src/hotspot/os/solaris/os_solaris.cpp
author valeriep
Fri, 29 Mar 2019 00:39:49 +0000
changeset 54333 2a29e62446bd
parent 54280 a33c42262338
child 54825 1b03400e5a8f
permissions -rw-r--r--
8220016: Clean up redundant RSA services in the SunJSSE provider Summary: Removed duplicated RSA signature/KF/KPG support in SunJSSE Reviewed-by: xuelei

/*
 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// no precompiled headers
#include "jvm.h"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "oops/oop.inline.hpp"
#include "os_share_solaris.hpp"
#include "os_solaris.inline.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/osThread.hpp"
#include "runtime/perfMemory.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/timer.hpp"
#include "runtime/vm_version.hpp"
#include "semaphore_posix.hpp"
#include "services/attachListener.hpp"
#include "services/memTracker.hpp"
#include "services/runtimeService.hpp"
#include "utilities/align.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/macros.hpp"
#include "utilities/vmError.hpp"

// put OS-includes here
# include <dlfcn.h>
# include <errno.h>
# include <exception>
# include <link.h>
# include <poll.h>
# include <pthread.h>
# include <setjmp.h>
# include <signal.h>
# include <stdio.h>
# include <alloca.h>
# include <sys/filio.h>
# include <sys/ipc.h>
# include <sys/lwp.h>
# include <sys/machelf.h>     // for elf Sym structure used by dladdr1
# include <sys/mman.h>
# include <sys/processor.h>
# include <sys/procset.h>
# include <sys/pset.h>
# include <sys/resource.h>
# include <sys/shm.h>
# include <sys/socket.h>
# include <sys/stat.h>
# include <sys/systeminfo.h>
# include <sys/time.h>
# include <sys/times.h>
# include <sys/types.h>
# include <sys/wait.h>
# include <sys/utsname.h>
# include <thread.h>
# include <unistd.h>
# include <sys/priocntl.h>
# include <sys/rtpriocntl.h>
# include <sys/tspriocntl.h>
# include <sys/iapriocntl.h>
# include <sys/fxpriocntl.h>
# include <sys/loadavg.h>
# include <string.h>
# include <stdio.h>

# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
# include <sys/procfs.h>     //  see comment in <sys/procfs.h>

#define MAX_PATH (2 * K)

// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)


// Here are some liblgrp types from sys/lgrp_user.h to be able to
// compile on older systems without this header file.

#ifndef MADV_ACCESS_LWP
  #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
#endif
#ifndef MADV_ACCESS_MANY
  #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
#endif

#ifndef LGRP_RSRC_CPU
  #define LGRP_RSRC_CPU      0       /* CPU resources */
#endif
#ifndef LGRP_RSRC_MEM
  #define LGRP_RSRC_MEM      1       /* memory resources */
#endif

// Values for ThreadPriorityPolicy == 1
int prio_policy1[CriticalPriority+1] = {
  -99999,  0, 16,  32,  48,  64,
          80, 96, 112, 124, 127, 127 };

// System parameters used internally
static clock_t clock_tics_per_sec = 100;

// Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
static bool enabled_extended_FILE_stdio = false;

// For diagnostics to print a message once. see run_periodic_checks
static bool check_addr0_done = false;
static sigset_t check_signal_done;
static bool check_signals = true;

address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo

address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround

os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;

// "default" initializers for missing libc APIs
extern "C" {
  static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
  static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }

  static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
  static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
}

// "default" initializers for pthread-based synchronization
extern "C" {
  static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
  static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
}

static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);

static inline size_t adjust_stack_size(address base, size_t size) {
  if ((ssize_t)size < 0) {
    // 4759953: Compensate for ridiculous stack size.
    size = max_intx;
  }
  if (size > (size_t)base) {
    // 4812466: Make sure size doesn't allow the stack to wrap the address space.
    size = (size_t)base;
  }
  return size;
}

static inline stack_t get_stack_info() {
  stack_t st;
  int retval = thr_stksegment(&st);
  st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
  assert(retval == 0, "incorrect return value from thr_stksegment");
  assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  return st;
}

static void _handle_uncaught_cxx_exception() {
  VMError::report_and_die("An uncaught C++ exception");
}

bool os::is_primordial_thread(void) {
  int r = thr_main();
  guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
  return r == 1;
}

address os::current_stack_base() {
  bool _is_primordial_thread = is_primordial_thread();

  // Workaround 4352906, avoid calls to thr_stksegment by
  // thr_main after the first one (it looks like we trash
  // some data, causing the value for ss_sp to be incorrect).
  if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
    stack_t st = get_stack_info();
    if (_is_primordial_thread) {
      // cache initial value of stack base
      os::Solaris::_main_stack_base = (address)st.ss_sp;
    }
    return (address)st.ss_sp;
  } else {
    guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
    return os::Solaris::_main_stack_base;
  }
}

size_t os::current_stack_size() {
  size_t size;

  if (!is_primordial_thread()) {
    size = get_stack_info().ss_size;
  } else {
    struct rlimit limits;
    getrlimit(RLIMIT_STACK, &limits);
    size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
  }
  // base may not be page aligned
  address base = current_stack_base();
  address bottom = align_up(base - size, os::vm_page_size());;
  return (size_t)(base - bottom);
}

struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  return localtime_r(clock, res);
}

void os::Solaris::try_enable_extended_io() {
  typedef int (*enable_extended_FILE_stdio_t)(int, int);

  if (!UseExtendedFileIO) {
    return;
  }

  enable_extended_FILE_stdio_t enabler =
    (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
                                         "enable_extended_FILE_stdio");
  if (enabler) {
    enabler(-1, -1);
  }
}

static int _processors_online = 0;

jint os::Solaris::_os_thread_limit = 0;
volatile jint os::Solaris::_os_thread_count = 0;

julong os::available_memory() {
  return Solaris::available_memory();
}

julong os::Solaris::available_memory() {
  return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
}

julong os::Solaris::_physical_memory = 0;

julong os::physical_memory() {
  return Solaris::physical_memory();
}

static hrtime_t first_hrtime = 0;
static const hrtime_t hrtime_hz = 1000*1000*1000;
static volatile hrtime_t max_hrtime = 0;


void os::Solaris::initialize_system_info() {
  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
  _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
                                     (julong)sysconf(_SC_PAGESIZE);
}

uint os::processor_id() {
  const processorid_t id = ::getcpuid();
  assert(id >= 0 && id < _processor_count, "Invalid processor id");
  return (uint)id;
}

int os::active_processor_count() {
  // User has overridden the number of active processors
  if (ActiveProcessorCount > 0) {
    log_trace(os)("active_processor_count: "
                  "active processor count set by user : %d",
                  ActiveProcessorCount);
    return ActiveProcessorCount;
  }

  int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
  pid_t pid = getpid();
  psetid_t pset = PS_NONE;
  // Are we running in a processor set or is there any processor set around?
  if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
    uint_t pset_cpus;
    // Query the number of cpus available to us.
    if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
      assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
      _processors_online = pset_cpus;
      return pset_cpus;
    }
  }
  // Otherwise return number of online cpus
  return online_cpus;
}

static bool find_processors_in_pset(psetid_t        pset,
                                    processorid_t** id_array,
                                    uint_t*         id_length) {
  bool result = false;
  // Find the number of processors in the processor set.
  if (pset_info(pset, NULL, id_length, NULL) == 0) {
    // Make up an array to hold their ids.
    *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
    // Fill in the array with their processor ids.
    if (pset_info(pset, NULL, id_length, *id_array) == 0) {
      result = true;
    }
  }
  return result;
}

// Callers of find_processors_online() must tolerate imprecise results --
// the system configuration can change asynchronously because of DR
// or explicit psradm operations.
//
// We also need to take care that the loop (below) terminates as the
// number of processors online can change between the _SC_NPROCESSORS_ONLN
// request and the loop that builds the list of processor ids.   Unfortunately
// there's no reliable way to determine the maximum valid processor id,
// so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
// man pages, which claim the processor id set is "sparse, but
// not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
// exit the loop.
//
// In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
// not available on S8.0.

static bool find_processors_online(processorid_t** id_array,
                                   uint*           id_length) {
  const processorid_t MAX_PROCESSOR_ID = 100000;
  // Find the number of processors online.
  *id_length = sysconf(_SC_NPROCESSORS_ONLN);
  // Make up an array to hold their ids.
  *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
  // Processors need not be numbered consecutively.
  long found = 0;
  processorid_t next = 0;
  while (found < *id_length && next < MAX_PROCESSOR_ID) {
    processor_info_t info;
    if (processor_info(next, &info) == 0) {
      // NB, PI_NOINTR processors are effectively online ...
      if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
        (*id_array)[found] = next;
        found += 1;
      }
    }
    next += 1;
  }
  if (found < *id_length) {
    // The loop above didn't identify the expected number of processors.
    // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
    // and re-running the loop, above, but there's no guarantee of progress
    // if the system configuration is in flux.  Instead, we just return what
    // we've got.  Note that in the worst case find_processors_online() could
    // return an empty set.  (As a fall-back in the case of the empty set we
    // could just return the ID of the current processor).
    *id_length = found;
  }

  return true;
}

static bool assign_distribution(processorid_t* id_array,
                                uint           id_length,
                                uint*          distribution,
                                uint           distribution_length) {
  // We assume we can assign processorid_t's to uint's.
  assert(sizeof(processorid_t) == sizeof(uint),
         "can't convert processorid_t to uint");
  // Quick check to see if we won't succeed.
  if (id_length < distribution_length) {
    return false;
  }
  // Assign processor ids to the distribution.
  // Try to shuffle processors to distribute work across boards,
  // assuming 4 processors per board.
  const uint processors_per_board = ProcessDistributionStride;
  // Find the maximum processor id.
  processorid_t max_id = 0;
  for (uint m = 0; m < id_length; m += 1) {
    max_id = MAX2(max_id, id_array[m]);
  }
  // The next id, to limit loops.
  const processorid_t limit_id = max_id + 1;
  // Make up markers for available processors.
  bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
  for (uint c = 0; c < limit_id; c += 1) {
    available_id[c] = false;
  }
  for (uint a = 0; a < id_length; a += 1) {
    available_id[id_array[a]] = true;
  }
  // Step by "boards", then by "slot", copying to "assigned".
  // NEEDS_CLEANUP: The assignment of processors should be stateful,
  //                remembering which processors have been assigned by
  //                previous calls, etc., so as to distribute several
  //                independent calls of this method.  What we'd like is
  //                It would be nice to have an API that let us ask
  //                how many processes are bound to a processor,
  //                but we don't have that, either.
  //                In the short term, "board" is static so that
  //                subsequent distributions don't all start at board 0.
  static uint board = 0;
  uint assigned = 0;
  // Until we've found enough processors ....
  while (assigned < distribution_length) {
    // ... find the next available processor in the board.
    for (uint slot = 0; slot < processors_per_board; slot += 1) {
      uint try_id = board * processors_per_board + slot;
      if ((try_id < limit_id) && (available_id[try_id] == true)) {
        distribution[assigned] = try_id;
        available_id[try_id] = false;
        assigned += 1;
        break;
      }
    }
    board += 1;
    if (board * processors_per_board + 0 >= limit_id) {
      board = 0;
    }
  }
  if (available_id != NULL) {
    FREE_C_HEAP_ARRAY(bool, available_id);
  }
  return true;
}

void os::set_native_thread_name(const char *name) {
  if (Solaris::_pthread_setname_np != NULL) {
    // Only the first 31 bytes of 'name' are processed by pthread_setname_np
    // but we explicitly copy into a size-limited buffer to avoid any
    // possible overflow.
    char buf[32];
    snprintf(buf, sizeof(buf), "%s", name);
    buf[sizeof(buf) - 1] = '\0';
    Solaris::_pthread_setname_np(pthread_self(), buf);
  }
}

bool os::distribute_processes(uint length, uint* distribution) {
  bool result = false;
  // Find the processor id's of all the available CPUs.
  processorid_t* id_array  = NULL;
  uint           id_length = 0;
  // There are some races between querying information and using it,
  // since processor sets can change dynamically.
  psetid_t pset = PS_NONE;
  // Are we running in a processor set?
  if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
    result = find_processors_in_pset(pset, &id_array, &id_length);
  } else {
    result = find_processors_online(&id_array, &id_length);
  }
  if (result == true) {
    if (id_length >= length) {
      result = assign_distribution(id_array, id_length, distribution, length);
    } else {
      result = false;
    }
  }
  if (id_array != NULL) {
    FREE_C_HEAP_ARRAY(processorid_t, id_array);
  }
  return result;
}

bool os::bind_to_processor(uint processor_id) {
  // We assume that a processorid_t can be stored in a uint.
  assert(sizeof(uint) == sizeof(processorid_t),
         "can't convert uint to processorid_t");
  int bind_result =
    processor_bind(P_LWPID,                       // bind LWP.
                   P_MYID,                        // bind current LWP.
                   (processorid_t) processor_id,  // id.
                   NULL);                         // don't return old binding.
  return (bind_result == 0);
}

// Return true if user is running as root.

bool os::have_special_privileges() {
  static bool init = false;
  static bool privileges = false;
  if (!init) {
    privileges = (getuid() != geteuid()) || (getgid() != getegid());
    init = true;
  }
  return privileges;
}


void os::init_system_properties_values() {
  // The next steps are taken in the product version:
  //
  // Obtain the JAVA_HOME value from the location of libjvm.so.
  // This library should be located at:
  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
  //
  // If "/jre/lib/" appears at the right place in the path, then we
  // assume libjvm.so is installed in a JDK and we use this path.
  //
  // Otherwise exit with message: "Could not create the Java virtual machine."
  //
  // The following extra steps are taken in the debugging version:
  //
  // If "/jre/lib/" does NOT appear at the right place in the path
  // instead of exit check for $JAVA_HOME environment variable.
  //
  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
  // then we append a fake suffix "hotspot/libjvm.so" to this path so
  // it looks like libjvm.so is installed there
  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
  //
  // Otherwise exit.
  //
  // Important note: if the location of libjvm.so changes this
  // code needs to be changed accordingly.

// Base path of extensions installed on the system.
#define SYS_EXT_DIR     "/usr/jdk/packages"
#define EXTENSIONS_DIR  "/lib/ext"

  // Buffer that fits several sprintfs.
  // Note that the space for the colon and the trailing null are provided
  // by the nulls included by the sizeof operator.
  const size_t bufsize =
    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
         sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);

  // sysclasspath, java_home, dll_dir
  {
    char *pslash;
    os::jvm_path(buf, bufsize);

    // Found the full path to libjvm.so.
    // Now cut the path to <java_home>/jre if we can.
    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
    pslash = strrchr(buf, '/');
    if (pslash != NULL) {
      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
    }
    Arguments::set_dll_dir(buf);

    if (pslash != NULL) {
      pslash = strrchr(buf, '/');
      if (pslash != NULL) {
        *pslash = '\0';        // Get rid of /lib.
      }
    }
    Arguments::set_java_home(buf);
    if (!set_boot_path('/', ':')) {
      vm_exit_during_initialization("Failed setting boot class path.", NULL);
    }
  }

  // Where to look for native libraries.
  {
    // Use dlinfo() to determine the correct java.library.path.
    //
    // If we're launched by the Java launcher, and the user
    // does not set java.library.path explicitly on the commandline,
    // the Java launcher sets LD_LIBRARY_PATH for us and unsets
    // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
    // dlinfo returns LD_LIBRARY_PATH + crle settings (including
    // /usr/lib), which is exactly what we want.
    //
    // If the user does set java.library.path, it completely
    // overwrites this setting, and always has.
    //
    // If we're not launched by the Java launcher, we may
    // get here with any/all of the LD_LIBRARY_PATH[_32|64]
    // settings.  Again, dlinfo does exactly what we want.

    Dl_serinfo     info_sz, *info = &info_sz;
    Dl_serpath     *path;
    char           *library_path;
    char           *common_path = buf;

    // Determine search path count and required buffer size.
    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
      FREE_C_HEAP_ARRAY(char, buf);
      vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
    }

    // Allocate new buffer and initialize.
    info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
    info->dls_size = info_sz.dls_size;
    info->dls_cnt = info_sz.dls_cnt;

    // Obtain search path information.
    if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
      FREE_C_HEAP_ARRAY(char, buf);
      FREE_C_HEAP_ARRAY(char, info);
      vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
    }

    path = &info->dls_serpath[0];

    // Note: Due to a legacy implementation, most of the library path
    // is set in the launcher. This was to accomodate linking restrictions
    // on legacy Solaris implementations (which are no longer supported).
    // Eventually, all the library path setting will be done here.
    //
    // However, to prevent the proliferation of improperly built native
    // libraries, the new path component /usr/jdk/packages is added here.

