8200426: Make G1 code use _g1h members
Summary: Consistently use _g1h member names for cached G1CollectedHeap* variables.
Reviewed-by: sangheki, sjohanss
/*
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/nmethod.hpp"
#include "gc/g1/g1BlockOffsetTable.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1HeapRegionTraceType.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegionTracer.hpp"
#include "gc/shared/genOopClosures.inline.hpp"
#include "gc/shared/space.inline.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/iterator.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "utilities/growableArray.hpp"
int HeapRegion::LogOfHRGrainBytes = 0;
int HeapRegion::LogOfHRGrainWords = 0;
size_t HeapRegion::GrainBytes = 0;
size_t HeapRegion::GrainWords = 0;
size_t HeapRegion::CardsPerRegion = 0;
size_t HeapRegion::max_region_size() {
return HeapRegionBounds::max_size();
}
size_t HeapRegion::min_region_size_in_words() {
return HeapRegionBounds::min_size() >> LogHeapWordSize;
}
void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
size_t region_size = G1HeapRegionSize;
if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
HeapRegionBounds::min_size());
}
int region_size_log = log2_long((jlong) region_size);
// Recalculate the region size to make sure it's a power of
// 2. This means that region_size is the largest power of 2 that's
// <= what we've calculated so far.
region_size = ((size_t)1 << region_size_log);
// Now make sure that we don't go over or under our limits.
if (region_size < HeapRegionBounds::min_size()) {
region_size = HeapRegionBounds::min_size();
} else if (region_size > HeapRegionBounds::max_size()) {
region_size = HeapRegionBounds::max_size();
}
// And recalculate the log.
region_size_log = log2_long((jlong) region_size);
// Now, set up the globals.
guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
LogOfHRGrainBytes = region_size_log;
guarantee(LogOfHRGrainWords == 0, "we should only set it once");
LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
guarantee(GrainBytes == 0, "we should only set it once");
// The cast to int is safe, given that we've bounded region_size by
// MIN_REGION_SIZE and MAX_REGION_SIZE.
GrainBytes = region_size;
log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
guarantee(GrainWords == 0, "we should only set it once");
GrainWords = GrainBytes >> LogHeapWordSize;
guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
guarantee(CardsPerRegion == 0, "we should only set it once");
CardsPerRegion = GrainBytes >> G1CardTable::card_shift;
if (G1HeapRegionSize != GrainBytes) {
FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes);
}
}
void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
assert(_humongous_start_region == NULL,
"we should have already filtered out humongous regions");
assert(!in_collection_set(),
"Should not clear heap region %u in the collection set", hrm_index());
set_young_index_in_cset(-1);
uninstall_surv_rate_group();
set_free();
reset_pre_dummy_top();
if (!keep_remset) {
if (locked) {
rem_set()->clear_locked();
} else {
rem_set()->clear();
}
}
zero_marked_bytes();
init_top_at_mark_start();
if (clear_space) clear(SpaceDecorator::Mangle);
}
void HeapRegion::clear_cardtable() {
G1CardTable* ct = G1CollectedHeap::heap()->card_table();
ct->clear(MemRegion(bottom(), end()));
}
void HeapRegion::calc_gc_efficiency() {
// GC efficiency is the ratio of how much space would be
// reclaimed over how long we predict it would take to reclaim it.
G1CollectedHeap* g1h = G1CollectedHeap::heap();
G1Policy* g1p = g1h->g1_policy();
// Retrieve a prediction of the elapsed time for this region for
// a mixed gc because the region will only be evacuated during a
// mixed gc.
