8080775: Better argument formatting for assert() and friends
Reviewed-by: kbarrett, pliden
/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/concurrentG1Refine.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionSet.inline.hpp"
#include "memory/allocation.hpp"
void HeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* prev_bitmap,
G1RegionToSpaceMapper* next_bitmap,
G1RegionToSpaceMapper* bot,
G1RegionToSpaceMapper* cardtable,
G1RegionToSpaceMapper* card_counts) {
_allocated_heapregions_length = 0;
_heap_mapper = heap_storage;
_prev_bitmap_mapper = prev_bitmap;
_next_bitmap_mapper = next_bitmap;
_bot_mapper = bot;
_cardtable_mapper = cardtable;
_card_counts_mapper = card_counts;
MemRegion reserved = heap_storage->reserved();
_regions.initialize(reserved.start(), reserved.end(), HeapRegion::GrainBytes);
_available_map.resize(_regions.length(), false);
_available_map.clear();
}
bool HeapRegionManager::is_available(uint region) const {
return _available_map.at(region);
}
#ifdef ASSERT
bool HeapRegionManager::is_free(HeapRegion* hr) const {
return _free_list.contains(hr);
}
#endif
HeapRegion* HeapRegionManager::new_heap_region(uint hrm_index) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* bottom = g1h->bottom_addr_for_region(hrm_index);
MemRegion mr(bottom, bottom + HeapRegion::GrainWords);
assert(reserved().contains(mr), "invariant");
return g1h->new_heap_region(hrm_index, mr);
}
void HeapRegionManager::commit_regions(uint index, size_t num_regions) {
guarantee(num_regions > 0, "Must commit more than zero regions");
guarantee(_num_committed + num_regions <= max_length(), "Cannot commit more than the maximum amount of regions");
_num_committed += (uint)num_regions;
_heap_mapper->commit_regions(index, num_regions);
// Also commit auxiliary data
_prev_bitmap_mapper->commit_regions(index, num_regions);
_next_bitmap_mapper->commit_regions(index, num_regions);
_bot_mapper->commit_regions(index, num_regions);
_cardtable_mapper->commit_regions(index, num_regions);
_card_counts_mapper->commit_regions(index, num_regions);
}
void HeapRegionManager::uncommit_regions(uint start, size_t num_regions) {
guarantee(num_regions >= 1, "Need to specify at least one region to uncommit, tried to uncommit zero regions at %u", start);
guarantee(_num_committed >= num_regions, "pre-condition");
// Print before uncommitting.
if (G1CollectedHeap::heap()->hr_printer()->is_active()) {
for (uint i = start; i < start + num_regions; i++) {
HeapRegion* hr = at(i);
G1CollectedHeap::heap()->hr_printer()->uncommit(hr->bottom(), hr->end());
}
}
_num_committed -= (uint)num_regions;
_available_map.par_clear_range(start, start + num_regions, BitMap::unknown_range);
_heap_mapper->uncommit_regions(start, num_regions);
// Also uncommit auxiliary data
_prev_bitmap_mapper->uncommit_regions(start, num_regions);
_next_bitmap_mapper->uncommit_regions(start, num_regions);
_bot_mapper->uncommit_regions(start, num_regions);
_cardtable_mapper->uncommit_regions(start, num_regions);
_card_counts_mapper->uncommit_regions(start, num_regions);
}
void HeapRegionManager::make_regions_available(uint start, uint num_regions) {
guarantee(num_regions > 0, "No point in calling this for zero regions");
commit_regions(start, num_regions);
for (uint i = start; i < start + num_regions; i++) {
if (_regions.get_by_index(i) == NULL) {
HeapRegion* new_hr = new_heap_region(i);
_regions.set_by_index(i, new_hr);
_allocated_heapregions_length = MAX2(_allocated_heapregions_length, i + 1);
}
}
_available_map.par_set_range(start, start + num_regions, BitMap::unknown_range);
for (uint i = start; i < start + num_regions; i++) {
assert(is_available(i), "Just made region %u available but is apparently not.", i);
HeapRegion* hr = at(i);
if (G1CollectedHeap::heap()->hr_printer()->is_active()) {
G1CollectedHeap::heap()->hr_printer()->commit(hr->bottom(), hr->end());
}
HeapWord* bottom = G1CollectedHeap::heap()->bottom_addr_for_region(i);
MemRegion mr(bottom, bottom + HeapRegion::GrainWords);
hr->initialize(mr);
insert_into_free_list(at(i));
}
}
MemoryUsage HeapRegionManager::get_auxiliary_data_memory_usage() const {
size_t used_sz =
_prev_bitmap_mapper->committed_size() +
_next_bitmap_mapper->committed_size() +