    // Construct the invariant part of ld_library_path.
    sprintf(common_path, SYS_EXT_DIR "/lib");

    // Struct size is more than sufficient for the path components obtained
    // through the dlinfo() call, so only add additional space for the path
    // components explicitly added here.
    size_t library_path_size = info->dls_size + strlen(common_path);
    library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
    library_path[0] = '\0';

    // Construct the desired Java library path from the linker's library
    // search path.
    //
    // For compatibility, it is optimal that we insert the additional path
    // components specific to the Java VM after those components specified
    // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
    // infrastructure.
    if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
      strcpy(library_path, common_path);
    } else {
      int inserted = 0;
      int i;
      for (i = 0; i < info->dls_cnt; i++, path++) {
        uint_t flags = path->dls_flags & LA_SER_MASK;
        if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
          strcat(library_path, common_path);
          strcat(library_path, os::path_separator());
          inserted = 1;
        }
        strcat(library_path, path->dls_name);
        strcat(library_path, os::path_separator());
      }
      // Eliminate trailing path separator.
      library_path[strlen(library_path)-1] = '\0';
    }

    // happens before argument parsing - can't use a trace flag
    // tty->print_raw("init_system_properties_values: native lib path: ");
    // tty->print_raw_cr(library_path);

    // Callee copies into its own buffer.
    Arguments::set_library_path(library_path);

    FREE_C_HEAP_ARRAY(char, library_path);
    FREE_C_HEAP_ARRAY(char, info);
  }

  // Extensions directories.
  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
  Arguments::set_ext_dirs(buf);

  FREE_C_HEAP_ARRAY(char, buf);

#undef SYS_EXT_DIR
#undef EXTENSIONS_DIR
}

void os::breakpoint() {
  BREAKPOINT;
}

bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
  address  stackStart  = (address)thread->stack_base();
  address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
  if (sp < stackStart && sp >= stackEnd) return true;
  return false;
}

extern "C" void breakpoint() {
  // use debugger to set breakpoint here
}

static thread_t main_thread;

// Thread start routine for all newly created threads
extern "C" void* thread_native_entry(void* thread_addr) {

  Thread* thread = (Thread*)thread_addr;

  thread->record_stack_base_and_size();

  // Try to randomize the cache line index of hot stack frames.
  // This helps when threads of the same stack traces evict each other's
  // cache lines. The threads can be either from the same JVM instance, or
  // from different JVM instances. The benefit is especially true for
  // processors with hyperthreading technology.
  static int counter = 0;
  int pid = os::current_process_id();
  alloca(((pid ^ counter++) & 7) * 128);

  int prio;

  thread->initialize_thread_current();

  OSThread* osthr = thread->osthread();

  osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound

  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
    os::current_thread_id());

  if (UseNUMA) {
    int lgrp_id = os::numa_get_group_id();
    if (lgrp_id != -1) {
      thread->set_lgrp_id(lgrp_id);
    }
  }

  // Our priority was set when we were created, and stored in the
  // osthread, but couldn't be passed through to our LWP until now.
  // So read back the priority and set it again.

  if (osthr->thread_id() != -1) {
    if (UseThreadPriorities) {
      int prio = osthr->native_priority();
      if (ThreadPriorityVerbose) {
        tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
                      INTPTR_FORMAT ", setting priority: %d\n",
                      osthr->thread_id(), osthr->lwp_id(), prio);
      }
      os::set_native_priority(thread, prio);
    }
  } else if (ThreadPriorityVerbose) {
    warning("Can't set priority in _start routine, thread id hasn't been set\n");
  }

  assert(osthr->get_state() == RUNNABLE, "invalid os thread state");

  // initialize signal mask for this thread
  os::Solaris::hotspot_sigmask(thread);

  os::Solaris::init_thread_fpu_state();
  std::set_terminate(_handle_uncaught_cxx_exception);

  thread->call_run();

  // Note: at this point the thread object may already have deleted itself.
  // Do not dereference it from here on out.

  // One less thread is executing
  // When the VMThread gets here, the main thread may have already exited
  // which frees the CodeHeap containing the Atomic::dec code
  if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
    Atomic::dec(&os::Solaris::_os_thread_count);
  }

  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());

  if (UseDetachedThreads) {
    thr_exit(NULL);
    ShouldNotReachHere();
  }
  return NULL;
}

static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);
  if (osthread == NULL) return NULL;

  // Store info on the Solaris thread into the OSThread
  osthread->set_thread_id(thread_id);
  osthread->set_lwp_id(_lwp_self());

  if (UseNUMA) {
    int lgrp_id = os::numa_get_group_id();
    if (lgrp_id != -1) {
      thread->set_lgrp_id(lgrp_id);
    }
  }

  if (ThreadPriorityVerbose) {
    tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
                  osthread->thread_id(), osthread->lwp_id());
  }

  // Initial thread state is INITIALIZED, not SUSPENDED
  osthread->set_state(INITIALIZED);

  return osthread;
}

void os::Solaris::hotspot_sigmask(Thread* thread) {
  //Save caller's signal mask
  sigset_t sigmask;
  pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
  OSThread *osthread = thread->osthread();
  osthread->set_caller_sigmask(sigmask);

  pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  if (!ReduceSignalUsage) {
    if (thread->is_VM_thread()) {
      // Only the VM thread handles BREAK_SIGNAL ...
      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
    } else {
      // ... all other threads block BREAK_SIGNAL
      assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
    }
  }
}

bool os::create_attached_thread(JavaThread* thread) {
#ifdef ASSERT
  thread->verify_not_published();
#endif
  OSThread* osthread = create_os_thread(thread, thr_self());
  if (osthread == NULL) {
    return false;
  }

  // Initial thread state is RUNNABLE
  osthread->set_state(RUNNABLE);
  thread->set_osthread(osthread);

  // initialize signal mask for this thread
  // and save the caller's signal mask
  os::Solaris::hotspot_sigmask(thread);

  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
    os::current_thread_id());

  return true;
}

bool os::create_main_thread(JavaThread* thread) {
#ifdef ASSERT
  thread->verify_not_published();
#endif
  if (_starting_thread == NULL) {
    _starting_thread = create_os_thread(thread, main_thread);
    if (_starting_thread == NULL) {
      return false;
    }
  }

  // The primodial thread is runnable from the start
  _starting_thread->set_state(RUNNABLE);

  thread->set_osthread(_starting_thread);

  // initialize signal mask for this thread
  // and save the caller's signal mask
  os::Solaris::hotspot_sigmask(thread);

  return true;
}

// Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
static char* describe_thr_create_attributes(char* buf, size_t buflen,
                                            size_t stacksize, long flags) {
  stringStream ss(buf, buflen);
  ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
  ss.print("flags: ");
  #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
  #define ALL(X) \
    X(THR_SUSPENDED) \
    X(THR_DETACHED) \
    X(THR_BOUND) \
    X(THR_NEW_LWP) \
    X(THR_DAEMON)
  ALL(PRINT_FLAG)
  #undef ALL
  #undef PRINT_FLAG
  return buf;
}

// return default stack size for thr_type
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
  // default stack size when not specified by caller is 1M (2M for LP64)
  size_t s = (BytesPerWord >> 2) * K * K;
  return s;
}

bool os::create_thread(Thread* thread, ThreadType thr_type,
                       size_t req_stack_size) {
  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);
  if (osthread == NULL) {
    return false;
  }

  if (ThreadPriorityVerbose) {
    char *thrtyp;
    switch (thr_type) {
    case vm_thread:
      thrtyp = (char *)"vm";
      break;
    case cgc_thread:
      thrtyp = (char *)"cgc";
      break;
    case pgc_thread:
      thrtyp = (char *)"pgc";
      break;
    case java_thread:
      thrtyp = (char *)"java";
      break;
    case compiler_thread:
      thrtyp = (char *)"compiler";
      break;
    case watcher_thread:
      thrtyp = (char *)"watcher";
      break;
    default:
      thrtyp = (char *)"unknown";
      break;
    }
    tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  }

  // calculate stack size if it's not specified by caller
  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);

  // Initial state is ALLOCATED but not INITIALIZED
  osthread->set_state(ALLOCATED);

  if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
    // We got lots of threads. Check if we still have some address space left.
    // Need to be at least 5Mb of unreserved address space. We do check by
    // trying to reserve some.
    const size_t VirtualMemoryBangSize = 20*K*K;
    char* mem = os::reserve_memory(VirtualMemoryBangSize);
    if (mem == NULL) {
      delete osthread;
      return false;
    } else {
      // Release the memory again
      os::release_memory(mem, VirtualMemoryBangSize);
    }
  }

  // Setup osthread because the child thread may need it.
  thread->set_osthread(osthread);

  // Create the Solaris thread
  thread_t tid = 0;
  long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
  int      status;

  // Mark that we don't have an lwp or thread id yet.
  // In case we attempt to set the priority before the thread starts.
  osthread->set_lwp_id(-1);
  osthread->set_thread_id(-1);

  status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);

  char buf[64];
  if (status == 0) {
    log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
      (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
  } else {
    log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
      os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
    // Log some OS information which might explain why creating the thread failed.
    log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
    LogStream st(Log(os, thread)::info());
    os::Posix::print_rlimit_info(&st);
    os::print_memory_info(&st);
  }

  if (status != 0) {
    thread->set_osthread(NULL);
    // Need to clean up stuff we've allocated so far
    delete osthread;
    return false;
  }

  Atomic::inc(&os::Solaris::_os_thread_count);

  // Store info on the Solaris thread into the OSThread
  osthread->set_thread_id(tid);

  // Remember that we created this thread so we can set priority on it
  osthread->set_vm_created();

  // Most thread types will set an explicit priority before starting the thread,
  // but for those that don't we need a valid value to read back in thread_native_entry.
  osthread->set_native_priority(NormPriority);

  // Initial thread state is INITIALIZED, not SUSPENDED
  osthread->set_state(INITIALIZED);

  // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  return true;
}

debug_only(static bool signal_sets_initialized = false);
static sigset_t unblocked_sigs, vm_sigs;

void os::Solaris::signal_sets_init() {
  // Should also have an assertion stating we are still single-threaded.
  assert(!signal_sets_initialized, "Already initialized");
  // Fill in signals that are necessarily unblocked for all threads in
  // the VM. Currently, we unblock the following signals:
  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  //                         by -Xrs (=ReduceSignalUsage));
  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  // the dispositions or masks wrt these signals.
  // Programs embedding the VM that want to use the above signals for their
  // own purposes must, at this time, use the "-Xrs" option to prevent
  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  // (See bug 4345157, and other related bugs).
  // In reality, though, unblocking these signals is really a nop, since
  // these signals are not blocked by default.
  sigemptyset(&unblocked_sigs);
  sigaddset(&unblocked_sigs, SIGILL);
  sigaddset(&unblocked_sigs, SIGSEGV);
  sigaddset(&unblocked_sigs, SIGBUS);
  sigaddset(&unblocked_sigs, SIGFPE);
  sigaddset(&unblocked_sigs, ASYNC_SIGNAL);

  if (!ReduceSignalUsage) {
    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
    }
    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
    }
    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
    }
  }
  // Fill in signals that are blocked by all but the VM thread.
  sigemptyset(&vm_sigs);
  if (!ReduceSignalUsage) {
    sigaddset(&vm_sigs, BREAK_SIGNAL);
  }
  debug_only(signal_sets_initialized = true);

  // For diagnostics only used in run_periodic_checks
  sigemptyset(&check_signal_done);
}

// These are signals that are unblocked while a thread is running Java.
// (For some reason, they get blocked by default.)
sigset_t* os::Solaris::unblocked_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &unblocked_sigs;
}

// These are the signals that are blocked while a (non-VM) thread is
// running Java. Only the VM thread handles these signals.
sigset_t* os::Solaris::vm_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &vm_sigs;
}

// CR 7190089: on Solaris, primordial thread's stack needs adjusting.
// Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
  assert(is_primordial_thread(), "Call only for primordial thread");

  JavaThread* jt = (JavaThread *)thr;
  assert(jt != NULL, "Sanity check");
  size_t stack_size;
  address base = jt->stack_base();
  if (Arguments::created_by_java_launcher()) {
    // Use 2MB to allow for Solaris 7 64 bit mode.
    stack_size = JavaThread::stack_size_at_create() == 0
      ? 2048*K : JavaThread::stack_size_at_create();

    // There are rare cases when we may have already used more than
    // the basic stack size allotment before this method is invoked.
    // Attempt to allow for a normally sized java_stack.
    size_t current_stack_offset = (size_t)(base - (address)&stack_size);
    stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  } else {
    // 6269555: If we were not created by a Java launcher, i.e. if we are
    // running embedded in a native application, treat the primordial thread
    // as much like a native attached thread as possible.  This means using
    // the current stack size from thr_stksegment(), unless it is too large
    // to reliably setup guard pages.  A reasonable max size is 8MB.
    size_t current_size = os::current_stack_size();
    // This should never happen, but just in case....
    if (current_size == 0) current_size = 2 * K * K;
    stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  }
  address bottom = align_up(base - stack_size, os::vm_page_size());;
  stack_size = (size_t)(base - bottom);

  assert(stack_size > 0, "Stack size calculation problem");

  if (stack_size > jt->stack_size()) {
#ifndef PRODUCT
    struct rlimit limits;
    getrlimit(RLIMIT_STACK, &limits);
    size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
    assert(size >= jt->stack_size(), "Stack size problem in main thread");
#endif
    tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
                  "(Stack sizes are rounded up to a multiple of the system page size.)\n"
                  "See limit(1) to increase the stack size limit.",
                  stack_size / K, jt->stack_size() / K);
    vm_exit(1);
  }
  assert(jt->stack_size() >= stack_size,
         "Attempt to map more stack than was allocated");
  jt->set_stack_size(stack_size);

}



// Free Solaris resources related to the OSThread
void os::free_thread(OSThread* osthread) {
  assert(osthread != NULL, "os::free_thread but osthread not set");

  // We are told to free resources of the argument thread,
  // but we can only really operate on the current thread.
  assert(Thread::current()->osthread() == osthread,
         "os::free_thread but not current thread");

  // Restore caller's signal mask
  sigset_t sigmask = osthread->caller_sigmask();
  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);

  delete osthread;
}

void os::pd_start_thread(Thread* thread) {
  int status = thr_continue(thread->osthread()->thread_id());
  assert_status(status == 0, status, "thr_continue failed");
}


intx os::current_thread_id() {
  return (intx)thr_self();
}

static pid_t _initial_pid = 0;

int os::current_process_id() {
  return (int)(_initial_pid ? _initial_pid : getpid());
}

// gethrtime() should be monotonic according to the documentation,
// but some virtualized platforms are known to break this guarantee.
// getTimeNanos() must be guaranteed not to move backwards, so we
// are forced to add a check here.
inline hrtime_t getTimeNanos() {
  const hrtime_t now = gethrtime();
  const hrtime_t prev = max_hrtime;
  if (now <= prev) {
    return prev;   // same or retrograde time;
  }
  const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
  assert(obsv >= prev, "invariant");   // Monotonicity
  // If the CAS succeeded then we're done and return "now".
  // If the CAS failed and the observed value "obsv" is >= now then
  // we should return "obsv".  If the CAS failed and now > obsv > prv then
  // some other thread raced this thread and installed a new value, in which case
  // we could either (a) retry the entire operation, (b) retry trying to install now
  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
  // we might discard a higher "now" value in deference to a slightly lower but freshly
  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
  // to (a) or (b) -- and greatly reduces coherence traffic.
  // We might also condition (c) on the magnitude of the delta between obsv and now.
  // Avoiding excessive CAS operations to hot RW locations is critical.
  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
  return (prev == obsv) ? now : obsv;
}

// Time since start-up in seconds to a fine granularity.
// Used by VMSelfDestructTimer and the MemProfiler.
double os::elapsedTime() {
  return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
}

jlong os::elapsed_counter() {
  return (jlong)(getTimeNanos() - first_hrtime);
}

jlong os::elapsed_frequency() {
  return hrtime_hz;
}

// Return the real, user, and system times in seconds from an
// arbitrary fixed point in the past.
bool os::getTimesSecs(double* process_real_time,
                      double* process_user_time,
                      double* process_system_time) {
  struct tms ticks;
  clock_t real_ticks = times(&ticks);

  if (real_ticks == (clock_t) (-1)) {
    return false;
  } else {
    double ticks_per_second = (double) clock_tics_per_sec;
    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
    // For consistency return the real time from getTimeNanos()
    // converted to seconds.
    *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);

    return true;
  }
}

bool os::supports_vtime() { return true; }
bool os::enable_vtime() { return false; }
bool os::vtime_enabled() { return false; }

double os::elapsedVTime() {
  return (double)gethrvtime() / (double)hrtime_hz;
}

// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
jlong os::javaTimeMillis() {
  timeval t;
  if (gettimeofday(&t, NULL) == -1) {
    fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
  }
  return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
}

// Must return seconds+nanos since Jan 1 1970. This must use the same
// time source as javaTimeMillis and can't use get_nsec_fromepoch as
// we need better than 1ms accuracy
void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
  timeval t;
  if (gettimeofday(&t, NULL) == -1) {
    fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
  }
  seconds = jlong(t.tv_sec);
  nanos = jlong(t.tv_usec) * 1000;
}


jlong os::javaTimeNanos() {
  return (jlong)getTimeNanos();
}

void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
}

char * os::local_time_string(char *buf, size_t buflen) {
  struct tm t;
  time_t long_time;
  time(&long_time);
  localtime_r(&long_time, &t);
  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
               t.tm_hour, t.tm_min, t.tm_sec);
  return buf;
}

// Note: os::shutdown() might be called very early during initialization, or
// called from signal handler. Before adding something to os::shutdown(), make
// sure it is async-safe and can handle partially initialized VM.
void os::shutdown() {

  // allow PerfMemory to attempt cleanup of any persistent resources
  perfMemory_exit();

  // needs to remove object in file system
  AttachListener::abort();

  // flush buffered output, finish log files
  ostream_abort();

  // Check for abort hook
  abort_hook_t abort_hook = Arguments::abort_hook();
  if (abort_hook != NULL) {
    abort_hook();
  }
}

// Note: os::abort() might be called very early during initialization, or
// called from signal handler. Before adding something to os::abort(), make
// sure it is async-safe and can handle partially initialized VM.
void os::abort(bool dump_core, void* siginfo, const void* context) {
  os::shutdown();
  if (dump_core) {
#ifndef PRODUCT
    fdStream out(defaultStream::output_fd());
    out.print_raw("Current thread is ");
    char buf[16];
    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
    out.print_raw_cr(buf);
    out.print_raw_cr("Dumping core ...");
#endif
    ::abort(); // dump core (for debugging)
  }

  ::exit(1);
}

// Die immediately, no exit hook, no abort hook, no cleanup.
void os::die() {
  ::abort(); // dump core (for debugging)
}

// DLL functions

const char* os::dll_file_extension() { return ".so"; }

// This must be hard coded because it's the system's temporary
// directory not the java application's temp directory, ala java.io.tmpdir.
const char* os::get_temp_directory() { return "/tmp"; }

// check if addr is inside libjvm.so
bool os::address_is_in_vm(address addr) {
  static address libjvm_base_addr;
  Dl_info dlinfo;

  if (libjvm_base_addr == NULL) {
    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
      libjvm_base_addr = (address)dlinfo.dli_fbase;
    }
    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  }

  if (dladdr((void *)addr, &dlinfo) != 0) {
    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  }

  return false;
}

typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
static dladdr1_func_type dladdr1_func = NULL;

bool os::dll_address_to_function_name(address addr, char *buf,
                                      int buflen, int * offset,
                                      bool demangle) {
  // buf is not optional, but offset is optional
  assert(buf != NULL, "sanity check");