double region_elapsed_time_ms =
g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
_gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
}
void HeapRegion::set_free() {
report_region_type_change(G1HeapRegionTraceType::Free);
_type.set_free();
}
void HeapRegion::set_eden() {
report_region_type_change(G1HeapRegionTraceType::Eden);
_type.set_eden();
}
void HeapRegion::set_eden_pre_gc() {
report_region_type_change(G1HeapRegionTraceType::Eden);
_type.set_eden_pre_gc();
}
void HeapRegion::set_survivor() {
report_region_type_change(G1HeapRegionTraceType::Survivor);
_type.set_survivor();
}
void HeapRegion::move_to_old() {
if (_type.relabel_as_old()) {
report_region_type_change(G1HeapRegionTraceType::Old);
}
}
void HeapRegion::set_old() {
report_region_type_change(G1HeapRegionTraceType::Old);
_type.set_old();
}
void HeapRegion::set_open_archive() {
report_region_type_change(G1HeapRegionTraceType::OpenArchive);
_type.set_open_archive();
}
void HeapRegion::set_closed_archive() {
report_region_type_change(G1HeapRegionTraceType::ClosedArchive);
_type.set_closed_archive();
}
void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
assert(!is_humongous(), "sanity / pre-condition");
assert(top() == bottom(), "should be empty");
report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
_type.set_starts_humongous();
_humongous_start_region = this;
_bot_part.set_for_starts_humongous(obj_top, fill_size);
}
void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
assert(!is_humongous(), "sanity / pre-condition");
assert(top() == bottom(), "should be empty");
assert(first_hr->is_starts_humongous(), "pre-condition");
report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
_type.set_continues_humongous();
_humongous_start_region = first_hr;
_bot_part.set_object_can_span(true);
}
void HeapRegion::clear_humongous() {
assert(is_humongous(), "pre-condition");
assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
_humongous_start_region = NULL;
_bot_part.set_object_can_span(false);
}
HeapRegion::HeapRegion(uint hrm_index,
G1BlockOffsetTable* bot,
MemRegion mr) :
G1ContiguousSpace(bot),
_hrm_index(hrm_index),
_humongous_start_region(NULL),
_evacuation_failed(false),
_prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
_next(NULL), _prev(NULL),
#ifdef ASSERT
_containing_set(NULL),
#endif // ASSERT
_young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
_rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0)
{
_rem_set = new HeapRegionRemSet(bot, this);
initialize(mr);
}
void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
assert(_rem_set->is_empty(), "Remembered set must be empty");
G1ContiguousSpace::initialize(mr, clear_space, mangle_space);
hr_clear(false /*par*/, false /*clear_space*/);
set_top(bottom());
}
void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
HeapRegionTracer::send_region_type_change(_hrm_index,
get_trace_type(),
to,
(uintptr_t)bottom(),
used());
}
void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
bool during_conc_mark) {
// We always recreate the prev marking info and we'll explicitly
// mark all objects we find to be self-forwarded on the prev
// bitmap. So all objects need to be below PTAMS.
_prev_marked_bytes = 0;
if (during_initial_mark) {
// During initial-mark, we'll also explicitly mark all objects
// we find to be self-forwarded on the next bitmap. So all
// objects need to be below NTAMS.
_next_top_at_mark_start = top();
_next_marked_bytes = 0;
} else if (during_conc_mark) {
// During concurrent mark, all objects in the CSet (including
// the ones we find to be self-forwarded) are implicitly live.
// So all objects need to be above NTAMS.
_next_top_at_mark_start = bottom();
_next_marked_bytes = 0;
}
}
void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) {
assert(marked_bytes <= used(),
"marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
_prev_top_at_mark_start = top();
_prev_marked_bytes = marked_bytes;
}
// Code roots support
void HeapRegion::add_strong_code_root(nmethod* nm) {
HeapRegionRemSet* hrrs = rem_set();
hrrs->add_strong_code_root(nm);
}
void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
HeapRegionRemSet* hrrs = rem_set();
hrrs->add_strong_code_root_locked(nm);
}
void HeapRegion::remove_strong_code_root(nmethod* nm) {
HeapRegionRemSet* hrrs = rem_set();
hrrs->remove_strong_code_root(nm);
}
void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
HeapRegionRemSet* hrrs = rem_set();
hrrs->strong_code_roots_do(blk);
}
class VerifyStrongCodeRootOopClosure: public OopClosure {
const HeapRegion* _hr;
bool _failures;
bool _has_oops_in_region;
template <class T> void do_oop_work(T* p) {
T heap_oop = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
// Note: not all the oops embedded in the nmethod are in the
// current region. We only look at those which are.
