8220016: Clean up redundant RSA services in the SunJSSE provider
Summary: Removed duplicated RSA signature/KF/KPG support in SunJSSE
Reviewed-by: xuelei
/*
* Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "memory/allocation.inline.hpp"
#include "runtime/os.hpp"
#include "runtime/os_perf.hpp"
#include "os_solaris.inline.hpp"
#include "utilities/macros.hpp"
#include CPU_HEADER(vm_version_ext)
#include <sys/types.h>
#include <procfs.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <fcntl.h>
#include <kstat.h>
#include <unistd.h>
#include <string.h>
#include <sys/sysinfo.h>
#include <sys/lwp.h>
#include <pthread.h>
#include <time.h>
#include <utmpx.h>
#include <dlfcn.h>
#include <sys/loadavg.h>
#include <limits.h>
static const double NANOS_PER_SEC = 1000000000.0;
struct CPUPerfTicks {
kstat_t* kstat;
uint64_t last_idle;
uint64_t last_total;
double last_ratio;
};
struct CPUPerfCounters {
int nProcs;
CPUPerfTicks* jvmTicks;
kstat_ctl_t* kstat_ctrl;
};
static int get_info(const char* path, void* info, size_t s, off_t o) {
assert(path != NULL, "path is NULL!");
assert(info != NULL, "info is NULL!");
int fd = -1;
if ((fd = os::open(path, O_RDONLY, 0)) < 0) {
return OS_ERR;
}
if (pread(fd, info, s, o) != s) {
close(fd);
return OS_ERR;
}
close(fd);
return OS_OK;
}
static int get_psinfo2(void* info, size_t s, off_t o) {
return get_info("/proc/self/psinfo", info, s, o);
}
static int get_psinfo(psinfo_t* info) {
return get_psinfo2(info, sizeof(*info), 0);
}
static int get_psinfo(char* file, psinfo_t* info) {
assert(file != NULL, "file is NULL!");
assert(info != NULL, "info is NULL!");
return get_info(file, info, sizeof(*info), 0);
}
static int get_usage(prusage_t* usage) {
assert(usage != NULL, "usage is NULL!");
return get_info("/proc/self/usage", usage, sizeof(*usage), 0);
}
static int read_cpustat(kstat_ctl_t* kstat_ctrl, CPUPerfTicks* load, cpu_stat_t* cpu_stat) {
assert(kstat_ctrl != NULL, "kstat_ctrl pointer is NULL!");
assert(load != NULL, "load pointer is NULL!");
assert(cpu_stat != NULL, "cpu_stat pointer is NULL!");
if (load->kstat == NULL) {
// no handle.
return OS_ERR;
}
if (kstat_read(kstat_ctrl, load->kstat, cpu_stat) == OS_ERR) {
// disable handle for this CPU
load->kstat = NULL;
return OS_ERR;
}
return OS_OK;
}
static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters) {
assert(counters != NULL, "counters pointer is NULL!");
cpu_stat_t cpu_stat = {0};
if (which_logical_cpu >= counters->nProcs) {
return .0;
}
CPUPerfTicks load = counters->jvmTicks[which_logical_cpu];
if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) != OS_OK) {
return .0;
}
uint_t* usage = cpu_stat.cpu_sysinfo.cpu;
if (usage == NULL) {
return .0;
}
uint64_t c_idle = usage[CPU_IDLE];
uint64_t c_total = 0;
for (int i = 0; i < CPU_STATES; i++) {
c_total += usage[i];
}
// Calculate diff against previous snapshot
uint64_t d_idle = c_idle - load.last_idle;
uint64_t d_total = c_total - load.last_total;
/** update if weve moved */
if (d_total > 0) {
// Save current values for next time around
load.last_idle = c_idle;
load.last_total = c_total;
load.last_ratio = (double) (d_total - d_idle) / d_total;
}
return load.last_ratio;
}
static int get_boot_time(uint64_t* time) {
assert(time != NULL, "time pointer is NULL!");
setutxent();
for(;;) {
struct utmpx* u;
if ((u = getutxent()) == NULL) {
break;
}
if (u->ut_type == BOOT_TIME) {
*time = u->ut_xtime;
endutxent();
return OS_OK;
}
}
endutxent();
return OS_ERR;
}
static int get_noof_context_switches(CPUPerfCounters* counters, uint64_t* switches) {
assert(switches != NULL, "switches pointer is NULL!");
assert(counters != NULL, "counter pointer is NULL!");
*switches = 0;
uint64_t s = 0;
// Collect data from all CPUs
for (int i = 0; i < counters->nProcs; i++) {
cpu_stat_t cpu_stat = {0};
CPUPerfTicks load = counters->jvmTicks[i];
if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) == OS_OK) {
s += cpu_stat.cpu_sysinfo.pswitch;
} else {
//fail fast...