  Dl_info dlinfo;

  // dladdr1_func was initialized in os::init()
  if (dladdr1_func != NULL) {
    // yes, we have dladdr1

    // Support for dladdr1 is checked at runtime; it may be
    // available even if the vm is built on a machine that does
    // not have dladdr1 support.  Make sure there is a value for
    // RTLD_DL_SYMENT.
#ifndef RTLD_DL_SYMENT
  #define RTLD_DL_SYMENT 1
#endif
#ifdef _LP64
    Elf64_Sym * info;
#else
    Elf32_Sym * info;
#endif
    if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
                     RTLD_DL_SYMENT) != 0) {
      // see if we have a matching symbol that covers our address
      if (dlinfo.dli_saddr != NULL &&
          (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
        if (dlinfo.dli_sname != NULL) {
          if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
            jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
          }
          if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
          return true;
        }
      }
      // no matching symbol so try for just file info
      if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
        if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
                            buf, buflen, offset, dlinfo.dli_fname, demangle)) {
          return true;
        }
      }
    }
    buf[0] = '\0';
    if (offset != NULL) *offset  = -1;
    return false;
  }

  // no, only dladdr is available
  if (dladdr((void *)addr, &dlinfo) != 0) {
    // see if we have a matching symbol
    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
        jio_snprintf(buf, buflen, dlinfo.dli_sname);
      }
      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
      return true;
    }
    // no matching symbol so try for just file info
    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
        return true;
      }
    }
  }
  buf[0] = '\0';
  if (offset != NULL) *offset  = -1;
  return false;
}

bool os::dll_address_to_library_name(address addr, char* buf,
                                     int buflen, int* offset) {
  // buf is not optional, but offset is optional
  assert(buf != NULL, "sanity check");

  Dl_info dlinfo;

  if (dladdr((void*)addr, &dlinfo) != 0) {
    if (dlinfo.dli_fname != NULL) {
      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
    }
    if (dlinfo.dli_fbase != NULL && offset != NULL) {
      *offset = addr - (address)dlinfo.dli_fbase;
    }
    return true;
  }

  buf[0] = '\0';
  if (offset) *offset = -1;
  return false;
}

int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
  Dl_info dli;
  // Sanity check?
  if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
      dli.dli_fname == NULL) {
    return 1;
  }

  void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
  if (handle == NULL) {
    return 1;
  }

  Link_map *map;
  dlinfo(handle, RTLD_DI_LINKMAP, &map);
  if (map == NULL) {
    dlclose(handle);
    return 1;
  }

  while (map->l_prev != NULL) {
    map = map->l_prev;
  }

  while (map != NULL) {
    // Iterate through all map entries and call callback with fields of interest
    if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
      dlclose(handle);
      return 1;
    }
    map = map->l_next;
  }

  dlclose(handle);
  return 0;
}

int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
  outputStream * out = (outputStream *) param;
  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
  return 0;
}

void os::print_dll_info(outputStream * st) {
  st->print_cr("Dynamic libraries:"); st->flush();
  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
    st->print_cr("Error: Cannot print dynamic libraries.");
  }
}

// Loads .dll/.so and
// in case of error it checks if .dll/.so was built for the
// same architecture as Hotspot is running on

void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
  void * result= ::dlopen(filename, RTLD_LAZY);
  if (result != NULL) {
    // Successful loading
    return result;
  }

  Elf32_Ehdr elf_head;

  // Read system error message into ebuf
  // It may or may not be overwritten below
  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  ebuf[ebuflen-1]='\0';
  int diag_msg_max_length=ebuflen-strlen(ebuf);
  char* diag_msg_buf=ebuf+strlen(ebuf);

  if (diag_msg_max_length==0) {
    // No more space in ebuf for additional diagnostics message
    return NULL;
  }


  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);

  if (file_descriptor < 0) {
    // Can't open library, report dlerror() message
    return NULL;
  }

  bool failed_to_read_elf_head=
    (sizeof(elf_head)!=
     (::read(file_descriptor, &elf_head,sizeof(elf_head))));

  ::close(file_descriptor);
  if (failed_to_read_elf_head) {
    // file i/o error - report dlerror() msg
    return NULL;
  }

  typedef struct {
    Elf32_Half    code;         // Actual value as defined in elf.h
    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
    unsigned char elf_class;    // 32 or 64 bit
    unsigned char endianess;    // MSB or LSB
    char*         name;         // String representation
  } arch_t;

  static const arch_t arch_array[]={
    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
    {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  };

#if  (defined IA32)
  static  Elf32_Half running_arch_code=EM_386;
#elif   (defined AMD64)
  static  Elf32_Half running_arch_code=EM_X86_64;
#elif  (defined IA64)
  static  Elf32_Half running_arch_code=EM_IA_64;
#elif  (defined __sparc) && (defined _LP64)
  static  Elf32_Half running_arch_code=EM_SPARCV9;
#elif  (defined __sparc) && (!defined _LP64)
  static  Elf32_Half running_arch_code=EM_SPARC;
#elif  (defined __powerpc64__)
  static  Elf32_Half running_arch_code=EM_PPC64;
#elif  (defined __powerpc__)
  static  Elf32_Half running_arch_code=EM_PPC;
#elif (defined ARM)
  static  Elf32_Half running_arch_code=EM_ARM;
#else
  #error Method os::dll_load requires that one of following is defined:\
       IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
#endif

  // Identify compatability class for VM's architecture and library's architecture
  // Obtain string descriptions for architectures

  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  int running_arch_index=-1;

  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
    if (running_arch_code == arch_array[i].code) {
      running_arch_index    = i;
    }
    if (lib_arch.code == arch_array[i].code) {
      lib_arch.compat_class = arch_array[i].compat_class;
      lib_arch.name         = arch_array[i].name;
    }
  }

  assert(running_arch_index != -1,
         "Didn't find running architecture code (running_arch_code) in arch_array");
  if (running_arch_index == -1) {
    // Even though running architecture detection failed
    // we may still continue with reporting dlerror() message
    return NULL;
  }

  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
    return NULL;
  }

  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
    return NULL;
  }

  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
    if (lib_arch.name!=NULL) {
      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
                 lib_arch.name, arch_array[running_arch_index].name);
    } else {
      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
                 lib_arch.code,
                 arch_array[running_arch_index].name);
    }
  }

  return NULL;
}

void* os::dll_lookup(void* handle, const char* name) {
  return dlsym(handle, name);
}

void* os::get_default_process_handle() {
  return (void*)::dlopen(NULL, RTLD_LAZY);
}

static inline time_t get_mtime(const char* filename) {
  struct stat st;
  int ret = os::stat(filename, &st);
  assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
  return st.st_mtime;
}

int os::compare_file_modified_times(const char* file1, const char* file2) {
  time_t t1 = get_mtime(file1);
  time_t t2 = get_mtime(file2);
  return t1 - t2;
}

static bool _print_ascii_file(const char* filename, outputStream* st) {
  int fd = ::open(filename, O_RDONLY);
  if (fd == -1) {
    return false;
  }

  char buf[32];
  int bytes;
  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
    st->print_raw(buf, bytes);
  }

  ::close(fd);

  return true;
}

void os::print_os_info_brief(outputStream* st) {
  os::Solaris::print_distro_info(st);

  os::Posix::print_uname_info(st);

  os::Solaris::print_libversion_info(st);
}

void os::print_os_info(outputStream* st) {
  st->print("OS:");

  os::Solaris::print_distro_info(st);

  os::Posix::print_uname_info(st);

  os::Solaris::print_libversion_info(st);

  os::Posix::print_rlimit_info(st);

  os::Posix::print_load_average(st);
}

void os::Solaris::print_distro_info(outputStream* st) {
  if (!_print_ascii_file("/etc/release", st)) {
    st->print("Solaris");
  }
  st->cr();
}

void os::get_summary_os_info(char* buf, size_t buflen) {
  strncpy(buf, "Solaris", buflen);  // default to plain solaris
  FILE* fp = fopen("/etc/release", "r");
  if (fp != NULL) {
    char tmp[256];
    // Only get the first line and chop out everything but the os name.
    if (fgets(tmp, sizeof(tmp), fp)) {
      char* ptr = tmp;
      // skip past whitespace characters
      while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
      if (*ptr != '\0') {
        char* nl = strchr(ptr, '\n');
        if (nl != NULL) *nl = '\0';
        strncpy(buf, ptr, buflen);
      }
    }
    fclose(fp);
  }
}

void os::Solaris::print_libversion_info(outputStream* st) {
  st->print("  (T2 libthread)");
  st->cr();
}

static bool check_addr0(outputStream* st) {
  jboolean status = false;
  const int read_chunk = 200;
  int ret = 0;
  int nmap = 0;
  int fd = ::open("/proc/self/map",O_RDONLY);
  if (fd >= 0) {
    prmap_t *p = NULL;
    char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
    if (NULL == mbuff) {
      ::close(fd);
      return status;
    }
    while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
      //check if read() has not read partial data
      if( 0 != ret % sizeof(prmap_t)){
        break;
      }
      nmap = ret / sizeof(prmap_t);
      p = (prmap_t *)mbuff;
      for(int i = 0; i < nmap; i++){
        if (p->pr_vaddr == 0x0) {
          st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
          st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
          st->print("Access: ");
          st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
          st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
          st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
          st->cr();
          status = true;
        }
        p++;
      }
    }
    free(mbuff);
    ::close(fd);
  }
  return status;
}

void os::get_summary_cpu_info(char* buf, size_t buflen) {
  // Get MHz with system call. We don't seem to already have this.
  processor_info_t stats;
  processorid_t id = getcpuid();
  int clock = 0;
  if (processor_info(id, &stats) != -1) {
    clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
  }
#ifdef AMD64
  snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
#else
  // must be sparc
  snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
#endif
}

void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
  // Nothing to do for now.
}

void os::print_memory_info(outputStream* st) {
  st->print("Memory:");
  st->print(" %dk page", os::vm_page_size()>>10);
  st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  st->cr();
  (void) check_addr0(st);
}

// Moved from whole group, because we need them here for diagnostic
// prints.
static int Maxsignum = 0;
static int *ourSigFlags = NULL;

int os::Solaris::get_our_sigflags(int sig) {
  assert(ourSigFlags!=NULL, "signal data structure not initialized");
  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  return ourSigFlags[sig];
}

void os::Solaris::set_our_sigflags(int sig, int flags) {
  assert(ourSigFlags!=NULL, "signal data structure not initialized");
  assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  ourSigFlags[sig] = flags;
}


static const char* get_signal_handler_name(address handler,
                                           char* buf, int buflen) {
  int offset;
  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  if (found) {
    // skip directory names
    const char *p1, *p2;
    p1 = buf;
    size_t len = strlen(os::file_separator());
    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  } else {
    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  }
  return buf;
}

static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen) {
  struct sigaction sa;

  sigaction(sig, NULL, &sa);

  st->print("%s: ", os::exception_name(sig, buf, buflen));

  address handler = (sa.sa_flags & SA_SIGINFO)
                  ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
                  : CAST_FROM_FN_PTR(address, sa.sa_handler);

  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
    st->print("SIG_DFL");
  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
    st->print("SIG_IGN");
  } else {
    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  }

  st->print(", sa_mask[0]=");
  os::Posix::print_signal_set_short(st, &sa.sa_mask);

  address rh = VMError::get_resetted_sighandler(sig);
  // May be, handler was resetted by VMError?
  if (rh != NULL) {
    handler = rh;
    sa.sa_flags = VMError::get_resetted_sigflags(sig);
  }

  st->print(", sa_flags=");
  os::Posix::print_sa_flags(st, sa.sa_flags);

  // Check: is it our handler?
  if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
    // It is our signal handler
    // check for flags
    if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
      st->print(
                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
                os::Solaris::get_our_sigflags(sig));
    }
  }
  st->cr();
}

void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  st->print_cr("Signal Handlers:");
  print_signal_handler(st, SIGSEGV, buf, buflen);
  print_signal_handler(st, SIGBUS , buf, buflen);
  print_signal_handler(st, SIGFPE , buf, buflen);
  print_signal_handler(st, SIGPIPE, buf, buflen);
  print_signal_handler(st, SIGXFSZ, buf, buflen);
  print_signal_handler(st, SIGILL , buf, buflen);
  print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
}

static char saved_jvm_path[MAXPATHLEN] = { 0 };

// Find the full path to the current module, libjvm.so
void os::jvm_path(char *buf, jint buflen) {
  // Error checking.
  if (buflen < MAXPATHLEN) {
    assert(false, "must use a large-enough buffer");
    buf[0] = '\0';
    return;
  }
  // Lazy resolve the path to current module.
  if (saved_jvm_path[0] != 0) {
    strcpy(buf, saved_jvm_path);
    return;
  }

  Dl_info dlinfo;
  int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  assert(ret != 0, "cannot locate libjvm");
  if (ret != 0 && dlinfo.dli_fname != NULL) {
    if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
      return;
    }
  } else {
    buf[0] = '\0';
    return;
  }

  if (Arguments::sun_java_launcher_is_altjvm()) {
    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
    // If "/jre/lib/" appears at the right place in the string, then
    // assume we are installed in a JDK and we're done.  Otherwise, check
    // for a JAVA_HOME environment variable and fix up the path so it
    // looks like libjvm.so is installed there (append a fake suffix
    // hotspot/libjvm.so).
    const char *p = buf + strlen(buf) - 1;
    for (int count = 0; p > buf && count < 5; ++count) {
      for (--p; p > buf && *p != '/'; --p)
        /* empty */ ;
    }

    if (strncmp(p, "/jre/lib/", 9) != 0) {
      // Look for JAVA_HOME in the environment.
      char* java_home_var = ::getenv("JAVA_HOME");
      if (java_home_var != NULL && java_home_var[0] != 0) {
        char* jrelib_p;
        int   len;

        // Check the current module name "libjvm.so".
        p = strrchr(buf, '/');
        assert(strstr(p, "/libjvm") == p, "invalid library name");

        if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
          return;
        }
        // determine if this is a legacy image or modules image
        // modules image doesn't have "jre" subdirectory
        len = strlen(buf);
        assert(len < buflen, "Ran out of buffer space");
        jrelib_p = buf + len;
        snprintf(jrelib_p, buflen-len, "/jre/lib");
        if (0 != access(buf, F_OK)) {
          snprintf(jrelib_p, buflen-len, "/lib");
        }

        if (0 == access(buf, F_OK)) {
          // Use current module name "libjvm.so"
          len = strlen(buf);
          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
        } else {
          // Go back to path of .so
          if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
            return;
          }
        }
      }
    }
  }

  strncpy(saved_jvm_path, buf, MAXPATHLEN);
  saved_jvm_path[MAXPATHLEN - 1] = '\0';
}


void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  // no prefix required, not even "_"
}


void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  // no suffix required
}

// sun.misc.Signal

extern "C" {
  static void UserHandler(int sig, void *siginfo, void *context) {
    // Ctrl-C is pressed during error reporting, likely because the error
    // handler fails to abort. Let VM die immediately.
    if (sig == SIGINT && VMError::is_error_reported()) {
      os::die();
    }

    os::signal_notify(sig);
    // We do not need to reinstate the signal handler each time...
  }
}

void* os::user_handler() {
  return CAST_FROM_FN_PTR(void*, UserHandler);
}

extern "C" {
  typedef void (*sa_handler_t)(int);
  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
}

void* os::signal(int signal_number, void* handler) {
  struct sigaction sigAct, oldSigAct;
  sigfillset(&(sigAct.sa_mask));
  sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);

  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
    // -1 means registration failed
    return (void *)-1;
  }

  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
}

void os::signal_raise(int signal_number) {
  raise(signal_number);
}

// The following code is moved from os.cpp for making this
// code platform specific, which it is by its very nature.