if (_hr->is_in(obj)) {
// Object is in the region. Check that its less than top
if (_hr->top() <= (HeapWord*)obj) {
// Object is above top
log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
_failures = true;
return;
}
// Nmethod has at least one oop in the current region
_has_oops_in_region = true;
}
}
}
public:
VerifyStrongCodeRootOopClosure(const HeapRegion* hr):
_hr(hr), _failures(false), _has_oops_in_region(false) {}
void do_oop(narrowOop* p) { do_oop_work(p); }
void do_oop(oop* p) { do_oop_work(p); }
bool failures() { return _failures; }
bool has_oops_in_region() { return _has_oops_in_region; }
};
class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
const HeapRegion* _hr;
bool _failures;
public:
VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
_hr(hr), _failures(false) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null();
if (nm != NULL) {
// Verify that the nemthod is live
if (!nm->is_alive()) {
log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
_failures = true;
} else {
VerifyStrongCodeRootOopClosure oop_cl(_hr);
nm->oops_do(&oop_cl);
if (!oop_cl.has_oops_in_region()) {
log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
_failures = true;
} else if (oop_cl.failures()) {
log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
_failures = true;
}
}
}
}
bool failures() { return _failures; }
};
void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
if (!G1VerifyHeapRegionCodeRoots) {
// We're not verifying code roots.
return;
}
if (vo == VerifyOption_G1UseFullMarking) {
// Marking verification during a full GC is performed after class
// unloading, code cache unloading, etc so the strong code roots
// attached to each heap region are in an inconsistent state. They won't
// be consistent until the strong code roots are rebuilt after the
// actual GC. Skip verifying the strong code roots in this particular
// time.
assert(VerifyDuringGC, "only way to get here");
return;
}
HeapRegionRemSet* hrrs = rem_set();
size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
// if this region is empty then there should be no entries
// on its strong code root list
if (is_empty()) {
if (strong_code_roots_length > 0) {
log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
p2i(bottom()), p2i(end()), strong_code_roots_length);
*failures = true;
}
return;
}
if (is_continues_humongous()) {
if (strong_code_roots_length > 0) {
log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
HR_FORMAT_PARAMS(this), strong_code_roots_length);
*failures = true;
}
return;
}
VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
strong_code_roots_do(&cb_cl);
if (cb_cl.failures()) {
*failures = true;
}
}
void HeapRegion::print() const { print_on(tty); }
void HeapRegion::print_on(outputStream* st) const {
st->print("|%4u", this->_hrm_index);
st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
p2i(bottom()), p2i(top()), p2i(end()));
st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
st->print("|%2s", get_short_type_str());
if (in_collection_set()) {
st->print("|CS");
} else {
st->print("| ");
}
st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "| %s ",
p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()), rem_set()->get_state_str());
}
class G1VerificationClosure : public ExtendedOopClosure {
protected:
G1CollectedHeap* _g1h;
G1CardTable *_ct;
oop _containing_obj;
bool _failures;
int _n_failures;
VerifyOption _vo;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseFullMarking -> use "next" marking bitmap but no TAMS.
G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
_g1h(g1h), _ct(g1h->card_table()),
_containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
}
void set_containing_obj(oop obj) {
_containing_obj = obj;
}
bool failures() { return _failures; }
int n_failures() { return _n_failures; }
void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
Klass* k = obj->klass();
const char* class_name = k->external_name();
out->print_cr("class name %s", class_name);
#else // PRODUCT
obj->print_on(out);
#endif // PRODUCT
}
// This closure provides its own oop verification code.