return OS_ERR;
}
}
*switches = s;
return OS_OK;
}
static int perf_context_switch_rate(CPUPerfCounters* counters, double* rate) {
assert(counters != NULL, "counters is NULL!");
assert(rate != NULL, "rate pointer is NULL!");
static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
static uint64_t lastTime = 0;
static uint64_t lastSwitches = 0;
static double lastRate = 0.0;
uint64_t lt = 0;
int res = 0;
if (lastTime == 0) {
uint64_t tmp;
if (get_boot_time(&tmp) < 0) {
return OS_ERR;
}
lt = tmp * 1000;
}
res = OS_OK;
pthread_mutex_lock(&contextSwitchLock);
{
uint64_t sw = 0;
clock_t t, d;
if (lastTime == 0) {
lastTime = lt;
}
t = clock();
d = t - lastTime;
if (d == 0) {
*rate = lastRate;
} else if (get_noof_context_switches(counters, &sw)== OS_OK) {
*rate = ((double)(sw - lastSwitches) / d) * 1000;
lastRate = *rate;
lastSwitches = sw;
lastTime = t;
} else {
*rate = 0.0;
res = OS_ERR;
}
if (*rate < 0.0) {
*rate = 0.0;
lastRate = 0.0;
}
}
pthread_mutex_unlock(&contextSwitchLock);
return res;
}
class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
friend class CPUPerformanceInterface;
private:
CPUPerfCounters _counters;
int cpu_load(int which_logical_cpu, double* cpu_load);
int context_switch_rate(double* rate);
int cpu_load_total_process(double* cpu_load);
int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
CPUPerformance();
~CPUPerformance();
bool initialize();
};
CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
_counters.nProcs = 0;
_counters.jvmTicks = NULL;
_counters.kstat_ctrl = NULL;
}
bool CPUPerformanceInterface::CPUPerformance::initialize() {
// initialize kstat control structure,
_counters.kstat_ctrl = kstat_open();
assert(_counters.kstat_ctrl != NULL, "error initializing kstat control structure!");
if (NULL == _counters.kstat_ctrl) {
return false;
}
// Get number of CPU(s)
if ((_counters.nProcs = sysconf(_SC_NPROCESSORS_ONLN)) == OS_ERR) {
// ignore error?
_counters.nProcs = 1;
}
assert(_counters.nProcs > 0, "no CPUs detected in sysconf call!");
if (_counters.nProcs == 0) {
return false;
}
// Data structure(s) for saving CPU load (one per CPU)
size_t tick_array_size = _counters.nProcs * sizeof(CPUPerfTicks);
_counters.jvmTicks = (CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal);
if (NULL == _counters.jvmTicks) {
return false;
}
memset(_counters.jvmTicks, 0, tick_array_size);
// Get kstat cpu_stat counters for every CPU
// loop over kstat to find our cpu_stat(s)
int i = 0;
for (kstat_t* kstat = _counters.kstat_ctrl->kc_chain; kstat != NULL; kstat = kstat->ks_next) {
if (strncmp(kstat->ks_module, "cpu_stat", 8) == 0) {
if (kstat_read(_counters.kstat_ctrl, kstat, NULL) == OS_ERR) {
continue;
}
if (i == _counters.nProcs) {
// more cpu_stats than reported CPUs
break;
}
_counters.jvmTicks[i++].kstat = kstat;
}
}
return true;
}
CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
if (_counters.jvmTicks != NULL) {
FREE_C_HEAP_ARRAY(char, _counters.jvmTicks);
}
if (_counters.kstat_ctrl != NULL) {
kstat_close(_counters.kstat_ctrl);
}
}
int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
assert(cpu_load != NULL, "cpu_load pointer is NULL!");
double t = .0;
if (-1 == which_logical_cpu) {
for (int i = 0; i < _counters.nProcs; i++) {
t += get_cpu_load(i, &_counters);
}
// Cap total systemload to 1.0
t = MIN2<double>((t / _counters.nProcs), 1.0);
} else {
t = MIN2<double>(get_cpu_load(which_logical_cpu, &_counters), 1.0);
}
*cpu_load = t;
return OS_OK;
}
int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
assert(cpu_load != NULL, "cpu_load pointer is NULL!");
psinfo_t info;
// Get the percentage of "recent cpu usage" from all the lwp:s in the JVM:s
// process. This is returned as a value between 0.0 and 1.0 multiplied by 0x8000.