// a counter for each possible signal value
static int Sigexit = 0;
static jint *pending_signals = NULL;
static int *preinstalled_sigs = NULL;
static struct sigaction *chainedsigactions = NULL;
static Semaphore* sig_sem = NULL;

int os::sigexitnum_pd() {
  assert(Sigexit > 0, "signal memory not yet initialized");
  return Sigexit;
}

void os::Solaris::init_signal_mem() {
  // Initialize signal structures
  Maxsignum = SIGRTMAX;
  Sigexit = Maxsignum+1;
  assert(Maxsignum >0, "Unable to obtain max signal number");

  // Initialize signal structures
  // pending_signals has one int per signal
  // The additional signal is for SIGEXIT - exit signal to signal_thread
  pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
  memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));

  if (UseSignalChaining) {
    chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
                                                   * (Maxsignum + 1), mtInternal);
    memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
    preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
    memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  }
  ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
  memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
}

static void jdk_misc_signal_init() {
  // Initialize signal semaphore
  sig_sem = new Semaphore();
}

void os::signal_notify(int sig) {
  if (sig_sem != NULL) {
    Atomic::inc(&pending_signals[sig]);
    sig_sem->signal();
  } else {
    // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
    // initialization isn't called.
    assert(ReduceSignalUsage, "signal semaphore should be created");
  }
}

static int check_pending_signals() {
  int ret;
  while (true) {
    for (int i = 0; i < Sigexit + 1; i++) {
      jint n = pending_signals[i];
      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
        return i;
      }
    }
    JavaThread *thread = JavaThread::current();
    ThreadBlockInVM tbivm(thread);

    bool threadIsSuspended;
    do {
      thread->set_suspend_equivalent();
      sig_sem->wait();

      // were we externally suspended while we were waiting?
      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
      if (threadIsSuspended) {
        // The semaphore has been incremented, but while we were waiting
        // another thread suspended us. We don't want to continue running
        // while suspended because that would surprise the thread that
        // suspended us.
        sig_sem->signal();

        thread->java_suspend_self();
      }
    } while (threadIsSuspended);
  }
}

int os::signal_wait() {
  return check_pending_signals();
}

////////////////////////////////////////////////////////////////////////////////
// Virtual Memory

static int page_size = -1;

int os::vm_page_size() {
  assert(page_size != -1, "must call os::init");
  return page_size;
}

// Solaris allocates memory by pages.
int os::vm_allocation_granularity() {
  assert(page_size != -1, "must call os::init");
  return page_size;
}

static bool recoverable_mmap_error(int err) {
  // See if the error is one we can let the caller handle. This
  // list of errno values comes from the Solaris mmap(2) man page.
  switch (err) {
  case EBADF:
  case EINVAL:
  case ENOTSUP:
    // let the caller deal with these errors
    return true;

  default:
    // Any remaining errors on this OS can cause our reserved mapping
    // to be lost. That can cause confusion where different data
    // structures think they have the same memory mapped. The worst
    // scenario is if both the VM and a library think they have the
    // same memory mapped.
    return false;
  }
}

static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
                                    int err) {
  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
          ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
          os::strerror(err), err);
}

static void warn_fail_commit_memory(char* addr, size_t bytes,
                                    size_t alignment_hint, bool exec,
                                    int err) {
  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
          alignment_hint, exec, os::strerror(err), err);
}

int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  size_t size = bytes;
  char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  if (res != NULL) {
    if (UseNUMAInterleaving) {
      numa_make_global(addr, bytes);
    }
    return 0;
  }

  int err = errno;  // save errno from mmap() call in mmap_chunk()

  if (!recoverable_mmap_error(err)) {
    warn_fail_commit_memory(addr, bytes, exec, err);
    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
  }

  return err;
}

bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
}

void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
                                  const char* mesg) {
  assert(mesg != NULL, "mesg must be specified");
  int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
  if (err != 0) {
    // the caller wants all commit errors to exit with the specified mesg:
    warn_fail_commit_memory(addr, bytes, exec, err);
    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
  }
}

size_t os::Solaris::page_size_for_alignment(size_t alignment) {
  assert(is_aligned(alignment, (size_t) vm_page_size()),
         SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
         alignment, (size_t) vm_page_size());

  for (int i = 0; _page_sizes[i] != 0; i++) {
    if (is_aligned(alignment, _page_sizes[i])) {
      return _page_sizes[i];
    }
  }

  return (size_t) vm_page_size();
}

int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
                                    size_t alignment_hint, bool exec) {
  int err = Solaris::commit_memory_impl(addr, bytes, exec);
  if (err == 0 && UseLargePages && alignment_hint > 0) {
    assert(is_aligned(bytes, alignment_hint),
           SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);

    // The syscall memcntl requires an exact page size (see man memcntl for details).
    size_t page_size = page_size_for_alignment(alignment_hint);
    if (page_size > (size_t) vm_page_size()) {
      (void)Solaris::setup_large_pages(addr, bytes, page_size);
    }
  }
  return err;
}

bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
                          bool exec) {
  return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
}

void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
                                  size_t alignment_hint, bool exec,
                                  const char* mesg) {
  assert(mesg != NULL, "mesg must be specified");
  int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
  if (err != 0) {
    // the caller wants all commit errors to exit with the specified mesg:
    warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
    vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
  }
}

// Uncommit the pages in a specified region.
void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
  if (madvise(addr, bytes, MADV_FREE) < 0) {
    debug_only(warning("MADV_FREE failed."));
    return;
  }
}

bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  return os::commit_memory(addr, size, !ExecMem);
}

bool os::remove_stack_guard_pages(char* addr, size_t size) {
  return os::uncommit_memory(addr, size);
}

// Change the page size in a given range.
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  if (UseLargePages) {
    size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
    if (page_size > (size_t) vm_page_size()) {
      Solaris::setup_large_pages(addr, bytes, page_size);
    }
  }
}

// Tell the OS to make the range local to the first-touching LWP
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
    debug_only(warning("MADV_ACCESS_LWP failed."));
  }
}

// Tell the OS that this range would be accessed from different LWPs.
void os::numa_make_global(char *addr, size_t bytes) {
  assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
    debug_only(warning("MADV_ACCESS_MANY failed."));
  }
}

// Get the number of the locality groups.
size_t os::numa_get_groups_num() {
  size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  return n != -1 ? n : 1;
}

// Get a list of leaf locality groups. A leaf lgroup is group that
// doesn't have any children. Typical leaf group is a CPU or a CPU/memory
// board. An LWP is assigned to one of these groups upon creation.
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
    ids[0] = 0;
    return 1;
  }
  int result_size = 0, top = 1, bottom = 0, cur = 0;
  for (int k = 0; k < size; k++) {
    int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
                                   (Solaris::lgrp_id_t*)&ids[top], size - top);
    if (r == -1) {
      ids[0] = 0;
      return 1;
    }
    if (!r) {
      // That's a leaf node.
      assert(bottom <= cur, "Sanity check");
      // Check if the node has memory
      if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
                                  NULL, 0, LGRP_RSRC_MEM) > 0) {
        ids[bottom++] = ids[cur];
      }
    }
    top += r;
    cur++;
  }
  if (bottom == 0) {
    // Handle a situation, when the OS reports no memory available.
    // Assume UMA architecture.
    ids[0] = 0;
    return 1;
  }
  return bottom;
}

// Detect the topology change. Typically happens during CPU plugging-unplugging.
bool os::numa_topology_changed() {
  int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  if (is_stale != -1 && is_stale) {
    Solaris::lgrp_fini(Solaris::lgrp_cookie());
    Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
    assert(c != 0, "Failure to initialize LGRP API");
    Solaris::set_lgrp_cookie(c);
    return true;
  }
  return false;
}

// Get the group id of the current LWP.
int os::numa_get_group_id() {
  int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  if (lgrp_id == -1) {
    return 0;
  }
  const int size = os::numa_get_groups_num();
  int *ids = (int*)alloca(size * sizeof(int));

  // Get the ids of all lgroups with memory; r is the count.
  int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
                                  (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  if (r <= 0) {
    return 0;
  }
  return ids[os::random() % r];
}

// Request information about the page.
bool os::get_page_info(char *start, page_info* info) {
  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  uint64_t addr = (uintptr_t)start;
  uint64_t outdata[2];
  uint_t validity = 0;

  if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
    return false;
  }

  info->size = 0;
  info->lgrp_id = -1;

  if ((validity & 1) != 0) {
    if ((validity & 2) != 0) {
      info->lgrp_id = outdata[0];
    }
    if ((validity & 4) != 0) {
      info->size = outdata[1];
    }
    return true;
  }
  return false;
}

// Scan the pages from start to end until a page different than
// the one described in the info parameter is encountered.
char *os::scan_pages(char *start, char* end, page_info* page_expected,
                     page_info* page_found) {
  const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
  uint_t validity[MAX_MEMINFO_CNT];

  size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  uint64_t p = (uint64_t)start;
  while (p < (uint64_t)end) {
    addrs[0] = p;
    size_t addrs_count = 1;
    while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
      addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
      addrs_count++;
    }

    if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
      return NULL;
    }

    size_t i = 0;
    for (; i < addrs_count; i++) {
      if ((validity[i] & 1) != 0) {
        if ((validity[i] & 4) != 0) {
          if (outdata[types * i + 1] != page_expected->size) {
            break;
          }
        } else if (page_expected->size != 0) {
          break;
        }

        if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
          if (outdata[types * i] != page_expected->lgrp_id) {
            break;
          }
        }
      } else {
        return NULL;
      }
    }

    if (i < addrs_count) {
      if ((validity[i] & 2) != 0) {
        page_found->lgrp_id = outdata[types * i];
      } else {
        page_found->lgrp_id = -1;
      }
      if ((validity[i] & 4) != 0) {
        page_found->size = outdata[types * i + 1];
      } else {
        page_found->size = 0;
      }
      return (char*)addrs[i];
    }

    p = addrs[addrs_count - 1] + page_size;
  }
  return end;
}

bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  size_t size = bytes;
  // Map uncommitted pages PROT_NONE so we fail early if we touch an
  // uncommitted page. Otherwise, the read/write might succeed if we
  // have enough swap space to back the physical page.
  return
    NULL != Solaris::mmap_chunk(addr, size,
                                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
                                PROT_NONE);
}

char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);

  if (b == MAP_FAILED) {
    return NULL;
  }
  return b;
}

char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
                             size_t alignment_hint, bool fixed) {
  char* addr = requested_addr;
  int flags = MAP_PRIVATE | MAP_NORESERVE;

  assert(!(fixed && (alignment_hint > 0)),
         "alignment hint meaningless with fixed mmap");

  if (fixed) {
    flags |= MAP_FIXED;
  } else if (alignment_hint > (size_t) vm_page_size()) {
    flags |= MAP_ALIGN;
    addr = (char*) alignment_hint;
  }

  // Map uncommitted pages PROT_NONE so we fail early if we touch an
  // uncommitted page. Otherwise, the read/write might succeed if we
  // have enough swap space to back the physical page.
  return mmap_chunk(addr, bytes, flags, PROT_NONE);
}

char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
                            size_t alignment_hint) {
  char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
                                  (requested_addr != NULL));

  guarantee(requested_addr == NULL || requested_addr == addr,
            "OS failed to return requested mmap address.");
  return addr;
}

char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
  assert(file_desc >= 0, "file_desc is not valid");
  char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
  if (result != NULL) {
    if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
      vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
    }
  }
  return result;
}

// Reserve memory at an arbitrary address, only if that area is
// available (and not reserved for something else).

char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  const int max_tries = 10;
  char* base[max_tries];
  size_t size[max_tries];

  // Solaris adds a gap between mmap'ed regions.  The size of the gap
  // is dependent on the requested size and the MMU.  Our initial gap
  // value here is just a guess and will be corrected later.
  bool had_top_overlap = false;
  bool have_adjusted_gap = false;
  size_t gap = 0x400000;

  // Assert only that the size is a multiple of the page size, since
  // that's all that mmap requires, and since that's all we really know
  // about at this low abstraction level.  If we need higher alignment,
  // we can either pass an alignment to this method or verify alignment
  // in one of the methods further up the call chain.  See bug 5044738.
  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");

  // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  // Give it a try, if the kernel honors the hint we can return immediately.
  char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);

  volatile int err = errno;
  if (addr == requested_addr) {
    return addr;
  } else if (addr != NULL) {
    pd_unmap_memory(addr, bytes);
  }

  if (log_is_enabled(Warning, os)) {
    char buf[256];
    buf[0] = '\0';
    if (addr == NULL) {
      jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
    }
    log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
            PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
            "%s", bytes, requested_addr, addr, buf);
  }

  // Address hint method didn't work.  Fall back to the old method.
  // In theory, once SNV becomes our oldest supported platform, this
  // code will no longer be needed.
  //
  // Repeatedly allocate blocks until the block is allocated at the
  // right spot. Give up after max_tries.
  int i;
  for (i = 0; i < max_tries; ++i) {
    base[i] = reserve_memory(bytes);

    if (base[i] != NULL) {
      // Is this the block we wanted?
      if (base[i] == requested_addr) {
        size[i] = bytes;
        break;
      }

      // check that the gap value is right
      if (had_top_overlap && !have_adjusted_gap) {
        size_t actual_gap = base[i-1] - base[i] - bytes;
        if (gap != actual_gap) {
          // adjust the gap value and retry the last 2 allocations
          assert(i > 0, "gap adjustment code problem");
          have_adjusted_gap = true;  // adjust the gap only once, just in case
          gap = actual_gap;
          log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
          unmap_memory(base[i], bytes);
          unmap_memory(base[i-1], size[i-1]);
          i-=2;
          continue;
        }
      }

      // Does this overlap the block we wanted? Give back the overlapped
      // parts and try again.
      //
      // There is still a bug in this code: if top_overlap == bytes,
      // the overlap is offset from requested region by the value of gap.
      // In this case giving back the overlapped part will not work,
      // because we'll give back the entire block at base[i] and
      // therefore the subsequent allocation will not generate a new gap.
      // This could be fixed with a new algorithm that used larger
      // or variable size chunks to find the requested region -
      // but such a change would introduce additional complications.
      // It's rare enough that the planets align for this bug,
      // so we'll just wait for a fix for 6204603/5003415 which
      // will provide a mmap flag to allow us to avoid this business.

      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
      if (top_overlap >= 0 && top_overlap < bytes) {
        had_top_overlap = true;
        unmap_memory(base[i], top_overlap);
        base[i] += top_overlap;
        size[i] = bytes - top_overlap;
      } else {
        size_t bottom_overlap = base[i] + bytes - requested_addr;
        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
          if (bottom_overlap == 0) {
            log_info(os)("attempt_reserve_memory_at: possible alignment bug");
          }
          unmap_memory(requested_addr, bottom_overlap);
          size[i] = bytes - bottom_overlap;
        } else {
          size[i] = bytes;
        }
      }
    }
  }

  // Give back the unused reserved pieces.

  for (int j = 0; j < i; ++j) {
    if (base[j] != NULL) {
      unmap_memory(base[j], size[j]);
    }
  }

  return (i < max_tries) ? requested_addr : NULL;
}

bool os::pd_release_memory(char* addr, size_t bytes) {
  size_t size = bytes;
  return munmap(addr, size) == 0;
}

static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
         "addr must be page aligned");
  int retVal = mprotect(addr, bytes, prot);
  return retVal == 0;
}

// Protect memory (Used to pass readonly pages through
// JNI GetArray<type>Elements with empty arrays.)
// Also, used for serialization page and for compressed oops null pointer
// checking.
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
                        bool is_committed) {
  unsigned int p = 0;
  switch (prot) {
  case MEM_PROT_NONE: p = PROT_NONE; break;
  case MEM_PROT_READ: p = PROT_READ; break;
  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  default:
    ShouldNotReachHere();
  }
  // is_committed is unused.
  return solaris_mprotect(addr, bytes, p);
}

// guard_memory and unguard_memory only happens within stack guard pages.
// Since ISM pertains only to the heap, guard and unguard memory should not
/// happen with an ISM region.
bool os::guard_memory(char* addr, size_t bytes) {
  return solaris_mprotect(addr, bytes, PROT_NONE);
}

bool os::unguard_memory(char* addr, size_t bytes) {
  return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
}

// Large page support
static size_t _large_page_size = 0;

// Insertion sort for small arrays (descending order).
static void insertion_sort_descending(size_t* array, int len) {
  for (int i = 0; i < len; i++) {
    size_t val = array[i];
    for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
      size_t tmp = array[key];
      array[key] = array[key - 1];
      array[key - 1] = tmp;
    }
  }
}

bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
  const unsigned int usable_count = VM_Version::page_size_count();
  if (usable_count == 1) {
    return false;
  }

  // Find the right getpagesizes interface.  When solaris 11 is the minimum
  // build platform, getpagesizes() (without the '2') can be called directly.
  typedef int (*gps_t)(size_t[], int);
  gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
  if (gps_func == NULL) {
    gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
    if (gps_func == NULL) {
      if (warn) {
        warning("MPSS is not supported by the operating system.");
      }
      return false;
    }
  }

  // Fill the array of page sizes.
  int n = (*gps_func)(_page_sizes, page_sizes_max);
  assert(n > 0, "Solaris bug?");

  if (n == page_sizes_max) {
    // Add a sentinel value (necessary only if the array was completely filled
    // since it is static (zeroed at initialization)).
    _page_sizes[--n] = 0;
    DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  }
  assert(_page_sizes[n] == 0, "missing sentinel");
  trace_page_sizes("available page sizes", _page_sizes, n);

  if (n == 1) return false;     // Only one page size available.

  // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  // select up to usable_count elements.  First sort the array, find the first
  // acceptable value, then copy the usable sizes to the top of the array and
  // trim the rest.  Make sure to include the default page size :-).
  //
  // A better policy could get rid of the 4M limit by taking the sizes of the
  // important VM memory regions (java heap and possibly the code cache) into
  // account.
  insertion_sort_descending(_page_sizes, n);
  const size_t size_limit =
    FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  int beg;
  for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
  const int end = MIN2((int)usable_count, n) - 1;
  for (int cur = 0; cur < end; ++cur, ++beg) {
    _page_sizes[cur] = _page_sizes[beg];
  }
  _page_sizes[end] = vm_page_size();
  _page_sizes[end + 1] = 0;

  if (_page_sizes[end] > _page_sizes[end - 1]) {
    // Default page size is not the smallest; sort again.
    insertion_sort_descending(_page_sizes, end + 1);
  }
  *page_size = _page_sizes[0];

  trace_page_sizes("usable page sizes", _page_sizes, end + 1);
  return true;
}

void os::large_page_init() {
  if (UseLargePages) {
    // print a warning if any large page related flag is specified on command line
    bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
                           !FLAG_IS_DEFAULT(LargePageSizeInBytes);

    UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  }
}

bool os::Solaris::is_valid_page_size(size_t bytes) {
  for (int i = 0; _page_sizes[i] != 0; i++) {
    if (_page_sizes[i] == bytes) {
      return true;
    }
  }
  return false;
}

bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
  assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
  assert(is_aligned((void*) start, align),
         PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
  assert(is_aligned(bytes, align),
         SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);

  // Signal to OS that we want large pages for addresses
  // from addr, addr + bytes
  struct memcntl_mha mpss_struct;
  mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  mpss_struct.mha_pagesize = align;
  mpss_struct.mha_flags = 0;
  // Upon successful completion, memcntl() returns 0
  if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
    debug_only(warning("Attempt to use MPSS failed."));
    return false;
  }
  return true;
}

char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
  fatal("os::reserve_memory_special should not be called on Solaris.");
  return NULL;
}

bool os::release_memory_special(char* base, size_t bytes) {
  fatal("os::release_memory_special should not be called on Solaris.");
  return false;
}

size_t os::large_page_size() {
  return _large_page_size;
}

// MPSS allows application to commit large page memory on demand; with ISM
// the entire memory region must be allocated as shared memory.
bool os::can_commit_large_page_memory() {
  return true;
}

bool os::can_execute_large_page_memory() {
  return true;
}

// Sleep forever; naked call to OS-specific sleep; use with CAUTION
void os::infinite_sleep() {
  while (true) {    // sleep forever ...
    ::sleep(100);   // ... 100 seconds at a time
  }
}

// Used to convert frequent JVM_Yield() to nops
bool os::dont_yield() {
  if (DontYieldALot) {
    static hrtime_t last_time = 0;
    hrtime_t diff = getTimeNanos() - last_time;

    if (diff < DontYieldALotInterval * 1000000) {
      return true;
    }

    last_time += diff;

    return false;
  } else {
    return false;
  }
}

// Note that yield semantics are defined by the scheduling class to which
// the thread currently belongs.  Typically, yield will _not yield to
// other equal or higher priority threads that reside on the dispatch queues
// of other CPUs.

void os::naked_yield() {
  thr_yield();
}

// Interface for setting lwp priorities.  We are using T2 libthread,
// which forces the use of bound threads, so all of our threads will
// be assigned to real lwp's.  Using the thr_setprio function is
// meaningless in this mode so we must adjust the real lwp's priority.
// The routines below implement the getting and setting of lwp priorities.
//
// Note: There are three priority scales used on Solaris.  Java priotities
//       which range from 1 to 10, libthread "thr_setprio" scale which range
//       from 0 to 127, and the current scheduling class of the process we
//       are running in.  This is typically from -60 to +60.
//       The setting of the lwp priorities in done after a call to thr_setprio
//       so Java priorities are mapped to libthread priorities and we map from
//       the latter to lwp priorities.  We don't keep priorities stored in
//       Java priorities since some of our worker threads want to set priorities
//       higher than all Java threads.
//
// For related information:
// (1)  man -s 2 priocntl
// (2)  man -s 4 priocntl
// (3)  man dispadmin
// =    librt.so
// =    libthread/common/rtsched.c - thrp_setlwpprio().
// =    ps -cL <pid> ... to validate priority.
// =    sched_get_priority_min and _max
//              pthread_create
//              sched_setparam
//              pthread_setschedparam
//
// Assumptions:
// +    We assume that all threads in the process belong to the same
//              scheduling class.   IE. an homogenous process.
// +    Must be root or in IA group to change change "interactive" attribute.
//              Priocntl() will fail silently.  The only indication of failure is when
//              we read-back the value and notice that it hasn't changed.
// +    Interactive threads enter the runq at the head, non-interactive at the tail.
// +    For RT, change timeslice as well.  Invariant:
//              constant "priority integral"
//              Konst == TimeSlice * (60-Priority)
//              Given a priority, compute appropriate timeslice.
// +    Higher numerical values have higher priority.