debug_only(virtual bool should_verify_oops() { return false; })
};
class VerifyLiveClosure : public G1VerificationClosure {
public:
VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
virtual void do_oop(oop* p) { do_oop_work(p); }
template <class T>
void do_oop_work(T* p) {
assert(_containing_obj != NULL, "Precondition");
assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
"Precondition");
verify_liveness(p);
}
template <class T>
void verify_liveness(T* p) {
T heap_oop = RawAccess<>::oop_load(p);
Log(gc, verify) log;
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
bool failed = false;
if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
MutexLockerEx x(ParGCRareEvent_lock,
Mutex::_no_safepoint_check_flag);
if (!_failures) {
log.error("----------");
}
ResourceMark rm;
if (!_g1h->is_in_closed_subset(obj)) {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
LogStream ls(log.error());
print_object(&ls, _containing_obj);
HeapRegion* const to = _g1h->heap_region_containing(obj);
log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str());
} else {
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
LogStream ls(log.error());
print_object(&ls, _containing_obj);
log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(obj), p2i(to->bottom()), p2i(to->end()));
print_object(&ls, obj);
}
log.error("----------");
_failures = true;
failed = true;
_n_failures++;
}
}
}
};
class VerifyRemSetClosure : public G1VerificationClosure {
public:
VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
virtual void do_oop(oop* p) { do_oop_work(p); }
template <class T>
void do_oop_work(T* p) {
assert(_containing_obj != NULL, "Precondition");
assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
"Precondition");
verify_remembered_set(p);
}
template <class T>
void verify_remembered_set(T* p) {
T heap_oop = RawAccess<>::oop_load(p);
Log(gc, verify) log;
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
HeapRegion* to = _g1h->heap_region_containing(obj);
if (from != NULL && to != NULL &&
from != to &&
!to->is_pinned() &&
to->rem_set()->is_complete()) {
jbyte cv_obj = *_ct->byte_for_const(_containing_obj);
jbyte cv_field = *_ct->byte_for_const(p);
const jbyte dirty = G1CardTable::dirty_card_val();
bool is_bad = !(from->is_young()
|| to->rem_set()->contains_reference(p)
|| (_containing_obj->is_objArray() ?
cv_field == dirty :
cv_obj == dirty || cv_field == dirty));
if (is_bad) {
MutexLockerEx x(ParGCRareEvent_lock,
Mutex::_no_safepoint_check_flag);
if (!_failures) {
log.error("----------");
}
log.error("Missing rem set entry:");
log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
ResourceMark rm;
LogStream ls(log.error());
_containing_obj->print_on(&ls);
log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s", p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str());
if (oopDesc::is_oop(obj)) {
obj->print_on(&ls);
}
log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
log.error("----------");
_failures = true;
_n_failures++;
}
}
}
}
};
// Closure that applies the given two closures in sequence.
class G1Mux2Closure : public ExtendedOopClosure {
OopClosure* _c1;
OopClosure* _c2;
public:
G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; }
template <class T> inline void do_oop_work(T* p) {
// Apply first closure; then apply the second.
_c1->do_oop(p);
_c2->do_oop(p);
}
virtual inline void do_oop(oop* p) { do_oop_work(p); }
virtual inline void do_oop(narrowOop* p) { do_oop_work(p); }
// This closure provides its own oop verification code.
debug_only(virtual bool should_verify_oops() { return false; })
};
// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.
void HeapRegion::verify(VerifyOption vo,
bool* failures) const {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
*failures = false;
HeapWord* p = bottom();
HeapWord* prev_p = NULL;
VerifyLiveClosure vl_cl(g1h, vo);
VerifyRemSetClosure vr_cl(g1h, vo);
bool is_region_humongous = is_humongous();
size_t object_num = 0;
while (p < top()) {
oop obj = oop(p);
size_t obj_size = block_size(p);
object_num += 1;
if (!g1h->is_obj_dead_cond(obj, this, vo)) {
if (oopDesc::is_oop(obj)) {
Klass* klass = obj->klass();
bool is_metaspace_object = Metaspace::contains(klass);
if (!is_metaspace_object) {
log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
"not metadata", p2i(klass), p2i(obj));
*failures = true;
return;
} else if (!klass->is_klass()) {
log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
"not a klass", p2i(klass), p2i(obj));
*failures = true;
return;
} else {
vl_cl.set_containing_obj(obj);
if (!g1h->collector_state()->in_full_gc() || G1VerifyRSetsDuringFullGC) {
// verify liveness and rem_set
vr_cl.set_containing_obj(obj);
G1Mux2Closure mux(&vl_cl, &vr_cl);
obj->oop_iterate(&mux);
if (vr_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vr_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
} else {
// verify only liveness
obj->oop_iterate(&vl_cl);
}
if (vl_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vl_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
}
} else {
log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
*failures = true;
return;
}
}
prev_p = p;
p += obj_size;
}
if (!is_young() && !is_empty()) {
_bot_part.verify();
}
if (is_region_humongous) {
oop obj = oop(this->humongous_start_region()->bottom());
if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
*failures = true;
return;
}
}
if (!is_region_humongous && p != top()) {
log_error(gc, verify)("end of last object " PTR_FORMAT " "
"does not match top " PTR_FORMAT, p2i(p), p2i(top()));
*failures = true;
return;
}
HeapWord* the_end = end();
// Do some extra BOT consistency checking for addresses in the
// range [top, end). BOT look-ups in this range should yield
// top. No point in doing that if top == end (there's nothing there).