if (get_psinfo2(&info.pr_pctcpu, sizeof(info.pr_pctcpu), offsetof(psinfo_t, pr_pctcpu)) != 0) {
*cpu_load = 0.0;
return OS_ERR;
}
*cpu_load = (double) info.pr_pctcpu / 0x8000;
return OS_OK;
}
int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
static uint64_t lastTime;
static uint64_t lastUser, lastKernel;
static double lastUserRes, lastKernelRes;
pstatus_t pss;
psinfo_t info;
*pjvmKernelLoad = *pjvmUserLoad = *psystemTotalLoad = 0;
if (get_info("/proc/self/status", &pss.pr_utime, sizeof(timestruc_t)*2, offsetof(pstatus_t, pr_utime)) != 0) {
return OS_ERR;
}
if (get_psinfo(&info) != 0) {
return OS_ERR;
}
// get the total time in user, kernel and total time
// check ratios for 'lately' and multiply the 'recent load'.
uint64_t time = (info.pr_time.tv_sec * NANOS_PER_SEC) + info.pr_time.tv_nsec;
uint64_t user = (pss.pr_utime.tv_sec * NANOS_PER_SEC) + pss.pr_utime.tv_nsec;
uint64_t kernel = (pss.pr_stime.tv_sec * NANOS_PER_SEC) + pss.pr_stime.tv_nsec;
uint64_t diff = time - lastTime;
double load = (double) info.pr_pctcpu / 0x8000;
if (diff > 0) {
lastUserRes = (load * (user - lastUser)) / diff;
lastKernelRes = (load * (kernel - lastKernel)) / diff;
// BUG9182835 - patch for clamping these values to sane ones.
lastUserRes = MIN2<double>(1, lastUserRes);
lastUserRes = MAX2<double>(0, lastUserRes);
lastKernelRes = MIN2<double>(1, lastKernelRes);
lastKernelRes = MAX2<double>(0, lastKernelRes);
}
double t = .0;
cpu_load(-1, &t);
// clamp at user+system and 1.0
if (lastUserRes + lastKernelRes > t) {
t = MIN2<double>(lastUserRes + lastKernelRes, 1.0);
}
*pjvmUserLoad = lastUserRes;
*pjvmKernelLoad = lastKernelRes;
*psystemTotalLoad = t;
lastTime = time;
lastUser = user;
lastKernel = kernel;
return OS_OK;
}
int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
return perf_context_switch_rate(&_counters, rate);
}
CPUPerformanceInterface::CPUPerformanceInterface() {
_impl = NULL;
}
bool CPUPerformanceInterface::initialize() {
_impl = new CPUPerformanceInterface::CPUPerformance();
return _impl != NULL && _impl->initialize();
}
CPUPerformanceInterface::~CPUPerformanceInterface(void) {
if (_impl != NULL) {
delete _impl;
}
}
int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
return _impl->cpu_load(which_logical_cpu, cpu_load);
}
int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
return _impl->cpu_load_total_process(cpu_load);
}
int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
}
int CPUPerformanceInterface::context_switch_rate(double* rate) const {
return _impl->context_switch_rate(rate);
}
class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
friend class SystemProcessInterface;
private:
class ProcessIterator : public CHeapObj<mtInternal> {
friend class SystemProcessInterface::SystemProcesses;
private:
DIR* _dir;
struct dirent* _entry;
bool _valid;
ProcessIterator();
~ProcessIterator();
bool initialize();
bool is_valid() const { return _valid; }
bool is_valid_entry(struct dirent* const entry) const;