// sched class attributes
typedef struct {
  int   schedPolicy;              // classID
  int   maxPrio;
  int   minPrio;
} SchedInfo;


static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;

#ifdef ASSERT
static int  ReadBackValidate = 1;
#endif
static int  myClass     = 0;
static int  myMin       = 0;
static int  myMax       = 0;
static int  myCur       = 0;
static bool priocntl_enable = false;

static const int criticalPrio = FXCriticalPriority;
static int java_MaxPriority_to_os_priority = 0; // Saved mapping


// lwp_priocntl_init
//
// Try to determine the priority scale for our process.
//
// Return errno or 0 if OK.
//
static int lwp_priocntl_init() {
  int rslt;
  pcinfo_t ClassInfo;
  pcparms_t ParmInfo;
  int i;

  if (!UseThreadPriorities) return 0;

  // If ThreadPriorityPolicy is 1, switch tables
  if (ThreadPriorityPolicy == 1) {
    for (i = 0; i < CriticalPriority+1; i++)
      os::java_to_os_priority[i] = prio_policy1[i];
  }
  if (UseCriticalJavaThreadPriority) {
    // MaxPriority always maps to the FX scheduling class and criticalPrio.
    // See set_native_priority() and set_lwp_class_and_priority().
    // Save original MaxPriority mapping in case attempt to
    // use critical priority fails.
    java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
    // Set negative to distinguish from other priorities
    os::java_to_os_priority[MaxPriority] = -criticalPrio;
  }

  // Get IDs for a set of well-known scheduling classes.
  // TODO-FIXME: GETCLINFO returns the current # of classes in the
  // the system.  We should have a loop that iterates over the
  // classID values, which are known to be "small" integers.

  strcpy(ClassInfo.pc_clname, "TS");
  ClassInfo.pc_cid = -1;
  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  if (rslt < 0) return errno;
  assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  tsLimits.schedPolicy = ClassInfo.pc_cid;
  tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  tsLimits.minPrio = -tsLimits.maxPrio;

  strcpy(ClassInfo.pc_clname, "IA");
  ClassInfo.pc_cid = -1;
  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  if (rslt < 0) return errno;
  assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  iaLimits.schedPolicy = ClassInfo.pc_cid;
  iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  iaLimits.minPrio = -iaLimits.maxPrio;

  strcpy(ClassInfo.pc_clname, "RT");
  ClassInfo.pc_cid = -1;
  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  if (rslt < 0) return errno;
  assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  rtLimits.schedPolicy = ClassInfo.pc_cid;
  rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  rtLimits.minPrio = 0;

  strcpy(ClassInfo.pc_clname, "FX");
  ClassInfo.pc_cid = -1;
  rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  if (rslt < 0) return errno;
  assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
  fxLimits.schedPolicy = ClassInfo.pc_cid;
  fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
  fxLimits.minPrio = 0;

  // Query our "current" scheduling class.
  // This will normally be IA, TS or, rarely, FX or RT.
  memset(&ParmInfo, 0, sizeof(ParmInfo));
  ParmInfo.pc_cid = PC_CLNULL;
  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  if (rslt < 0) return errno;
  myClass = ParmInfo.pc_cid;

  // We now know our scheduling classId, get specific information
  // about the class.
  ClassInfo.pc_cid = myClass;
  ClassInfo.pc_clname[0] = 0;
  rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
  if (rslt < 0) return errno;

  if (ThreadPriorityVerbose) {
    tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  }

  memset(&ParmInfo, 0, sizeof(pcparms_t));
  ParmInfo.pc_cid = PC_CLNULL;
  rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  if (rslt < 0) return errno;

  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
    myMin = rtLimits.minPrio;
    myMax = rtLimits.maxPrio;
  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
    iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
    myMin = iaLimits.minPrio;
    myMax = iaLimits.maxPrio;
    myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
    tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
    myMin = tsLimits.minPrio;
    myMax = tsLimits.maxPrio;
    myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
    fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
    myMin = fxLimits.minPrio;
    myMax = fxLimits.maxPrio;
    myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
  } else {
    // No clue - punt
    if (ThreadPriorityVerbose) {
      tty->print_cr("Unknown scheduling class: %s ... \n",
                    ClassInfo.pc_clname);
    }
    return EINVAL;      // no clue, punt
  }

  if (ThreadPriorityVerbose) {
    tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
  }

  priocntl_enable = true;  // Enable changing priorities
  return 0;
}

#define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
#define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
#define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
#define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))


// scale_to_lwp_priority
//
// Convert from the libthread "thr_setprio" scale to our current
// lwp scheduling class scale.
//
static int scale_to_lwp_priority(int rMin, int rMax, int x) {
  int v;

  if (x == 127) return rMax;            // avoid round-down
  v = (((x*(rMax-rMin)))/128)+rMin;
  return v;
}


// set_lwp_class_and_priority
int set_lwp_class_and_priority(int ThreadID, int lwpid,
                               int newPrio, int new_class, bool scale) {
  int rslt;
  int Actual, Expected, prv;
  pcparms_t ParmInfo;                   // for GET-SET
#ifdef ASSERT
  pcparms_t ReadBack;                   // for readback
#endif

  // Set priority via PC_GETPARMS, update, PC_SETPARMS
  // Query current values.
  // TODO: accelerate this by eliminating the PC_GETPARMS call.
  // Cache "pcparms_t" in global ParmCache.
  // TODO: elide set-to-same-value

  // If something went wrong on init, don't change priorities.
  if (!priocntl_enable) {
    if (ThreadPriorityVerbose) {
      tty->print_cr("Trying to set priority but init failed, ignoring");
    }
    return EINVAL;
  }

  // If lwp hasn't started yet, just return
  // the _start routine will call us again.
  if (lwpid <= 0) {
    if (ThreadPriorityVerbose) {
      tty->print_cr("deferring the set_lwp_class_and_priority of thread "
                    INTPTR_FORMAT " to %d, lwpid not set",
                    ThreadID, newPrio);
    }
    return 0;
  }

  if (ThreadPriorityVerbose) {
    tty->print_cr ("set_lwp_class_and_priority("
                   INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
                   ThreadID, lwpid, newPrio);
  }

  memset(&ParmInfo, 0, sizeof(pcparms_t));
  ParmInfo.pc_cid = PC_CLNULL;
  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  if (rslt < 0) return errno;

  int cur_class = ParmInfo.pc_cid;
  ParmInfo.pc_cid = (id_t)new_class;

  if (new_class == rtLimits.schedPolicy) {
    rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
    rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
                                                       rtLimits.maxPrio, newPrio)
                               : newPrio;
    rtInfo->rt_tqsecs  = RT_NOCHANGE;
    rtInfo->rt_tqnsecs = RT_NOCHANGE;
    if (ThreadPriorityVerbose) {
      tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
    }
  } else if (new_class == iaLimits.schedPolicy) {
    iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
    int maxClamped     = MIN2(iaLimits.maxPrio,
                              cur_class == new_class
                              ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
    iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
                                                       maxClamped, newPrio)
                               : newPrio;
    iaInfo->ia_uprilim = cur_class == new_class
                           ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
    iaInfo->ia_mode    = IA_NOCHANGE;
    if (ThreadPriorityVerbose) {
      tty->print_cr("IA: [%d...%d] %d->%d\n",
                    iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
    }
  } else if (new_class == tsLimits.schedPolicy) {
    tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
    int maxClamped     = MIN2(tsLimits.maxPrio,
                              cur_class == new_class
                              ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
    tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
                                                       maxClamped, newPrio)
                               : newPrio;
    tsInfo->ts_uprilim = cur_class == new_class
                           ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
    if (ThreadPriorityVerbose) {
      tty->print_cr("TS: [%d...%d] %d->%d\n",
                    tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
    }
  } else if (new_class == fxLimits.schedPolicy) {
    fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
    int maxClamped     = MIN2(fxLimits.maxPrio,
                              cur_class == new_class
                              ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
    fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
                                                       maxClamped, newPrio)
                               : newPrio;
    fxInfo->fx_uprilim = cur_class == new_class
                           ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
    fxInfo->fx_tqsecs  = FX_NOCHANGE;
    fxInfo->fx_tqnsecs = FX_NOCHANGE;
    if (ThreadPriorityVerbose) {
      tty->print_cr("FX: [%d...%d] %d->%d\n",
                    fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
    }
  } else {
    if (ThreadPriorityVerbose) {
      tty->print_cr("Unknown new scheduling class %d\n", new_class);
    }
    return EINVAL;    // no clue, punt
  }

  rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  if (ThreadPriorityVerbose && rslt) {
    tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  }
  if (rslt < 0) return errno;

#ifdef ASSERT
  // Sanity check: read back what we just attempted to set.
  // In theory it could have changed in the interim ...
  //
  // The priocntl system call is tricky.
  // Sometimes it'll validate the priority value argument and
  // return EINVAL if unhappy.  At other times it fails silently.
  // Readbacks are prudent.

  if (!ReadBackValidate) return 0;

  memset(&ReadBack, 0, sizeof(pcparms_t));
  ReadBack.pc_cid = PC_CLNULL;
  rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  assert(rslt >= 0, "priocntl failed");
  Actual = Expected = 0xBAD;
  assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
    Actual   = RTPRI(ReadBack)->rt_pri;
    Expected = RTPRI(ParmInfo)->rt_pri;
  } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
    Actual   = IAPRI(ReadBack)->ia_upri;
    Expected = IAPRI(ParmInfo)->ia_upri;
  } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
    Actual   = TSPRI(ReadBack)->ts_upri;
    Expected = TSPRI(ParmInfo)->ts_upri;
  } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
    Actual   = FXPRI(ReadBack)->fx_upri;
    Expected = FXPRI(ParmInfo)->fx_upri;
  } else {
    if (ThreadPriorityVerbose) {
      tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
                    ParmInfo.pc_cid);
    }
  }

  if (Actual != Expected) {
    if (ThreadPriorityVerbose) {
      tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
                     lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
    }
  }
#endif

  return 0;
}

// Solaris only gives access to 128 real priorities at a time,
// so we expand Java's ten to fill this range.  This would be better
// if we dynamically adjusted relative priorities.
//
// The ThreadPriorityPolicy option allows us to select 2 different
// priority scales.
//
// ThreadPriorityPolicy=0
// Since the Solaris' default priority is MaximumPriority, we do not
// set a priority lower than Max unless a priority lower than
// NormPriority is requested.
//
// ThreadPriorityPolicy=1
// This mode causes the priority table to get filled with
// linear values.  NormPriority get's mapped to 50% of the
// Maximum priority an so on.  This will cause VM threads
// to get unfair treatment against other Solaris processes
// which do not explicitly alter their thread priorities.

int os::java_to_os_priority[CriticalPriority + 1] = {
  -99999,         // 0 Entry should never be used

  0,              // 1 MinPriority
  32,             // 2
  64,             // 3

  96,             // 4
  127,            // 5 NormPriority
  127,            // 6

  127,            // 7
  127,            // 8
  127,            // 9 NearMaxPriority

  127,            // 10 MaxPriority

  -criticalPrio   // 11 CriticalPriority
};

OSReturn os::set_native_priority(Thread* thread, int newpri) {
  OSThread* osthread = thread->osthread();

  // Save requested priority in case the thread hasn't been started
  osthread->set_native_priority(newpri);

  // Check for critical priority request
  bool fxcritical = false;
  if (newpri == -criticalPrio) {
    fxcritical = true;
    newpri = criticalPrio;
  }

  assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  if (!UseThreadPriorities) return OS_OK;

  int status = 0;

  if (!fxcritical) {
    // Use thr_setprio only if we have a priority that thr_setprio understands
    status = thr_setprio(thread->osthread()->thread_id(), newpri);
  }

  int lwp_status =
          set_lwp_class_and_priority(osthread->thread_id(),
                                     osthread->lwp_id(),
                                     newpri,
                                     fxcritical ? fxLimits.schedPolicy : myClass,
                                     !fxcritical);
  if (lwp_status != 0 && fxcritical) {
    // Try again, this time without changing the scheduling class
    newpri = java_MaxPriority_to_os_priority;
    lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
                                            osthread->lwp_id(),
                                            newpri, myClass, false);
  }
  status |= lwp_status;
  return (status == 0) ? OS_OK : OS_ERR;
}


OSReturn os::get_native_priority(const Thread* const thread,
                                 int *priority_ptr) {
  int p;
  if (!UseThreadPriorities) {
    *priority_ptr = NormalPriority;
    return OS_OK;
  }
  int status = thr_getprio(thread->osthread()->thread_id(), &p);
  if (status != 0) {
    return OS_ERR;
  }
  *priority_ptr = p;
  return OS_OK;
}

////////////////////////////////////////////////////////////////////////////////
// suspend/resume support

//  The low-level signal-based suspend/resume support is a remnant from the
//  old VM-suspension that used to be for java-suspension, safepoints etc,
//  within hotspot. Currently used by JFR's OSThreadSampler
//
//  The remaining code is greatly simplified from the more general suspension
//  code that used to be used.
//
//  The protocol is quite simple:
//  - suspend:
//      - sends a signal to the target thread
//      - polls the suspend state of the osthread using a yield loop
//      - target thread signal handler (SR_handler) sets suspend state
//        and blocks in sigsuspend until continued
//  - resume:
//      - sets target osthread state to continue
//      - sends signal to end the sigsuspend loop in the SR_handler
//
//  Note that the SR_lock plays no role in this suspend/resume protocol,
//  but is checked for NULL in SR_handler as a thread termination indicator.
//  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
//
//  Note that resume_clear_context() and suspend_save_context() are needed
//  by SR_handler(), so that fetch_frame_from_ucontext() works,
//  which in part is used by:
//    - Forte Analyzer: AsyncGetCallTrace()
//    - StackBanging: get_frame_at_stack_banging_point()
//    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()

static void resume_clear_context(OSThread *osthread) {
  osthread->set_ucontext(NULL);
}

static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
  osthread->set_ucontext(context);
}

static PosixSemaphore sr_semaphore;

void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
  // Save and restore errno to avoid confusing native code with EINTR
  // after sigsuspend.
  int old_errno = errno;

  OSThread* osthread = thread->osthread();
  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");

  os::SuspendResume::State current = osthread->sr.state();
  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
    suspend_save_context(osthread, context);

    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
    os::SuspendResume::State state = osthread->sr.suspended();
    if (state == os::SuspendResume::SR_SUSPENDED) {
      sigset_t suspend_set;  // signals for sigsuspend()

      // get current set of blocked signals and unblock resume signal
      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
      sigdelset(&suspend_set, ASYNC_SIGNAL);

      sr_semaphore.signal();
      // wait here until we are resumed
      while (1) {
        sigsuspend(&suspend_set);

        os::SuspendResume::State result = osthread->sr.running();
        if (result == os::SuspendResume::SR_RUNNING) {
          sr_semaphore.signal();
          break;
        }
      }

    } else if (state == os::SuspendResume::SR_RUNNING) {
      // request was cancelled, continue
    } else {
      ShouldNotReachHere();
    }

    resume_clear_context(osthread);
  } else if (current == os::SuspendResume::SR_RUNNING) {
    // request was cancelled, continue
  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
    // ignore
  } else {
    // ignore
  }

  errno = old_errno;
}

void os::print_statistics() {
}

bool os::message_box(const char* title, const char* message) {
  int i;
  fdStream err(defaultStream::error_fd());
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();
  err.print_raw_cr(title);
  for (i = 0; i < 78; i++) err.print_raw("-");
  err.cr();
  err.print_raw_cr(message);
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();

  char buf[16];
  // Prevent process from exiting upon "read error" without consuming all CPU
  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }

  return buf[0] == 'y' || buf[0] == 'Y';
}

static int sr_notify(OSThread* osthread) {
  int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
  assert_status(status == 0, status, "thr_kill");
  return status;
}

// "Randomly" selected value for how long we want to spin
// before bailing out on suspending a thread, also how often
// we send a signal to a thread we want to resume
static const int RANDOMLY_LARGE_INTEGER = 1000000;
static const int RANDOMLY_LARGE_INTEGER2 = 100;

static bool do_suspend(OSThread* osthread) {
  assert(osthread->sr.is_running(), "thread should be running");
  assert(!sr_semaphore.trywait(), "semaphore has invalid state");