_bot_mapper->committed_size() +
_cardtable_mapper->committed_size() +
_card_counts_mapper->committed_size();
size_t committed_sz =
_prev_bitmap_mapper->reserved_size() +
_next_bitmap_mapper->reserved_size() +
_bot_mapper->reserved_size() +
_cardtable_mapper->reserved_size() +
_card_counts_mapper->reserved_size();
return MemoryUsage(0, used_sz, committed_sz, committed_sz);
}
uint HeapRegionManager::expand_by(uint num_regions) {
return expand_at(0, num_regions);
}
uint HeapRegionManager::expand_at(uint start, uint num_regions) {
if (num_regions == 0) {
return 0;
}
uint cur = start;
uint idx_last_found = 0;
uint num_last_found = 0;
uint expanded = 0;
while (expanded < num_regions &&
(num_last_found = find_unavailable_from_idx(cur, &idx_last_found)) > 0) {
uint to_expand = MIN2(num_regions - expanded, num_last_found);
make_regions_available(idx_last_found, to_expand);
expanded += to_expand;
cur = idx_last_found + num_last_found + 1;
}
verify_optional();
return expanded;
}
uint HeapRegionManager::find_contiguous(size_t num, bool empty_only) {
uint found = 0;
size_t length_found = 0;
uint cur = 0;
while (length_found < num && cur < max_length()) {
HeapRegion* hr = _regions.get_by_index(cur);
if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) {
// This region is a potential candidate for allocation into.
length_found++;
} else {
// This region is not a candidate. The next region is the next possible one.
found = cur + 1;
length_found = 0;
}
cur++;
}
if (length_found == num) {
for (uint i = found; i < (found + num); i++) {
HeapRegion* hr = _regions.get_by_index(i);
// sanity check
guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()),
"Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT
" that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr));
}
return found;
} else {
return G1_NO_HRM_INDEX;
}
}
HeapRegion* HeapRegionManager::next_region_in_heap(const HeapRegion* r) const {
guarantee(r != NULL, "Start region must be a valid region");
guarantee(is_available(r->hrm_index()), "Trying to iterate starting from region %u which is not in the heap", r->hrm_index());
for (uint i = r->hrm_index() + 1; i < _allocated_heapregions_length; i++) {
HeapRegion* hr = _regions.get_by_index(i);
if (is_available(i)) {
return hr;
}
}
return NULL;
}
void HeapRegionManager::iterate(HeapRegionClosure* blk) const {
uint len = max_length();
for (uint i = 0; i < len; i++) {
if (!is_available(i)) {
continue;
}
guarantee(at(i) != NULL, "Tried to access region %u that has a NULL HeapRegion*", i);
bool res = blk->doHeapRegion(at(i));
if (res) {
blk->incomplete();
return;
}
}
}
uint HeapRegionManager::find_unavailable_from_idx(uint start_idx, uint* res_idx) const {
guarantee(res_idx != NULL, "checking");
guarantee(start_idx <= (max_length() + 1), "checking");
uint num_regions = 0;
uint cur = start_idx;
while (cur < max_length() && is_available(cur)) {
cur++;
}
if (cur == max_length()) {
return num_regions;
}
*res_idx = cur;
while (cur < max_length() && !is_available(cur)) {
cur++;
}
num_regions = cur - *res_idx;
#ifdef ASSERT
for (uint i = *res_idx; i < (*res_idx + num_regions); i++) {
assert(!is_available(i), "just checking");
}
assert(cur == max_length() || num_regions == 0 || is_available(cur),
"The region at the current position %u must be available or at the end of the heap.", cur);
#endif
return num_regions;
}
uint HeapRegionManager::find_highest_free(bool* expanded) {
// Loop downwards from the highest region index, looking for an
// entry which is either free or not yet committed. If not yet
// committed, expand_at that index.
uint curr = max_length() - 1;
while (true) {
HeapRegion *hr = _regions.get_by_index(curr);
if (hr == NULL) {
uint res = expand_at(curr, 1);
if (res == 1) {
*expanded = true;
return curr;
}
} else {
if (hr->is_free()) {
*expanded = false;
return curr;
}
}
if (curr == 0) {
return G1_NO_HRM_INDEX;
}
curr--;
}
}
bool HeapRegionManager::allocate_containing_regions(MemRegion range, size_t* commit_count) {
size_t commits = 0;
uint start_index = (uint)_regions.get_index_by_address(range.start());
uint last_index = (uint)_regions.get_index_by_address(range.last());
// Ensure that each G1 region in the range is free, returning false if not.