bool is_dir(const char* const name) const;
char* allocate_string(const char* const str) const;
int current(SystemProcess* const process_info);
int next_process();
};
ProcessIterator* _iterator;
SystemProcesses();
bool initialize();
~SystemProcesses();
//information about system processes
int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
};
bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
struct stat64 mystat;
int ret_val = 0;
ret_val = ::stat64(name, &mystat);
if (ret_val < 0) {
return false;
}
ret_val = S_ISDIR(mystat.st_mode);
return ret_val > 0;
}
// if it has a numeric name, is a directory and has a 'psinfo' file in it
bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
// ignore the "." and ".." directories
if ((strcmp(entry->d_name, ".") == 0) ||
(strcmp(entry->d_name, "..") == 0)) {
return false;
}
char buffer[PATH_MAX] = {0};
uint64_t size = 0;
bool result = false;
FILE *fp = NULL;
if (atoi(entry->d_name) != 0) {
jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
if (is_dir(buffer)) {
memset(buffer, 0, PATH_MAX);
jio_snprintf(buffer, PATH_MAX, "/proc/%s/psinfo", entry->d_name);
if ((fp = fopen(buffer, "r")) != NULL) {
int nread = 0;
psinfo_t psinfo_data;
if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) != -1) {
// only considering system process owned by root
if (psinfo_data.pr_uid == 0) {
result = true;
}
}
}
}
}
if (fp != NULL) {
fclose(fp);
}
return result;
}
char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
if (str != NULL) {
return os::strdup_check_oom(str, mtInternal);
}
return NULL;
}
int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
if (!is_valid()) {
return OS_ERR;
}
char psinfo_path[PATH_MAX] = {0};
jio_snprintf(psinfo_path, PATH_MAX, "/proc/%s/psinfo", _entry->d_name);
FILE *fp = NULL;
if ((fp = fopen(psinfo_path, "r")) == NULL) {
return OS_ERR;
}
int nread = 0;
psinfo_t psinfo_data;
if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) == -1) {
fclose(fp);
return OS_ERR;
}
char *exe_path = NULL;
if ((psinfo_data.pr_fname != NULL) &&
(psinfo_data.pr_psargs != NULL)) {
char *path_substring = strstr(psinfo_data.pr_psargs, psinfo_data.pr_fname);
if (path_substring != NULL) {
int len = path_substring - psinfo_data.pr_psargs;
exe_path = NEW_C_HEAP_ARRAY(char, len+1, mtInternal);
if (exe_path != NULL) {
jio_snprintf(exe_path, len, "%s", psinfo_data.pr_psargs);
exe_path[len] = '\0';
}
}
}
process_info->set_pid(atoi(_entry->d_name));
process_info->set_name(allocate_string(psinfo_data.pr_fname));
process_info->set_path(allocate_string(exe_path));
process_info->set_command_line(allocate_string(psinfo_data.pr_psargs));
if (exe_path != NULL) {
FREE_C_HEAP_ARRAY(char, exe_path);
}
if (fp != NULL) {
fclose(fp);
}
return OS_OK;
}
int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
if (!is_valid()) {
return OS_ERR;
}
do {
_entry = os::readdir(_dir);
if (_entry == NULL) {
// Error or reached end. Could use errno to distinguish those cases.