  // mark as suspended and send signal
  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
    // failed to switch, state wasn't running?
    ShouldNotReachHere();
    return false;
  }

  if (sr_notify(osthread) != 0) {
    ShouldNotReachHere();
  }

  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  while (true) {
    if (sr_semaphore.timedwait(2000)) {
      break;
    } else {
      // timeout
      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
      if (cancelled == os::SuspendResume::SR_RUNNING) {
        return false;
      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
        // make sure that we consume the signal on the semaphore as well
        sr_semaphore.wait();
        break;
      } else {
        ShouldNotReachHere();
        return false;
      }
    }
  }

  guarantee(osthread->sr.is_suspended(), "Must be suspended");
  return true;
}

static void do_resume(OSThread* osthread) {
  assert(osthread->sr.is_suspended(), "thread should be suspended");
  assert(!sr_semaphore.trywait(), "invalid semaphore state");

  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
    // failed to switch to WAKEUP_REQUEST
    ShouldNotReachHere();
    return;
  }

  while (true) {
    if (sr_notify(osthread) == 0) {
      if (sr_semaphore.timedwait(2)) {
        if (osthread->sr.is_running()) {
          return;
        }
      }
    } else {
      ShouldNotReachHere();
    }
  }

  guarantee(osthread->sr.is_running(), "Must be running!");
}

void os::SuspendedThreadTask::internal_do_task() {
  if (do_suspend(_thread->osthread())) {
    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
    do_task(context);
    do_resume(_thread->osthread());
  }
}

// This does not do anything on Solaris. This is basically a hook for being
// able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
void os::os_exception_wrapper(java_call_t f, JavaValue* value,
                              const methodHandle& method, JavaCallArguments* args,
                              Thread* thread) {
  f(value, method, args, thread);
}

// This routine may be used by user applications as a "hook" to catch signals.
// The user-defined signal handler must pass unrecognized signals to this
// routine, and if it returns true (non-zero), then the signal handler must
// return immediately.  If the flag "abort_if_unrecognized" is true, then this
// routine will never retun false (zero), but instead will execute a VM panic
// routine kill the process.
//
// If this routine returns false, it is OK to call it again.  This allows
// the user-defined signal handler to perform checks either before or after
// the VM performs its own checks.  Naturally, the user code would be making
// a serious error if it tried to handle an exception (such as a null check
// or breakpoint) that the VM was generating for its own correct operation.
//
// This routine may recognize any of the following kinds of signals:
// SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
// ASYNC_SIGNAL.
// It should be consulted by handlers for any of those signals.
//
// The caller of this routine must pass in the three arguments supplied
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
// field of the structure passed to sigaction().  This routine assumes that
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
//
// Note that the VM will print warnings if it detects conflicting signal
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
//
extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
                                                   siginfo_t* siginfo,
                                                   void* ucontext,
                                                   int abort_if_unrecognized);


void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  int orig_errno = errno;  // Preserve errno value over signal handler.
  JVM_handle_solaris_signal(sig, info, ucVoid, true);
  errno = orig_errno;
}

// This boolean allows users to forward their own non-matching signals
// to JVM_handle_solaris_signal, harmlessly.
bool os::Solaris::signal_handlers_are_installed = false;

// For signal-chaining
bool os::Solaris::libjsig_is_loaded = false;
typedef struct sigaction *(*get_signal_t)(int);
get_signal_t os::Solaris::get_signal_action = NULL;

struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  struct sigaction *actp = NULL;

  if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
    // Retrieve the old signal handler from libjsig
    actp = (*get_signal_action)(sig);
  }
  if (actp == NULL) {
    // Retrieve the preinstalled signal handler from jvm
    actp = get_preinstalled_handler(sig);
  }

  return actp;
}

static bool call_chained_handler(struct sigaction *actp, int sig,
                                 siginfo_t *siginfo, void *context) {
  // Call the old signal handler
  if (actp->sa_handler == SIG_DFL) {
    // It's more reasonable to let jvm treat it as an unexpected exception
    // instead of taking the default action.
    return false;
  } else if (actp->sa_handler != SIG_IGN) {
    if ((actp->sa_flags & SA_NODEFER) == 0) {
      // automaticlly block the signal
      sigaddset(&(actp->sa_mask), sig);
    }

    sa_handler_t hand;
    sa_sigaction_t sa;
    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
    // retrieve the chained handler
    if (siginfo_flag_set) {
      sa = actp->sa_sigaction;
    } else {
      hand = actp->sa_handler;
    }

    if ((actp->sa_flags & SA_RESETHAND) != 0) {
      actp->sa_handler = SIG_DFL;
    }

    // try to honor the signal mask
    sigset_t oset;
    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);

    // call into the chained handler
    if (siginfo_flag_set) {
      (*sa)(sig, siginfo, context);
    } else {
      (*hand)(sig);
    }

    // restore the signal mask
    pthread_sigmask(SIG_SETMASK, &oset, 0);
  }
  // Tell jvm's signal handler the signal is taken care of.
  return true;
}

bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  bool chained = false;
  // signal-chaining
  if (UseSignalChaining) {
    struct sigaction *actp = get_chained_signal_action(sig);
    if (actp != NULL) {
      chained = call_chained_handler(actp, sig, siginfo, context);
    }
  }
  return chained;
}

struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  assert((chainedsigactions != (struct sigaction *)NULL) &&
         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
  if (preinstalled_sigs[sig] != 0) {
    return &chainedsigactions[sig];
  }
  return NULL;
}

void os::Solaris::save_preinstalled_handler(int sig,
                                            struct sigaction& oldAct) {
  assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  assert((chainedsigactions != (struct sigaction *)NULL) &&
         (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
  chainedsigactions[sig] = oldAct;
  preinstalled_sigs[sig] = 1;
}

void os::Solaris::set_signal_handler(int sig, bool set_installed,
                                     bool oktochain) {
  // Check for overwrite.
  struct sigaction oldAct;
  sigaction(sig, (struct sigaction*)NULL, &oldAct);
  void* oldhand =
      oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
                          : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
      oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
    if (AllowUserSignalHandlers || !set_installed) {
      // Do not overwrite; user takes responsibility to forward to us.
      return;
    } else if (UseSignalChaining) {
      if (oktochain) {
        // save the old handler in jvm
        save_preinstalled_handler(sig, oldAct);
      } else {
        vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
      }
      // libjsig also interposes the sigaction() call below and saves the
      // old sigaction on it own.
    } else {
      fatal("Encountered unexpected pre-existing sigaction handler "
            "%#lx for signal %d.", (long)oldhand, sig);
    }
  }

  struct sigaction sigAct;
  sigfillset(&(sigAct.sa_mask));
  sigAct.sa_handler = SIG_DFL;

  sigAct.sa_sigaction = signalHandler;
  // Handle SIGSEGV on alternate signal stack if
  // not using stack banging
  if (!UseStackBanging && sig == SIGSEGV) {
    sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  } else {
    sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  }
  os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);

  sigaction(sig, &sigAct, &oldAct);

  void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
                                       : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
}


#define DO_SIGNAL_CHECK(sig)                      \
  do {                                            \
    if (!sigismember(&check_signal_done, sig)) {  \
      os::Solaris::check_signal_handler(sig);     \
    }                                             \
  } while (0)

// This method is a periodic task to check for misbehaving JNI applications
// under CheckJNI, we can add any periodic checks here

void os::run_periodic_checks() {
  // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  // thereby preventing a NULL checks.
  if (!check_addr0_done) check_addr0_done = check_addr0(tty);

  if (check_signals == false) return;

  // SEGV and BUS if overridden could potentially prevent
  // generation of hs*.log in the event of a crash, debugging
  // such a case can be very challenging, so we absolutely
  // check for the following for a good measure:
  DO_SIGNAL_CHECK(SIGSEGV);
  DO_SIGNAL_CHECK(SIGILL);
  DO_SIGNAL_CHECK(SIGFPE);
  DO_SIGNAL_CHECK(SIGBUS);
  DO_SIGNAL_CHECK(SIGPIPE);
  DO_SIGNAL_CHECK(SIGXFSZ);
  DO_SIGNAL_CHECK(ASYNC_SIGNAL);

  // ReduceSignalUsage allows the user to override these handlers
  // see comments at the very top and jvm_solaris.h
  if (!ReduceSignalUsage) {
    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
    DO_SIGNAL_CHECK(BREAK_SIGNAL);
  }
}

typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);

static os_sigaction_t os_sigaction = NULL;

void os::Solaris::check_signal_handler(int sig) {
  char buf[O_BUFLEN];
  address jvmHandler = NULL;

  struct sigaction act;
  if (os_sigaction == NULL) {
    // only trust the default sigaction, in case it has been interposed
    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
    if (os_sigaction == NULL) return;
  }

  os_sigaction(sig, (struct sigaction*)NULL, &act);

  address thisHandler = (act.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
    : CAST_FROM_FN_PTR(address, act.sa_handler);


  switch (sig) {
  case SIGSEGV:
  case SIGBUS:
  case SIGFPE:
  case SIGPIPE:
  case SIGXFSZ:
  case SIGILL:
  case ASYNC_SIGNAL:
    jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
    break;

  case SHUTDOWN1_SIGNAL:
  case SHUTDOWN2_SIGNAL:
  case SHUTDOWN3_SIGNAL:
  case BREAK_SIGNAL:
    jvmHandler = (address)user_handler();
    break;

  default:
      return;
  }

  if (thisHandler != jvmHandler) {
    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
                    exception_name(sig, buf, O_BUFLEN));
    }
  } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:");
    os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
    tty->cr();
    tty->print("  found:");
    os::Posix::print_sa_flags(tty, act.sa_flags);
    tty->cr();
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
  }

  // Print all the signal handler state
  if (sigismember(&check_signal_done, sig)) {
    print_signal_handlers(tty, buf, O_BUFLEN);
  }

}

void os::Solaris::install_signal_handlers() {
  signal_handlers_are_installed = true;

  // signal-chaining
  typedef void (*signal_setting_t)();
  signal_setting_t begin_signal_setting = NULL;
  signal_setting_t end_signal_setting = NULL;
  begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                                        dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  if (begin_signal_setting != NULL) {
    end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                                        dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
    get_signal_action = CAST_TO_FN_PTR(get_signal_t,
                                       dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
    libjsig_is_loaded = true;
    assert(UseSignalChaining, "should enable signal-chaining");
  }
  if (libjsig_is_loaded) {
    // Tell libjsig jvm is setting signal handlers
    (*begin_signal_setting)();
  }

  set_signal_handler(SIGSEGV, true, true);
  set_signal_handler(SIGPIPE, true, true);
  set_signal_handler(SIGXFSZ, true, true);
  set_signal_handler(SIGBUS, true, true);
  set_signal_handler(SIGILL, true, true);
  set_signal_handler(SIGFPE, true, true);
  set_signal_handler(ASYNC_SIGNAL, true, true);

  if (libjsig_is_loaded) {
    // Tell libjsig jvm finishes setting signal handlers
    (*end_signal_setting)();
  }

  // We don't activate signal checker if libjsig is in place, we trust ourselves
  // and if UserSignalHandler is installed all bets are off.
  // Log that signal checking is off only if -verbose:jni is specified.
  if (CheckJNICalls) {
    if (libjsig_is_loaded) {
      if (PrintJNIResolving) {
        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
      }
      check_signals = false;
    }
    if (AllowUserSignalHandlers) {
      if (PrintJNIResolving) {
        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
      }
      check_signals = false;
    }
  }
}


void report_error(const char* file_name, int line_no, const char* title,
                  const char* format, ...);

// (Static) wrappers for the liblgrp API
os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;

static address resolve_symbol_lazy(const char* name) {
  address addr = (address) dlsym(RTLD_DEFAULT, name);
  if (addr == NULL) {
    // RTLD_DEFAULT was not defined on some early versions of 2.5.1
    addr = (address) dlsym(RTLD_NEXT, name);
  }
  return addr;
}

static address resolve_symbol(const char* name) {
  address addr = resolve_symbol_lazy(name);
  if (addr == NULL) {
    fatal(dlerror());
  }
  return addr;
}

void os::Solaris::libthread_init() {
  address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");

  lwp_priocntl_init();

  // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  if (func == NULL) {
    func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
    // Guarantee that this VM is running on an new enough OS (5.6 or
    // later) that it will have a new enough libthread.so.
    guarantee(func != NULL, "libthread.so is too old.");
  }

  int size;
  void (*handler_info_func)(address *, int *);
  handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  handler_info_func(&handler_start, &size);
  handler_end = handler_start + size;
}


int_fnP_mutex_tP os::Solaris::_mutex_lock;
int_fnP_mutex_tP os::Solaris::_mutex_trylock;
int_fnP_mutex_tP os::Solaris::_mutex_unlock;
int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
int_fnP_mutex_tP os::Solaris::_mutex_destroy;
int os::Solaris::_mutex_scope = USYNC_THREAD;

int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
int_fnP_cond_tP os::Solaris::_cond_signal;
int_fnP_cond_tP os::Solaris::_cond_broadcast;
int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
int_fnP_cond_tP os::Solaris::_cond_destroy;
int os::Solaris::_cond_scope = USYNC_THREAD;
bool os::Solaris::_synchronization_initialized;

void os::Solaris::synchronization_init() {
  if (UseLWPSynchronization) {
    os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
    os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
    os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
    os::Solaris::set_mutex_init(lwp_mutex_init);
    os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
    os::Solaris::set_mutex_scope(USYNC_THREAD);

    os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
    os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
    os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
    os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
    os::Solaris::set_cond_init(lwp_cond_init);
    os::Solaris::set_cond_destroy(lwp_cond_destroy);
    os::Solaris::set_cond_scope(USYNC_THREAD);
  } else {
    os::Solaris::set_mutex_scope(USYNC_THREAD);
    os::Solaris::set_cond_scope(USYNC_THREAD);

    if (UsePthreads) {
      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
      os::Solaris::set_mutex_init(pthread_mutex_default_init);
      os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));

      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
      os::Solaris::set_cond_init(pthread_cond_default_init);
      os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
    } else {
      os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
      os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
      os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
      os::Solaris::set_mutex_init(::mutex_init);
      os::Solaris::set_mutex_destroy(::mutex_destroy);

      os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
      os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
      os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
      os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
      os::Solaris::set_cond_init(::cond_init);
      os::Solaris::set_cond_destroy(::cond_destroy);
    }
  }
  _synchronization_initialized = true;
}

bool os::Solaris::liblgrp_init() {
  void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  if (handle != NULL) {
    os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
    os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
    os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
    os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
    os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
    os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
    os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
    os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
                                                      dlsym(handle, "lgrp_cookie_stale")));

    lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
    set_lgrp_cookie(c);
    return true;
  }
  return false;
}

// int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
static pset_getloadavg_type pset_getloadavg_ptr = NULL;

void init_pset_getloadavg_ptr(void) {
  pset_getloadavg_ptr =
    (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  if (pset_getloadavg_ptr == NULL) {
    log_warning(os)("pset_getloadavg function not found");
  }
}

int os::Solaris::_dev_zero_fd = -1;

// this is called _before_ the global arguments have been parsed
void os::init(void) {
  _initial_pid = getpid();

  max_hrtime = first_hrtime = gethrtime();

  init_random(1234567);

  page_size = sysconf(_SC_PAGESIZE);
  if (page_size == -1) {
    fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
  }
  init_page_sizes((size_t) page_size);

  Solaris::initialize_system_info();

  int fd = ::open("/dev/zero", O_RDWR);
  if (fd < 0) {
    fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
  } else {
    Solaris::set_dev_zero_fd(fd);

    // Close on exec, child won't inherit.
    fcntl(fd, F_SETFD, FD_CLOEXEC);
  }

  clock_tics_per_sec = CLK_TCK;

  // check if dladdr1() exists; dladdr1 can provide more information than
  // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  // and is available on linker patches for 5.7 and 5.8.
  // libdl.so must have been loaded, this call is just an entry lookup
  void * hdl = dlopen("libdl.so", RTLD_NOW);
  if (hdl) {
    dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  }

  // main_thread points to the thread that created/loaded the JVM.
  main_thread = thr_self();

  // dynamic lookup of functions that may not be available in our lowest
  // supported Solaris release
  void * handle = dlopen("libc.so.1", RTLD_LAZY);
  if (handle != NULL) {
    Solaris::_pthread_setname_np =  // from 11.3
        (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
  }

  // Shared Posix initialization
  os::Posix::init();
}

// To install functions for atexit system call
extern "C" {
  static void perfMemory_exit_helper() {
    perfMemory_exit();
  }
}

// this is called _after_ the global arguments have been parsed
jint os::init_2(void) {
  // try to enable extended file IO ASAP, see 6431278
  os::Solaris::try_enable_extended_io();

  // Check and sets minimum stack sizes against command line options
  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
    return JNI_ERR;
  }

  Solaris::libthread_init();

  if (UseNUMA) {
    if (!Solaris::liblgrp_init()) {
      UseNUMA = false;
    } else {
      size_t lgrp_limit = os::numa_get_groups_num();
      int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
      size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
      FREE_C_HEAP_ARRAY(int, lgrp_ids);
      if (lgrp_num < 2) {
        // There's only one locality group, disable NUMA.
        UseNUMA = false;
      }
    }
    if (!UseNUMA && ForceNUMA) {
      UseNUMA = true;
    }
  }

  Solaris::signal_sets_init();
  Solaris::init_signal_mem();
  Solaris::install_signal_handlers();
  // Initialize data for jdk.internal.misc.Signal
  if (!ReduceSignalUsage) {
    jdk_misc_signal_init();
  }

  // initialize synchronization primitives to use either thread or
  // lwp synchronization (controlled by UseLWPSynchronization)
  Solaris::synchronization_init();
  DEBUG_ONLY(os::set_mutex_init_done();)

  if (MaxFDLimit) {
    // set the number of file descriptors to max. print out error
    // if getrlimit/setrlimit fails but continue regardless.
    struct rlimit nbr_files;
    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
    if (status != 0) {
      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
    } else {
      nbr_files.rlim_cur = nbr_files.rlim_max;
      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
      if (status != 0) {
        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
      }
    }
  }

  // Calculate theoretical max. size of Threads to guard gainst
  // artifical out-of-memory situations, where all available address-
  // space has been reserved by thread stacks. Default stack size is 1Mb.
  size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
    JavaThread::stack_size_at_create() : (1*K*K);
  assert(pre_thread_stack_size != 0, "Must have a stack");
  // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  // we should start doing Virtual Memory banging. Currently when the threads will
  // have used all but 200Mb of space.
  size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;

  // at-exit methods are called in the reverse order of their registration.
  // In Solaris 7 and earlier, atexit functions are called on return from
  // main or as a result of a call to exit(3C). There can be only 32 of
  // these functions registered and atexit() does not set errno. In Solaris
  // 8 and later, there is no limit to the number of functions registered
  // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  // functions are called upon dlclose(3DL) in addition to return from main
  // and exit(3C).

  if (PerfAllowAtExitRegistration) {
    // only register atexit functions if PerfAllowAtExitRegistration is set.
    // atexit functions can be delayed until process exit time, which
    // can be problematic for embedded VM situations. Embedded VMs should
    // call DestroyJavaVM() to assure that VM resources are released.