if (p < the_end) {
// Look up top
HeapWord* addr_1 = p;
HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
if (b_start_1 != p) {
log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_1), p2i(b_start_1), p2i(p));
*failures = true;
return;
}
// Look up top + 1
HeapWord* addr_2 = p + 1;
if (addr_2 < the_end) {
HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
if (b_start_2 != p) {
log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_2), p2i(b_start_2), p2i(p));
*failures = true;
return;
}
}
// Look up an address between top and end
size_t diff = pointer_delta(the_end, p) / 2;
HeapWord* addr_3 = p + diff;
if (addr_3 < the_end) {
HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
if (b_start_3 != p) {
log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_3), p2i(b_start_3), p2i(p));
*failures = true;
return;
}
}
// Look up end - 1
HeapWord* addr_4 = the_end - 1;
HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
if (b_start_4 != p) {
log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
" yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
p2i(addr_4), p2i(b_start_4), p2i(p));
*failures = true;
return;
}
}
verify_strong_code_roots(vo, failures);
}
void HeapRegion::verify() const {
bool dummy = false;
verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
}
void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
*failures = false;
HeapWord* p = bottom();
HeapWord* prev_p = NULL;
VerifyRemSetClosure vr_cl(g1h, vo);
while (p < top()) {
oop obj = oop(p);
size_t obj_size = block_size(p);
if (!g1h->is_obj_dead_cond(obj, this, vo)) {
if (oopDesc::is_oop(obj)) {
vr_cl.set_containing_obj(obj);
obj->oop_iterate(&vr_cl);
if (vr_cl.failures()) {
*failures = true;
}
if (G1MaxVerifyFailures >= 0 &&
vr_cl.n_failures() >= G1MaxVerifyFailures) {
return;
}
} else {
log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
*failures = true;
return;
}
}
prev_p = p;
p += obj_size;
}
}
void HeapRegion::verify_rem_set() const {
bool failures = false;
verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
guarantee(!failures, "HeapRegion RemSet verification failed");
}
void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
// Not used for G1 anymore, but pure virtual in Space.
ShouldNotReachHere();
}
// G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go
// away eventually.
void G1ContiguousSpace::clear(bool mangle_space) {
set_top(bottom());
CompactibleSpace::clear(mangle_space);
reset_bot();
}
#ifndef PRODUCT
void G1ContiguousSpace::mangle_unused_area() {
mangle_unused_area_complete();
}
void G1ContiguousSpace::mangle_unused_area_complete() {
SpaceMangler::mangle_region(MemRegion(top(), end()));
}
#endif
void G1ContiguousSpace::print() const {
print_short();
tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
INTPTR_FORMAT ", " INTPTR_FORMAT ")",
p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
}
HeapWord* G1ContiguousSpace::initialize_threshold() {
return _bot_part.initialize_threshold();
}
HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
HeapWord* end) {
_bot_part.alloc_block(start, end);
return _bot_part.threshold();
}
void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
object_iterate(blk);
}
void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
HeapWord* p = bottom();
while (p < top()) {
if (block_is_obj(p)) {
blk->do_object(oop(p));
}
p += block_size(p);
}
}
G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
_bot_part(bot, this),
_par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
{
}
void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
CompactibleSpace::initialize(mr, clear_space, mangle_space);
_top = bottom();
set_saved_mark_word(NULL);
reset_bot();
}