1) == 0, "quad precision register?");
int range = 64 / size;
assert(index < range, "overflow");
int imm4;
switch (size) {
case 8:
assert((index & 0x7 /* 0b111 */) == index, "overflow");
imm4 = index << 1 | 0x1 /* 0b0001 */;
break;
case 16:
assert((index & 0x3 /* 0b11 */) == index, "overflow");
imm4 = index << 2 | 0x2 /* 0b0010 */;
break;
case 32:
assert((index & 0x1 /* 0b1 */) == index, "overflow");
imm4 = index << 3 | 0x4 /* 0b0100 */;
break;
default:
ShouldNotReachHere();
}
emit_int32(0xF /* 0b1111 */ << 28 | 0x3B /* 0b00111011 */ << 20 | 0x6 /* 0b110 */ << 9 |
quad << 6 | imm4 << 16 |
Dd->hi_bits() << 12 | Dd->hi_bit() << 22 |
Ds->hi_bits() << 00 | Ds->hi_bit() << 5);
}
void vdupF(FloatRegister Dd, FloatRegister Ss, int quad) {
int index = 0;
FloatRegister Ds = as_FloatRegister(Ss->encoding() & ~1);
if (Ss->lo_bit() != 0) {
/* odd S register */
assert(Ds->successor() == Ss, "bad reg");
index = 1;
} else {
/* even S register */
assert(Ds == Ss, "bad reg");
}
vdup(Dd, Ds, index, 32, quad);
}
void vrev(FloatRegister Dd, FloatRegister Dm, int quad, int region_size, VElem_Size size) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision register?");
assert(Dm->lo_bit() == 0, "single precision register?");
assert(!quad || ((Dd->hi_bits() | Dm->hi_bits()) & 1) == 0,
"quad precision register?");
unsigned int op = 0;
switch (region_size) {
case 16: op = 0x2; /*0b10*/ break;
case 32: op = 0x1; /*0b01*/ break;
case 64: op = 0x0; /*0b00*/ break;
default: assert(false, "encoding constraint");
}
emit_int32(0xf << 28 | 0x7 << 23 | Dd->hi_bit() << 22 | 0x3 << 20 |
size << 18 | Dd->hi_bits() << 12 | op << 7 | quad << 6 | Dm->hi_bit() << 5 |
Dm->hi_bits());
}
void veor(FloatRegister Dd, FloatRegister Dn, FloatRegister Dm, int quad) {
CHECK_VFP_PRESENT;
assert(VM_Version::has_simd(), "simd instruction");
assert(Dd->lo_bit() == 0, "single precision register?");
assert(Dm->lo_bit() == 0, "single precision register?");
assert(Dn->lo_bit() == 0, "single precision register?");
assert(!quad || ((Dd->hi_bits() | Dm->hi_bits() | Dn->hi_bits()) & 1) == 0,
"quad precision register?");
emit_int32(0xf << 28 | 0x3 << 24 | Dd->hi_bit() << 22 | Dn->hi_bits() << 16 |
Dd->hi_bits() << 12 | 0x1 << 8 | Dn->hi_bit() << 7 | quad << 6 |
Dm->hi_bit() << 5 | 0x1 << 4 | Dm->hi_bits());
}
Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
#ifdef COMPILER2
typedef VFP::double_num double_num;
typedef VFP::float_num float_num;
#endif
};
#ifdef __SOFTFP__
// Soft float function declarations
extern "C" {
extern float __aeabi_fadd(float, float);
extern float __aeabi_fmul(float, float);
extern float __aeabi_fsub(float, float);
extern float __aeabi_fdiv(float, float);
extern double __aeabi_dadd(double, double);
extern double __aeabi_dmul(double, double);
extern double __aeabi_dsub(double, double);
extern double __aeabi_ddiv(double, double);
extern double __aeabi_f2d(float);
extern float __aeabi_d2f(double);
extern float __aeabi_i2f(int);
extern double __aeabi_i2d(int);
extern int __aeabi_f2iz(float);
extern int __aeabi_fcmpeq(float, float);
extern int __aeabi_fcmplt(float, float);
extern int __aeabi_fcmple(float, float);
extern int __aeabi_fcmpge(float, float);
extern int __aeabi_fcmpgt(float, float);
extern int __aeabi_dcmpeq(double, double);
extern int __aeabi_dcmplt(double, double);
extern int __aeabi_dcmple(double, double);
extern int __aeabi_dcmpge(double, double);
extern int __aeabi_dcmpgt(double, double);
// Imported code from glibc soft-fp bundle for
// calculation accuracy improvement. See CR 6757269.
extern double __aeabi_fadd_glibc(float, float);
extern double __aeabi_fsub_glibc(float, float);
extern double __aeabi_dadd_glibc(double, double);
extern double __aeabi_dsub_glibc(double, double);
};
#endif // __SOFTFP__
#endif // CPU_ARM_VM_ASSEMBLER_ARM_32_HPP