    // note: perfMemory_exit_helper atexit function may be removed in
    // the future if the appropriate cleanup code can be added to the
    // VM_Exit VMOperation's doit method.
    if (atexit(perfMemory_exit_helper) != 0) {
      warning("os::init2 atexit(perfMemory_exit_helper) failed");
    }
  }

  // Init pset_loadavg function pointer
  init_pset_getloadavg_ptr();

  // Shared Posix initialization
  os::Posix::init_2();

  return JNI_OK;
}

// Mark the polling page as unreadable
void os::make_polling_page_unreadable(void) {
  if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
    fatal("Could not disable polling page");
  }
}

// Mark the polling page as readable
void os::make_polling_page_readable(void) {
  if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
    fatal("Could not enable polling page");
  }
}

// Is a (classpath) directory empty?
bool os::dir_is_empty(const char* path) {
  DIR *dir = NULL;
  struct dirent *ptr;

  dir = opendir(path);
  if (dir == NULL) return true;

  // Scan the directory
  bool result = true;
  while (result && (ptr = readdir(dir)) != NULL) {
    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
      result = false;
    }
  }
  closedir(dir);
  return result;
}

// This code originates from JDK's sysOpen and open64_w
// from src/solaris/hpi/src/system_md.c

int os::open(const char *path, int oflag, int mode) {
  if (strlen(path) > MAX_PATH - 1) {
    errno = ENAMETOOLONG;
    return -1;
  }
  int fd;

  fd = ::open64(path, oflag, mode);
  if (fd == -1) return -1;

  // If the open succeeded, the file might still be a directory
  {
    struct stat64 buf64;
    int ret = ::fstat64(fd, &buf64);
    int st_mode = buf64.st_mode;

    if (ret != -1) {
      if ((st_mode & S_IFMT) == S_IFDIR) {
        errno = EISDIR;
        ::close(fd);
        return -1;
      }
    } else {
      ::close(fd);
      return -1;
    }
  }

  // 32-bit Solaris systems suffer from:
  //
  // - an historical default soft limit of 256 per-process file
  //   descriptors that is too low for many Java programs.
  //
  // - a design flaw where file descriptors created using stdio
  //   fopen must be less than 256, _even_ when the first limit above
  //   has been raised.  This can cause calls to fopen (but not calls to
  //   open, for example) to fail mysteriously, perhaps in 3rd party
  //   native code (although the JDK itself uses fopen).  One can hardly
  //   criticize them for using this most standard of all functions.
  //
  // We attempt to make everything work anyways by:
  //
  // - raising the soft limit on per-process file descriptors beyond
  //   256
  //
  // - As of Solaris 10u4, we can request that Solaris raise the 256
  //   stdio fopen limit by calling function enable_extended_FILE_stdio.
  //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  //
  // - If we are stuck on an old (pre 10u4) Solaris system, we can
  //   workaround the bug by remapping non-stdio file descriptors below
  //   256 to ones beyond 256, which is done below.
  //
  // See:
  // 1085341: 32-bit stdio routines should support file descriptors >255
  // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  // 6431278: Netbeans crash on 32 bit Solaris: need to call
  //          enable_extended_FILE_stdio() in VM initialisation
  // Giri Mandalika's blog
  // http://technopark02.blogspot.com/2005_05_01_archive.html
  //
#ifndef  _LP64
  if ((!enabled_extended_FILE_stdio) && fd < 256) {
    int newfd = ::fcntl(fd, F_DUPFD, 256);
    if (newfd != -1) {
      ::close(fd);
      fd = newfd;
    }
  }
#endif // 32-bit Solaris

  // All file descriptors that are opened in the JVM and not
  // specifically destined for a subprocess should have the
  // close-on-exec flag set.  If we don't set it, then careless 3rd
  // party native code might fork and exec without closing all
  // appropriate file descriptors (e.g. as we do in closeDescriptors in
  // UNIXProcess.c), and this in turn might:
  //
  // - cause end-of-file to fail to be detected on some file
  //   descriptors, resulting in mysterious hangs, or
  //
  // - might cause an fopen in the subprocess to fail on a system
  //   suffering from bug 1085341.
  //
  // (Yes, the default setting of the close-on-exec flag is a Unix
  // design flaw)
  //
  // See:
  // 1085341: 32-bit stdio routines should support file descriptors >255
  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  //
#ifdef FD_CLOEXEC
  {
    int flags = ::fcntl(fd, F_GETFD);
    if (flags != -1) {
      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
    }
  }
#endif

  return fd;
}

// create binary file, rewriting existing file if required
int os::create_binary_file(const char* path, bool rewrite_existing) {
  int oflags = O_WRONLY | O_CREAT;
  if (!rewrite_existing) {
    oflags |= O_EXCL;
  }
  return ::open64(path, oflags, S_IREAD | S_IWRITE);
}

// return current position of file pointer
jlong os::current_file_offset(int fd) {
  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
}

// move file pointer to the specified offset
jlong os::seek_to_file_offset(int fd, jlong offset) {
  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
}

jlong os::lseek(int fd, jlong offset, int whence) {
  return (jlong) ::lseek64(fd, offset, whence);
}

int os::ftruncate(int fd, jlong length) {
  return ::ftruncate64(fd, length);
}

int os::fsync(int fd)  {
  RESTARTABLE_RETURN_INT(::fsync(fd));
}

int os::available(int fd, jlong *bytes) {
  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
         "Assumed _thread_in_native");
  jlong cur, end;
  int mode;
  struct stat64 buf64;

  if (::fstat64(fd, &buf64) >= 0) {
    mode = buf64.st_mode;
    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
      int n,ioctl_return;

      RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
      if (ioctl_return>= 0) {
        *bytes = n;
        return 1;
      }
    }
  }
  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
    return 0;
  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
    return 0;
  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
    return 0;
  }
  *bytes = end - cur;
  return 1;
}

// Map a block of memory.
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
                        char *addr, size_t bytes, bool read_only,
                        bool allow_exec) {
  int prot;
  int flags;

  if (read_only) {
    prot = PROT_READ;
    flags = MAP_SHARED;
  } else {
    prot = PROT_READ | PROT_WRITE;
    flags = MAP_PRIVATE;
  }

  if (allow_exec) {
    prot |= PROT_EXEC;
  }

  if (addr != NULL) {
    flags |= MAP_FIXED;
  }

  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
                                     fd, file_offset);
  if (mapped_address == MAP_FAILED) {
    return NULL;
  }
  return mapped_address;
}


// Remap a block of memory.
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
                          char *addr, size_t bytes, bool read_only,
                          bool allow_exec) {
  // same as map_memory() on this OS
  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
                        allow_exec);
}


// Unmap a block of memory.
bool os::pd_unmap_memory(char* addr, size_t bytes) {
  return munmap(addr, bytes) == 0;
}

void os::pause() {
  char filename[MAX_PATH];
  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  } else {
    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  }

  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  if (fd != -1) {
    struct stat buf;
    ::close(fd);
    while (::stat(filename, &buf) == 0) {
      (void)::poll(NULL, 0, 100);
    }
  } else {
    jio_fprintf(stderr,
                "Could not open pause file '%s', continuing immediately.\n", filename);
  }
}

#ifndef PRODUCT
#ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
// Turn this on if you need to trace synch operations.
// Set RECORD_SYNCH_LIMIT to a large-enough value,
// and call record_synch_enable and record_synch_disable
// around the computation of interest.

void record_synch(char* name, bool returning);  // defined below

class RecordSynch {
  char* _name;
 public:
  RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
  ~RecordSynch()                       { record_synch(_name, true); }
};

#define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
extern "C" ret name params {                                    \
  typedef ret name##_t params;                                  \
  static name##_t* implem = NULL;                               \
  static int callcount = 0;                                     \
  if (implem == NULL) {                                         \
    implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
    if (implem == NULL)  fatal(dlerror());                      \
  }                                                             \
  ++callcount;                                                  \
  RecordSynch _rs(#name);                                       \
  inner;                                                        \
  return implem args;                                           \
}
// in dbx, examine callcounts this way:
// for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done

#define CHECK_POINTER_OK(p) \
  (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
#define CHECK_MU \
  if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
#define CHECK_CV \
  if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
#define CHECK_P(p) \
  if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");

#define CHECK_MUTEX(mutex_op) \
  CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);

CHECK_MUTEX(   mutex_lock)
CHECK_MUTEX(  _mutex_lock)
CHECK_MUTEX( mutex_unlock)
CHECK_MUTEX(_mutex_unlock)
CHECK_MUTEX( mutex_trylock)
CHECK_MUTEX(_mutex_trylock)

#define CHECK_COND(cond_op) \
  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);

CHECK_COND( cond_wait);
CHECK_COND(_cond_wait);
CHECK_COND(_cond_wait_cancel);

#define CHECK_COND2(cond_op) \
  CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);

CHECK_COND2( cond_timedwait);
CHECK_COND2(_cond_timedwait);
CHECK_COND2(_cond_timedwait_cancel);

// do the _lwp_* versions too
#define mutex_t lwp_mutex_t
#define cond_t  lwp_cond_t
CHECK_MUTEX(  _lwp_mutex_lock)
CHECK_MUTEX(  _lwp_mutex_unlock)
CHECK_MUTEX(  _lwp_mutex_trylock)
CHECK_MUTEX( __lwp_mutex_lock)
CHECK_MUTEX( __lwp_mutex_unlock)
CHECK_MUTEX( __lwp_mutex_trylock)
CHECK_MUTEX(___lwp_mutex_lock)
CHECK_MUTEX(___lwp_mutex_unlock)

CHECK_COND(  _lwp_cond_wait);
CHECK_COND( __lwp_cond_wait);
CHECK_COND(___lwp_cond_wait);

CHECK_COND2(  _lwp_cond_timedwait);
CHECK_COND2( __lwp_cond_timedwait);
#undef mutex_t
#undef cond_t

CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);


// recording machinery:

enum { RECORD_SYNCH_LIMIT = 200 };
char* record_synch_name[RECORD_SYNCH_LIMIT];
void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
bool record_synch_returning[RECORD_SYNCH_LIMIT];
thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
int record_synch_count = 0;
bool record_synch_enabled = false;

// in dbx, examine recorded data this way:
// for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done

void record_synch(char* name, bool returning) {
  if (record_synch_enabled) {
    if (record_synch_count < RECORD_SYNCH_LIMIT) {
      record_synch_name[record_synch_count] = name;
      record_synch_returning[record_synch_count] = returning;
      record_synch_thread[record_synch_count] = thr_self();
      record_synch_arg0ptr[record_synch_count] = &name;
      record_synch_count++;
    }
    // put more checking code here:
    // ...
  }
}

void record_synch_enable() {
  // start collecting trace data, if not already doing so
  if (!record_synch_enabled)  record_synch_count = 0;
  record_synch_enabled = true;
}

void record_synch_disable() {
  // stop collecting trace data
  record_synch_enabled = false;
}

#endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
#endif // PRODUCT

const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
                               (intptr_t)(&((prusage_t *)(NULL))->pr_utime);


// JVMTI & JVM monitoring and management support
// The thread_cpu_time() and current_thread_cpu_time() are only
// supported if is_thread_cpu_time_supported() returns true.
// They are not supported on Solaris T1.

// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
// of a thread.
//
// current_thread_cpu_time() and thread_cpu_time(Thread *)
// returns the fast estimate available on the platform.

// hrtime_t gethrvtime() return value includes
// user time but does not include system time
jlong os::current_thread_cpu_time() {
  return (jlong) gethrvtime();
}

jlong os::thread_cpu_time(Thread *thread) {
  // return user level CPU time only to be consistent with
  // what current_thread_cpu_time returns.
  // thread_cpu_time_info() must be changed if this changes
  return os::thread_cpu_time(thread, false /* user time only */);
}

jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  if (user_sys_cpu_time) {
    return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  } else {
    return os::current_thread_cpu_time();
  }
}

jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  char proc_name[64];
  int count;
  prusage_t prusage;
  jlong lwp_time;
  int fd;

  sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
          getpid(),
          thread->osthread()->lwp_id());
  fd = ::open(proc_name, O_RDONLY);
  if (fd == -1) return -1;

  do {
    count = ::pread(fd,
                    (void *)&prusage.pr_utime,
                    thr_time_size,
                    thr_time_off);
  } while (count < 0 && errno == EINTR);
  ::close(fd);
  if (count < 0) return -1;

  if (user_sys_cpu_time) {
    // user + system CPU time
    lwp_time = (((jlong)prusage.pr_stime.tv_sec +
                 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
                 (jlong)prusage.pr_stime.tv_nsec +
                 (jlong)prusage.pr_utime.tv_nsec;
  } else {
    // user level CPU time only
    lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
                (jlong)prusage.pr_utime.tv_nsec;
  }

  return (lwp_time);
}

void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  info_ptr->may_skip_backward = false;    // elapsed time not wall time
  info_ptr->may_skip_forward = false;     // elapsed time not wall time
  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
}

void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  info_ptr->may_skip_backward = false;    // elapsed time not wall time
  info_ptr->may_skip_forward = false;     // elapsed time not wall time
  info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
}

bool os::is_thread_cpu_time_supported() {
  return true;
}

// System loadavg support.  Returns -1 if load average cannot be obtained.
// Return the load average for our processor set if the primitive exists
// (Solaris 9 and later).  Otherwise just return system wide loadavg.
int os::loadavg(double loadavg[], int nelem) {
  if (pset_getloadavg_ptr != NULL) {
    return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  } else {
    return ::getloadavg(loadavg, nelem);
  }
}

//---------------------------------------------------------------------------------

bool os::find(address addr, outputStream* st) {
  Dl_info dlinfo;
  memset(&dlinfo, 0, sizeof(dlinfo));
  if (dladdr(addr, &dlinfo) != 0) {
    st->print(PTR_FORMAT ": ", addr);
    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
      st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
    } else if (dlinfo.dli_fbase != NULL) {
      st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
    } else {
      st->print("<absolute address>");
    }
    if (dlinfo.dli_fname != NULL) {
      st->print(" in %s", dlinfo.dli_fname);
    }
    if (dlinfo.dli_fbase != NULL) {
      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
    }
    st->cr();

    if (Verbose) {
      // decode some bytes around the PC
      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
      address       lowest = (address) dlinfo.dli_sname;
      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
      if (begin < lowest)  begin = lowest;
      Dl_info dlinfo2;
      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
        end = (address) dlinfo2.dli_saddr;
      }
      Disassembler::decode(begin, end, st);
    }
    return true;
  }
  return false;
}

// Following function has been added to support HotSparc's libjvm.so running
// under Solaris production JDK 1.2.2 / 1.3.0.  These came from
// src/solaris/hpi/native_threads in the EVM codebase.
//
// NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
// libraries and should thus be removed. We will leave it behind for a while
// until we no longer want to able to run on top of 1.3.0 Solaris production
// JDK. See 4341971.