// Commit those that are not yet available, and keep count.
for (uint curr_index = start_index; curr_index <= last_index; curr_index++) {
if (!is_available(curr_index)) {
commits++;
expand_at(curr_index, 1);
}
HeapRegion* curr_region = _regions.get_by_index(curr_index);
if (!curr_region->is_free()) {
return false;
}
}
allocate_free_regions_starting_at(start_index, (last_index - start_index) + 1);
*commit_count = commits;
return true;
}
void HeapRegionManager::par_iterate(HeapRegionClosure* blk, uint worker_id, HeapRegionClaimer* hrclaimer, bool concurrent) const {
const uint start_index = hrclaimer->start_region_for_worker(worker_id);
// Every worker will actually look at all regions, skipping over regions that
// are currently not committed.
// This also (potentially) iterates over regions newly allocated during GC. This
// is no problem except for some extra work.
const uint n_regions = hrclaimer->n_regions();
for (uint count = 0; count < n_regions; count++) {
const uint index = (start_index + count) % n_regions;
assert(index < n_regions, "sanity");
// Skip over unavailable regions
if (!is_available(index)) {
continue;
}
HeapRegion* r = _regions.get_by_index(index);
// We'll ignore "continues humongous" regions (we'll process them
// when we come across their corresponding "start humongous"
// region) and regions already claimed.
// However, if the iteration is specified as concurrent, the values for
// is_starts_humongous and is_continues_humongous can not be trusted,
// and we should just blindly iterate over regions regardless of their
// humongous status.
if (hrclaimer->is_region_claimed(index) || (!concurrent && r->is_continues_humongous())) {
continue;
}
// OK, try to claim it
if (!hrclaimer->claim_region(index)) {
continue;
}
// Success!
// As mentioned above, special treatment of humongous regions can only be
// done if we are iterating non-concurrently.
if (!concurrent && r->is_starts_humongous()) {
// If the region is "starts humongous" we'll iterate over its
// "continues humongous" first; in fact we'll do them
// first. The order is important. In one case, calling the
// closure on the "starts humongous" region might de-allocate
// and clear all its "continues humongous" regions and, as a
// result, we might end up processing them twice. So, we'll do
// them first (note: most closures will ignore them anyway) and
// then we'll do the "starts humongous" region.
for (uint ch_index = index + 1; ch_index < index + r->region_num(); ch_index++) {
HeapRegion* chr = _regions.get_by_index(ch_index);
assert(chr->is_continues_humongous(), "Must be humongous region");
assert(chr->humongous_start_region() == r,
"Must work on humongous continuation of the original start region "
PTR_FORMAT ", but is " PTR_FORMAT, p2i(r), p2i(chr));
assert(!hrclaimer->is_region_claimed(ch_index),
"Must not have been claimed yet because claiming of humongous continuation first claims the start region");
// Claim the region so no other worker tries to process the region. When a worker processes a
// starts_humongous region it may also process the associated continues_humongous regions.
// The continues_humongous regions can be changed to free regions. Unless this worker claims
// all of these regions, other workers might try claim and process these newly free regions.
bool claim_result = hrclaimer->claim_region(ch_index);
guarantee(claim_result, "We should always be able to claim the continuesHumongous part of the humongous object");
bool res2 = blk->doHeapRegion(chr);
if (res2) {
return;
}
// Right now, this holds (i.e., no closure that actually
// does something with "continues humongous" regions
// clears them). We might have to weaken it in the future,
// but let's leave these two asserts here for extra safety.