_valid = false;
return OS_ERR;
}
} while(!is_valid_entry(_entry));
_valid = true;
return OS_OK;
}
SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
_dir = NULL;
_entry = NULL;
_valid = false;
}
bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
_dir = os::opendir("/proc");
_entry = NULL;
_valid = true;
next_process();
return true;
}
SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
if (_dir != NULL) {
os::closedir(_dir);
}
}
SystemProcessInterface::SystemProcesses::SystemProcesses() {
_iterator = NULL;
}
bool SystemProcessInterface::SystemProcesses::initialize() {
_iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
return _iterator != NULL && _iterator->initialize();
}
SystemProcessInterface::SystemProcesses::~SystemProcesses() {
if (_iterator != NULL) {
delete _iterator;
}
}
int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
assert(system_processes != NULL, "system_processes pointer is NULL!");
assert(no_of_sys_processes != NULL, "system_processes counter pointer is NULL!");
assert(_iterator != NULL, "iterator is NULL!");
// initialize pointers
*no_of_sys_processes = 0;
*system_processes = NULL;
while (_iterator->is_valid()) {
SystemProcess* tmp = new SystemProcess();
_iterator->current(tmp);
//if already existing head
if (*system_processes != NULL) {
//move "first to second"
tmp->set_next(*system_processes);
}
// new head
*system_processes = tmp;
// increment
(*no_of_sys_processes)++;
// step forward
_iterator->next_process();
}
return OS_OK;
}
int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
return _impl->system_processes(system_procs, no_of_sys_processes);
}
SystemProcessInterface::SystemProcessInterface() {
_impl = NULL;
}
bool SystemProcessInterface::initialize() {
_impl = new SystemProcessInterface::SystemProcesses();
return _impl != NULL && _impl->initialize();
}
SystemProcessInterface::~SystemProcessInterface() {
if (_impl != NULL) {
delete _impl;
}
}
CPUInformationInterface::CPUInformationInterface() {
_cpu_info = NULL;
}
bool CPUInformationInterface::initialize() {
_cpu_info = new CPUInformation();
if (_cpu_info == NULL) {
return false;
}
_cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
_cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
_cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
_cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
_cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
return true;
}
CPUInformationInterface::~CPUInformationInterface() {
if (_cpu_info != NULL) {
if (_cpu_info->cpu_name() != NULL) {
const char* cpu_name = _cpu_info->cpu_name();
FREE_C_HEAP_ARRAY(char, cpu_name);
_cpu_info->set_cpu_name(NULL);
}
if (_cpu_info->cpu_description() != NULL) {
const char* cpu_desc = _cpu_info->cpu_description();
FREE_C_HEAP_ARRAY(char, cpu_desc);
_cpu_info->set_cpu_description(NULL);
}
delete _cpu_info;
}
}
int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
if (_cpu_info == NULL) {
return OS_ERR;
}
cpu_info = *_cpu_info; // shallow copy assignment
return OS_OK;
}
class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
friend class NetworkPerformanceInterface;
private:
NetworkPerformance();
NetworkPerformance(const NetworkPerformance& rhs); // no impl
NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
bool initialize();
~NetworkPerformance();
int network_utilization(NetworkInterface** network_interfaces) const;
};
NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
}
bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
return true;
}
NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
}
int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
{
kstat_ctl_t* ctl = kstat_open();
if (ctl == NULL) {
return OS_ERR;
}
NetworkInterface* ret = NULL;
for (kstat_t* k = ctl->kc_chain; k != NULL; k = k->ks_next) {
if (strcmp(k->ks_class, "net") != 0) {
continue;
}
if (strcmp(k->ks_module, "link") != 0) {
continue;
}
if (kstat_read(ctl, k, NULL) == -1) {
return OS_ERR;
}
uint64_t bytes_in = UINT64_MAX;
uint64_t bytes_out = UINT64_MAX;
for (int i = 0; i < k->ks_ndata; ++i) {
kstat_named_t* data = &reinterpret_cast<kstat_named_t*>(k->ks_data)[i];
if (strcmp(data->name, "rbytes64") == 0) {
bytes_in = data->value.ui64;
}
else if (strcmp(data->name, "obytes64") == 0) {
bytes_out = data->value.ui64;
}
}
if ((bytes_in != UINT64_MAX) && (bytes_out != UINT64_MAX)) {
NetworkInterface* cur = new NetworkInterface(k->ks_name, bytes_in, bytes_out, ret);
ret = cur;
}
}
kstat_close(ctl);
*network_interfaces = ret;
return OS_OK;
}
NetworkPerformanceInterface::NetworkPerformanceInterface() {
_impl = NULL;
}
NetworkPerformanceInterface::~NetworkPerformanceInterface() {
if (_impl != NULL) {
delete _impl;
}
}
bool NetworkPerformanceInterface::initialize() {
_impl = new NetworkPerformanceInterface::NetworkPerformance();
return _impl != NULL && _impl->initialize();
}
int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
return _impl->network_utilization(network_interfaces);
}