#define STACK_SLACK 0x800

extern "C" {
  intptr_t sysThreadAvailableStackWithSlack() {
    stack_t st;
    intptr_t retval, stack_top;
    retval = thr_stksegment(&st);
    assert(retval == 0, "incorrect return value from thr_stksegment");
    assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
    assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
    stack_top=(intptr_t)st.ss_sp-st.ss_size;
    return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  }
}

// ObjectMonitor park-unpark infrastructure ...
//
// We implement Solaris and Linux PlatformEvents with the
// obvious condvar-mutex-flag triple.
// Another alternative that works quite well is pipes:
// Each PlatformEvent consists of a pipe-pair.
// The thread associated with the PlatformEvent
// calls park(), which reads from the input end of the pipe.
// Unpark() writes into the other end of the pipe.
// The write-side of the pipe must be set NDELAY.
// Unfortunately pipes consume a large # of handles.
// Native solaris lwp_park() and lwp_unpark() work nicely, too.
// Using pipes for the 1st few threads might be workable, however.
//
// park() is permitted to return spuriously.
// Callers of park() should wrap the call to park() in
// an appropriate loop.  A litmus test for the correct
// usage of park is the following: if park() were modified
// to immediately return 0 your code should still work,
// albeit degenerating to a spin loop.
//
// In a sense, park()-unpark() just provides more polite spinning
// and polling with the key difference over naive spinning being
// that a parked thread needs to be explicitly unparked() in order
// to wake up and to poll the underlying condition.
//
// Assumption:
//    Only one parker can exist on an event, which is why we allocate
//    them per-thread. Multiple unparkers can coexist.
//
// _Event transitions in park()
//   -1 => -1 : illegal
//    1 =>  0 : pass - return immediately
//    0 => -1 : block; then set _Event to 0 before returning
//
// _Event transitions in unpark()
//    0 => 1 : just return
//    1 => 1 : just return
//   -1 => either 0 or 1; must signal target thread
//         That is, we can safely transition _Event from -1 to either
//         0 or 1.
//
// _Event serves as a restricted-range semaphore.
//   -1 : thread is blocked, i.e. there is a waiter
//    0 : neutral: thread is running or ready,
//        could have been signaled after a wait started
//    1 : signaled - thread is running or ready
//
// Another possible encoding of _Event would be with
// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
//
// TODO-FIXME: add DTRACE probes for:
// 1.   Tx parks
// 2.   Ty unparks Tx
// 3.   Tx resumes from park


// value determined through experimentation
#define ROUNDINGFIX 11

// utility to compute the abstime argument to timedwait.
// TODO-FIXME: switch from compute_abstime() to unpackTime().

static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  // millis is the relative timeout time
  // abstime will be the absolute timeout time
  if (millis < 0)  millis = 0;
  struct timeval now;
  int status = gettimeofday(&now, NULL);
  assert(status == 0, "gettimeofday");
  jlong seconds = millis / 1000;
  jlong max_wait_period;

  if (UseLWPSynchronization) {
    // forward port of fix for 4275818 (not sleeping long enough)
    // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
    // _lwp_cond_timedwait() used a round_down algorithm rather
    // than a round_up. For millis less than our roundfactor
    // it rounded down to 0 which doesn't meet the spec.
    // For millis > roundfactor we may return a bit sooner, but
    // since we can not accurately identify the patch level and
    // this has already been fixed in Solaris 9 and 8 we will
    // leave it alone rather than always rounding down.

    if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
    // It appears that when we go directly through Solaris _lwp_cond_timedwait()
    // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
    max_wait_period = 21000000;
  } else {
    max_wait_period = 50000000;
  }
  millis %= 1000;
  if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
    seconds = max_wait_period;
  }
  abstime->tv_sec = now.tv_sec  + seconds;
  long       usec = now.tv_usec + millis * 1000;
  if (usec >= 1000000) {
    abstime->tv_sec += 1;
    usec -= 1000000;
  }
  abstime->tv_nsec = usec * 1000;
  return abstime;
}

void os::PlatformEvent::park() {           // AKA: down()
  // Transitions for _Event:
  //   -1 => -1 : illegal
  //    1 =>  0 : pass - return immediately
  //    0 => -1 : block; then set _Event to 0 before returning

  // Invariant: Only the thread associated with the Event/PlatformEvent
  // may call park().
  assert(_nParked == 0, "invariant");

  int v;
  for (;;) {
    v = _Event;
    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
  }
  guarantee(v >= 0, "invariant");
  if (v == 0) {
    // Do this the hard way by blocking ...
    // See http://monaco.sfbay/detail.jsf?cr=5094058.
    int status = os::Solaris::mutex_lock(_mutex);
    assert_status(status == 0, status, "mutex_lock");
    guarantee(_nParked == 0, "invariant");
    ++_nParked;
    while (_Event < 0) {
      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
      // Treat this the same as if the wait was interrupted
      // With usr/lib/lwp going to kernel, always handle ETIME
      status = os::Solaris::cond_wait(_cond, _mutex);
      if (status == ETIME) status = EINTR;
      assert_status(status == 0 || status == EINTR, status, "cond_wait");
    }
    --_nParked;
    _Event = 0;
    status = os::Solaris::mutex_unlock(_mutex);
    assert_status(status == 0, status, "mutex_unlock");
    // Paranoia to ensure our locked and lock-free paths interact
    // correctly with each other.
    OrderAccess::fence();
  }
}

int os::PlatformEvent::park(jlong millis) {
  // Transitions for _Event:
  //   -1 => -1 : illegal
  //    1 =>  0 : pass - return immediately
  //    0 => -1 : block; then set _Event to 0 before returning

  guarantee(_nParked == 0, "invariant");
  int v;
  for (;;) {
    v = _Event;
    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
  }
  guarantee(v >= 0, "invariant");
  if (v != 0) return OS_OK;

  int ret = OS_TIMEOUT;
  timestruc_t abst;
  compute_abstime(&abst, millis);

  // See http://monaco.sfbay/detail.jsf?cr=5094058.
  int status = os::Solaris::mutex_lock(_mutex);
  assert_status(status == 0, status, "mutex_lock");
  guarantee(_nParked == 0, "invariant");
  ++_nParked;
  while (_Event < 0) {
    int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
    assert_status(status == 0 || status == EINTR ||
                  status == ETIME || status == ETIMEDOUT,
                  status, "cond_timedwait");
    if (!FilterSpuriousWakeups) break;                // previous semantics
    if (status == ETIME || status == ETIMEDOUT) break;
    // We consume and ignore EINTR and spurious wakeups.
  }
  --_nParked;
  if (_Event >= 0) ret = OS_OK;
  _Event = 0;
  status = os::Solaris::mutex_unlock(_mutex);
  assert_status(status == 0, status, "mutex_unlock");
  // Paranoia to ensure our locked and lock-free paths interact
  // correctly with each other.
  OrderAccess::fence();
  return ret;
}

void os::PlatformEvent::unpark() {
  // Transitions for _Event:
  //    0 => 1 : just return
  //    1 => 1 : just return
  //   -1 => either 0 or 1; must signal target thread
  //         That is, we can safely transition _Event from -1 to either
  //         0 or 1.
  // See also: "Semaphores in Plan 9" by Mullender & Cox
  //
  // Note: Forcing a transition from "-1" to "1" on an unpark() means
  // that it will take two back-to-back park() calls for the owning
  // thread to block. This has the benefit of forcing a spurious return
  // from the first park() call after an unpark() call which will help
  // shake out uses of park() and unpark() without condition variables.

  if (Atomic::xchg(1, &_Event) >= 0) return;

  // If the thread associated with the event was parked, wake it.
  // Wait for the thread assoc with the PlatformEvent to vacate.
  int status = os::Solaris::mutex_lock(_mutex);
  assert_status(status == 0, status, "mutex_lock");
  int AnyWaiters = _nParked;
  status = os::Solaris::mutex_unlock(_mutex);
  assert_status(status == 0, status, "mutex_unlock");
  guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  if (AnyWaiters != 0) {
    // Note that we signal() *after* dropping the lock for "immortal" Events.
    // This is safe and avoids a common class of  futile wakeups.  In rare
    // circumstances this can cause a thread to return prematurely from
    // cond_{timed}wait() but the spurious wakeup is benign and the victim
    // will simply re-test the condition and re-park itself.
    // This provides particular benefit if the underlying platform does not
    // provide wait morphing.
    status = os::Solaris::cond_signal(_cond);
    assert_status(status == 0, status, "cond_signal");
  }
}

// JSR166
// -------------------------------------------------------

// The solaris and linux implementations of park/unpark are fairly
// conservative for now, but can be improved. They currently use a
// mutex/condvar pair, plus _counter.
// Park decrements _counter if > 0, else does a condvar wait.  Unpark
// sets count to 1 and signals condvar.  Only one thread ever waits
// on the condvar. Contention seen when trying to park implies that someone
// is unparking you, so don't wait. And spurious returns are fine, so there
// is no need to track notifications.

#define MAX_SECS 100000000

// This code is common to linux and solaris and will be moved to a
// common place in dolphin.
//
// The passed in time value is either a relative time in nanoseconds
// or an absolute time in milliseconds. Either way it has to be unpacked
// into suitable seconds and nanoseconds components and stored in the
// given timespec structure.
// Given time is a 64-bit value and the time_t used in the timespec is only
// a signed-32-bit value (except on 64-bit Linux) we have to watch for
// overflow if times way in the future are given. Further on Solaris versions
// prior to 10 there is a restriction (see cond_timedwait) that the specified
// number of seconds, in abstime, is less than current_time  + 100,000,000.
// As it will be 28 years before "now + 100000000" will overflow we can
// ignore overflow and just impose a hard-limit on seconds using the value
// of "now + 100,000,000". This places a limit on the timeout of about 3.17
// years from "now".
//
static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  assert(time > 0, "convertTime");

  struct timeval now;
  int status = gettimeofday(&now, NULL);
  assert(status == 0, "gettimeofday");

  time_t max_secs = now.tv_sec + MAX_SECS;

  if (isAbsolute) {
    jlong secs = time / 1000;
    if (secs > max_secs) {
      absTime->tv_sec = max_secs;
    } else {
      absTime->tv_sec = secs;
    }
    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  } else {
    jlong secs = time / NANOSECS_PER_SEC;
    if (secs >= MAX_SECS) {
      absTime->tv_sec = max_secs;
      absTime->tv_nsec = 0;
    } else {
      absTime->tv_sec = now.tv_sec + secs;
      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
        absTime->tv_nsec -= NANOSECS_PER_SEC;
        ++absTime->tv_sec; // note: this must be <= max_secs
      }
    }
  }
  assert(absTime->tv_sec >= 0, "tv_sec < 0");
  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
}

void Parker::park(bool isAbsolute, jlong time) {
  // Ideally we'd do something useful while spinning, such
  // as calling unpackTime().

  // Optional fast-path check:
  // Return immediately if a permit is available.
  // We depend on Atomic::xchg() having full barrier semantics
  // since we are doing a lock-free update to _counter.
  if (Atomic::xchg(0, &_counter) > 0) return;

  // Optional fast-exit: Check interrupt before trying to wait
  Thread* thread = Thread::current();
  assert(thread->is_Java_thread(), "Must be JavaThread");
  JavaThread *jt = (JavaThread *)thread;
  if (Thread::is_interrupted(thread, false)) {
    return;
  }

  // First, demultiplex/decode time arguments
  timespec absTime;
  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
    return;
  }
  if (time > 0) {
    // Warning: this code might be exposed to the old Solaris time
    // round-down bugs.  Grep "roundingFix" for details.
    unpackTime(&absTime, isAbsolute, time);
  }

  // Enter safepoint region
  // Beware of deadlocks such as 6317397.
  // The per-thread Parker:: _mutex is a classic leaf-lock.
  // In particular a thread must never block on the Threads_lock while
  // holding the Parker:: mutex.  If safepoints are pending both the
  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  ThreadBlockInVM tbivm(jt);

  // Don't wait if cannot get lock since interference arises from
  // unblocking.  Also. check interrupt before trying wait
  if (Thread::is_interrupted(thread, false) ||
      os::Solaris::mutex_trylock(_mutex) != 0) {
    return;
  }

  int status;

  if (_counter > 0)  { // no wait needed
    _counter = 0;
    status = os::Solaris::mutex_unlock(_mutex);
    assert(status == 0, "invariant");
    // Paranoia to ensure our locked and lock-free paths interact
    // correctly with each other and Java-level accesses.
    OrderAccess::fence();
    return;
  }

  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  jt->set_suspend_equivalent();
  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

  // Do this the hard way by blocking ...
  // See http://monaco.sfbay/detail.jsf?cr=5094058.
  if (time == 0) {
    status = os::Solaris::cond_wait(_cond, _mutex);
  } else {
    status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  }
  // Note that an untimed cond_wait() can sometimes return ETIME on older
  // versions of the Solaris.
  assert_status(status == 0 || status == EINTR ||
                status == ETIME || status == ETIMEDOUT,
                status, "cond_timedwait");

  _counter = 0;
  status = os::Solaris::mutex_unlock(_mutex);
  assert_status(status == 0, status, "mutex_unlock");
  // Paranoia to ensure our locked and lock-free paths interact
  // correctly with each other and Java-level accesses.
  OrderAccess::fence();

  // If externally suspended while waiting, re-suspend
  if (jt->handle_special_suspend_equivalent_condition()) {
    jt->java_suspend_self();
  }
}

void Parker::unpark() {
  int status = os::Solaris::mutex_lock(_mutex);
  assert(status == 0, "invariant");
  const int s = _counter;
  _counter = 1;
  status = os::Solaris::mutex_unlock(_mutex);
  assert(status == 0, "invariant");

  if (s < 1) {
    status = os::Solaris::cond_signal(_cond);
    assert(status == 0, "invariant");
  }
}

// Platform Monitor implementation

os::PlatformMonitor::PlatformMonitor() {
  int status = os::Solaris::cond_init(&_cond);
  assert_status(status == 0, status, "cond_init");
  status = os::Solaris::mutex_init(&_mutex);
  assert_status(status == 0, status, "mutex_init");
}

os::PlatformMonitor::~PlatformMonitor() {
  int status = os::Solaris::cond_destroy(&_cond);
  assert_status(status == 0, status, "cond_destroy");
  status = os::Solaris::mutex_destroy(&_mutex);
  assert_status(status == 0, status, "mutex_destroy");
}

void os::PlatformMonitor::lock() {
  int status = os::Solaris::mutex_lock(&_mutex);
  assert_status(status == 0, status, "mutex_lock");
}

void os::PlatformMonitor::unlock() {
  int status = os::Solaris::mutex_unlock(&_mutex);
  assert_status(status == 0, status, "mutex_unlock");
}

bool os::PlatformMonitor::try_lock() {
  int status = os::Solaris::mutex_trylock(&_mutex);
  assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
  return status == 0;
}

// Must already be locked
int os::PlatformMonitor::wait(jlong millis) {
  assert(millis >= 0, "negative timeout");
  if (millis > 0) {
    timestruc_t abst;
    int ret = OS_TIMEOUT;
    compute_abstime(&abst, millis);
    int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
    assert_status(status == 0 || status == EINTR ||
                  status == ETIME || status == ETIMEDOUT,
                  status, "cond_timedwait");
    // EINTR acts as spurious wakeup - which is permitted anyway
    if (status == 0 || status == EINTR) {
      ret = OS_OK;
    }
    return ret;
  } else {
    int status = os::Solaris::cond_wait(&_cond, &_mutex);
    assert_status(status == 0 || status == EINTR,
                  status, "cond_wait");
    return OS_OK;
  }
}

void os::PlatformMonitor::notify() {
  int status = os::Solaris::cond_signal(&_cond);
  assert_status(status == 0, status, "cond_signal");
}

void os::PlatformMonitor::notify_all() {
  int status = os::Solaris::cond_broadcast(&_cond);
  assert_status(status == 0, status, "cond_broadcast");
}

extern char** environ;

// Run the specified command in a separate process. Return its exit value,
// or -1 on failure (e.g. can't fork a new process).
// Unlike system(), this function can be called from signal handler. It
// doesn't block SIGINT et al.
int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
  char * argv[4];
  argv[0] = (char *)"sh";
  argv[1] = (char *)"-c";
  argv[2] = cmd;
  argv[3] = NULL;

  // fork is async-safe, fork1 is not so can't use in signal handler
  pid_t pid;
  Thread* t = Thread::current_or_null_safe();
  if (t != NULL && t->is_inside_signal_handler()) {
    pid = fork();
  } else {
    pid = fork1();
  }

  if (pid < 0) {
    // fork failed
    warning("fork failed: %s", os::strerror(errno));
    return -1;

  } else if (pid == 0) {
    // child process

    // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
    execve("/usr/bin/sh", argv, environ);

    // execve failed
    _exit(-1);

  } else  {
    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
    // care about the actual exit code, for now.

    int status;

    // Wait for the child process to exit.  This returns immediately if
    // the child has already exited. */
    while (waitpid(pid, &status, 0) < 0) {
      switch (errno) {
      case ECHILD: return 0;
      case EINTR: break;
      default: return -1;
      }
    }

    if (WIFEXITED(status)) {
      // The child exited normally; get its exit code.
      return WEXITSTATUS(status);
    } else if (WIFSIGNALED(status)) {
      // The child exited because of a signal
      // The best value to return is 0x80 + signal number,
      // because that is what all Unix shells do, and because
      // it allows callers to distinguish between process exit and
      // process death by signal.
      return 0x80 + WTERMSIG(status);
    } else {
      // Unknown exit code; pass it through
      return status;
    }
  }
}

size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  size_t res;
  RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
  return res;
}

int os::close(int fd) {
  return ::close(fd);
}

int os::socket_close(int fd) {
  return ::close(fd);
}

int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
         "Assumed _thread_in_native");
  RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
}

int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
         "Assumed _thread_in_native");
  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
}

int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
}

// As both poll and select can be interrupted by signals, we have to be
// prepared to restart the system call after updating the timeout, unless
// a poll() is done with timeout == -1, in which case we repeat with this
// "wait forever" value.

int os::connect(int fd, struct sockaddr *him, socklen_t len) {
  int _result;
  _result = ::connect(fd, him, len);

  // On Solaris, when a connect() call is interrupted, the connection
  // can be established asynchronously (see 6343810). Subsequent calls
  // to connect() must check the errno value which has the semantic
  // described below (copied from the connect() man page). Handling
  // of asynchronously established connections is required for both
  // blocking and non-blocking sockets.
  //     EINTR            The  connection  attempt  was   interrupted
  //                      before  any data arrived by the delivery of
  //                      a signal. The connection, however, will  be
  //                      established asynchronously.
  //
  //     EINPROGRESS      The socket is non-blocking, and the connec-
  //                      tion  cannot  be completed immediately.
  //
  //     EALREADY         The socket is non-blocking,  and a previous
  //                      connection  attempt  has  not yet been com-
  //                      pleted.
  //
  //     EISCONN          The socket is already connected.
  if (_result == OS_ERR && errno == EINTR) {
    // restarting a connect() changes its errno semantics
    RESTARTABLE(::connect(fd, him, len), _result);
    // undo these changes
    if (_result == OS_ERR) {
      if (errno == EALREADY) {
        errno = EINPROGRESS; // fall through
      } else if (errno == EISCONN) {
        errno = 0;
        return OS_OK;
      }
    }
  }
  return _result;
}

// Get the default path to the core file
// Returns the length of the string
int os::get_core_path(char* buffer, size_t bufferSize) {
  const char* p = get_current_directory(buffer, bufferSize);

  if (p == NULL) {
    assert(p != NULL, "failed to get current directory");
    return 0;
  }

  jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
                                              p, current_process_id());

  return strlen(buffer);
}

#ifndef PRODUCT
void TestReserveMemorySpecial_test() {
  // No tests available for this platform
}
#endif

bool os::start_debugging(char *buf, int buflen) {
  int len = (int)strlen(buf);
  char *p = &buf[len];

  jio_snprintf(p, buflen-len,
               "\n\n"
               "Do you want to debug the problem?\n\n"
               "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
               "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
               "Otherwise, press RETURN to abort...",
               os::current_process_id(), os::current_thread_id());

  bool yes = os::message_box("Unexpected Error", buf);

  if (yes) {
    // yes, user asked VM to launch debugger
    jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());

    os::fork_and_exec(buf);
    yes = false;
  }
  return yes;
}