assert(chr->is_continues_humongous(), "should still be the case");
assert(chr->humongous_start_region() == r, "sanity");
}
}
bool res = blk->doHeapRegion(r);
if (res) {
return;
}
}
}
uint HeapRegionManager::shrink_by(uint num_regions_to_remove) {
assert(length() > 0, "the region sequence should not be empty");
assert(length() <= _allocated_heapregions_length, "invariant");
assert(_allocated_heapregions_length > 0, "we should have at least one region committed");
assert(num_regions_to_remove < length(), "We should never remove all regions");
if (num_regions_to_remove == 0) {
return 0;
}
uint removed = 0;
uint cur = _allocated_heapregions_length - 1;
uint idx_last_found = 0;
uint num_last_found = 0;
while ((removed < num_regions_to_remove) &&
(num_last_found = find_empty_from_idx_reverse(cur, &idx_last_found)) > 0) {
uint to_remove = MIN2(num_regions_to_remove - removed, num_last_found);
shrink_at(idx_last_found + num_last_found - to_remove, to_remove);
cur = idx_last_found;
removed += to_remove;
}
verify_optional();
return removed;
}
void HeapRegionManager::shrink_at(uint index, size_t num_regions) {
#ifdef ASSERT
for (uint i = index; i < (index + num_regions); i++) {
assert(is_available(i), "Expected available region at index %u", i);
assert(at(i)->is_empty(), "Expected empty region at index %u", i);
assert(at(i)->is_free(), "Expected free region at index %u", i);
}
#endif
uncommit_regions(index, num_regions);
}
uint HeapRegionManager::find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const {
guarantee(start_idx < _allocated_heapregions_length, "checking");
guarantee(res_idx != NULL, "checking");
uint num_regions_found = 0;
jlong cur = start_idx;
while (cur != -1 && !(is_available(cur) && at(cur)->is_empty())) {
cur--;
}
if (cur == -1) {
return num_regions_found;
}
jlong old_cur = cur;
// cur indexes the first empty region
while (cur != -1 && is_available(cur) && at(cur)->is_empty()) {
cur--;
}
*res_idx = cur + 1;
num_regions_found = old_cur - cur;
#ifdef ASSERT
for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) {
assert(at(i)->is_empty(), "just checking");
}
#endif
return num_regions_found;
}
void HeapRegionManager::verify() {
guarantee(length() <= _allocated_heapregions_length,
"invariant: _length: %u _allocated_length: %u",
length(), _allocated_heapregions_length);
guarantee(_allocated_heapregions_length <= max_length(),
"invariant: _allocated_length: %u _max_length: %u",
_allocated_heapregions_length, max_length());
bool prev_committed = true;
uint num_committed = 0;
HeapWord* prev_end = heap_bottom();
for (uint i = 0; i < _allocated_heapregions_length; i++) {
if (!is_available(i)) {
prev_committed = false;
continue;
}
num_committed++;
HeapRegion* hr = _regions.get_by_index(i);
guarantee(hr != NULL, "invariant: i: %u", i);
guarantee(!prev_committed || hr->bottom() == prev_end,
"invariant i: %u " HR_FORMAT " prev_end: " PTR_FORMAT,
i, HR_FORMAT_PARAMS(hr), p2i(prev_end));
guarantee(hr->hrm_index() == i,
"invariant: i: %u hrm_index(): %u", i, hr->hrm_index());
// Asserts will fire if i is >= _length
HeapWord* addr = hr->bottom();
guarantee(addr_to_region(addr) == hr, "sanity");
// We cannot check whether the region is part of a particular set: at the time
// this method may be called, we have only completed allocation of the regions,
// but not put into a region set.
prev_committed = true;
if (hr->is_starts_humongous()) {
prev_end = hr->orig_end();
} else {
prev_end = hr->end();
}
}
for (uint i = _allocated_heapregions_length; i < max_length(); i++) {
guarantee(_regions.get_by_index(i) == NULL, "invariant i: %u", i);
}
guarantee(num_committed == _num_committed, "Found %u committed regions, but should be %u", num_committed, _num_committed);
_free_list.verify();
}
#ifndef PRODUCT
void HeapRegionManager::verify_optional() {
verify();
}
#endif // PRODUCT
HeapRegionClaimer::HeapRegionClaimer(uint n_workers) :
_n_workers(n_workers), _n_regions(G1CollectedHeap::heap()->_hrm._allocated_heapregions_length), _claims(NULL) {
assert(n_workers > 0, "Need at least one worker.");
_claims = NEW_C_HEAP_ARRAY(uint, _n_regions, mtGC);
memset(_claims, Unclaimed, sizeof(*_claims) * _n_regions);
}
HeapRegionClaimer::~HeapRegionClaimer() {
if (_claims != NULL) {
FREE_C_HEAP_ARRAY(uint, _claims);
}
}
uint HeapRegionClaimer::start_region_for_worker(uint worker_id) const {
assert(worker_id < _n_workers, "Invalid worker_id.");
return _n_regions * worker_id / _n_workers;
}
bool HeapRegionClaimer::is_region_claimed(uint region_index) const {
assert(region_index < _n_regions, "Invalid index.");
return _claims[region_index] == Claimed;
}
bool HeapRegionClaimer::claim_region(uint region_index) {
assert(region_index < _n_regions, "Invalid index.");
uint old_val = Atomic::cmpxchg(Claimed, &_claims[region_index], Unclaimed);
return old_val == Unclaimed;
}