/*
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_x86.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/top.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp
#define __ _masm->
#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
#define a__ ((Assembler*)_masm)->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
// Stub Code definitions
static address handle_unsafe_access() {
JavaThread* thread = JavaThread::current();
address pc = thread->saved_exception_pc();
// pc is the instruction which we must emulate
// doing a no-op is fine: return garbage from the load
// therefore, compute npc
address npc = Assembler::locate_next_instruction(pc);
// request an async exception
thread->set_pending_unsafe_access_error();
// return address of next instruction to execute
return npc;
}
class StubGenerator: public StubCodeGenerator {
private:
#ifdef PRODUCT
#define inc_counter_np(counter) ((void)0)
#else
void inc_counter_np_(int& counter) {
// This can destroy rscratch1 if counter is far from the code cache
__ incrementl(ExternalAddress((address)&counter));
}
#define inc_counter_np(counter) \
BLOCK_COMMENT("inc_counter " #counter); \
inc_counter_np_(counter);
#endif
// Call stubs are used to call Java from C
//
// Linux Arguments:
// c_rarg0: call wrapper address address
// c_rarg1: result address
// c_rarg2: result type BasicType
// c_rarg3: method Method*
// c_rarg4: (interpreter) entry point address
// c_rarg5: parameters intptr_t*
// 16(rbp): parameter size (in words) int
// 24(rbp): thread Thread*
//
// [ return_from_Java ] <--- rsp
// [ argument word n ]
// ...
// -12 [ argument word 1 ]
// -11 [ saved r15 ] <--- rsp_after_call
// -10 [ saved r14 ]
// -9 [ saved r13 ]
// -8 [ saved r12 ]
// -7 [ saved rbx ]
// -6 [ call wrapper ]
// -5 [ result ]
// -4 [ result type ]
// -3 [ method ]
// -2 [ entry point ]
// -1 [ parameters ]
// 0 [ saved rbp ] <--- rbp
// 1 [ return address ]
// 2 [ parameter size ]
// 3 [ thread ]
//
// Windows Arguments:
// c_rarg0: call wrapper address address
// c_rarg1: result address
// c_rarg2: result type BasicType
// c_rarg3: method Method*
// 48(rbp): (interpreter) entry point address
// 56(rbp): parameters intptr_t*
// 64(rbp): parameter size (in words) int
// 72(rbp): thread Thread*
//
// [ return_from_Java ] <--- rsp
// [ argument word n ]
// ...
// -28 [ argument word 1 ]
// -27 [ saved xmm15 ] <--- rsp_after_call
// [ saved xmm7-xmm14 ]
// -9 [ saved xmm6 ] (each xmm register takes 2 slots)
// -7 [ saved r15 ]
// -6 [ saved r14 ]
// -5 [ saved r13 ]
// -4 [ saved r12 ]
// -3 [ saved rdi ]
// -2 [ saved rsi ]
// -1 [ saved rbx ]
// 0 [ saved rbp ] <--- rbp
// 1 [ return address ]
// 2 [ call wrapper ]
// 3 [ result ]
// 4 [ result type ]
// 5 [ method ]
// 6 [ entry point ]
// 7 [ parameters ]
// 8 [ parameter size ]
// 9 [ thread ]
//
// Windows reserves the callers stack space for arguments 1-4.
// We spill c_rarg0-c_rarg3 to this space.
// Call stub stack layout word offsets from rbp
enum call_stub_layout {
#ifdef _WIN64
xmm_save_first = 6, // save from xmm6
xmm_save_last = 15, // to xmm15
xmm_save_base = -9,
rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
r15_off = -7,
r14_off = -6,
r13_off = -5,
r12_off = -4,
rdi_off = -3,
rsi_off = -2,
rbx_off = -1,
rbp_off = 0,
retaddr_off = 1,
call_wrapper_off = 2,
result_off = 3,
result_type_off = 4,
method_off = 5,
entry_point_off = 6,
parameters_off = 7,
parameter_size_off = 8,
thread_off = 9
#else
rsp_after_call_off = -12,
mxcsr_off = rsp_after_call_off,
r15_off = -11,
r14_off = -10,
r13_off = -9,
r12_off = -8,
rbx_off = -7,
call_wrapper_off = -6,
result_off = -5,
result_type_off = -4,
method_off = -3,
entry_point_off = -2,
parameters_off = -1,
rbp_off = 0,
retaddr_off = 1,
parameter_size_off = 2,
thread_off = 3
#endif
};
#ifdef _WIN64
Address xmm_save(int reg) {
assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
}
#endif
address generate_call_stub(address& return_address) {
assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
(int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
"adjust this code");
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ pc();
// same as in generate_catch_exception()!
const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
const Address call_wrapper (rbp, call_wrapper_off * wordSize);
const Address result (rbp, result_off * wordSize);
const Address result_type (rbp, result_type_off * wordSize);
const Address method (rbp, method_off * wordSize);
const Address entry_point (rbp, entry_point_off * wordSize);
const Address parameters (rbp, parameters_off * wordSize);
const Address parameter_size(rbp, parameter_size_off * wordSize);
// same as in generate_catch_exception()!
const Address thread (rbp, thread_off * wordSize);
const Address r15_save(rbp, r15_off * wordSize);
const Address r14_save(rbp, r14_off * wordSize);
const Address r13_save(rbp, r13_off * wordSize);
const Address r12_save(rbp, r12_off * wordSize);
const Address rbx_save(rbp, rbx_off * wordSize);
// stub code
__ enter();
__ subptr(rsp, -rsp_after_call_off * wordSize);
// save register parameters
#ifndef _WIN64
__ movptr(parameters, c_rarg5); // parameters
__ movptr(entry_point, c_rarg4); // entry_point
#endif
__ movptr(method, c_rarg3); // method
__ movl(result_type, c_rarg2); // result type
__ movptr(result, c_rarg1); // result
__ movptr(call_wrapper, c_rarg0); // call wrapper
// save regs belonging to calling function
__ movptr(rbx_save, rbx);
__ movptr(r12_save, r12);
__ movptr(r13_save, r13);
__ movptr(r14_save, r14);
__ movptr(r15_save, r15);
#ifdef _WIN64
for (int i = 6; i <= 15; i++) {
__ movdqu(xmm_save(i), as_XMMRegister(i));
}
const Address rdi_save(rbp, rdi_off * wordSize);
const Address rsi_save(rbp, rsi_off * wordSize);
__ movptr(rsi_save, rsi);
__ movptr(rdi_save, rdi);
#else
const Address mxcsr_save(rbp, mxcsr_off * wordSize);
{
Label skip_ldmx;
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK); // Only check control and mask bits
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, skip_ldmx);
__ ldmxcsr(mxcsr_std);
__ bind(skip_ldmx);
}
#endif
// Load up thread register
__ movptr(r15_thread, thread);
__ reinit_heapbase();
#ifdef ASSERT
// make sure we have no pending exceptions
{
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("StubRoutines::call_stub: entered with pending exception");
__ bind(L);
}
#endif
// pass parameters if any
BLOCK_COMMENT("pass parameters if any");
Label parameters_done;
__ movl(c_rarg3, parameter_size);
__ testl(c_rarg3, c_rarg3);
__ jcc(Assembler::zero, parameters_done);
Label loop;
__ movptr(c_rarg2, parameters); // parameter pointer
__ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
__ BIND(loop);
__ movptr(rax, Address(c_rarg2, 0));// get parameter
__ addptr(c_rarg2, wordSize); // advance to next parameter
__ decrementl(c_rarg1); // decrement counter
__ push(rax); // pass parameter
__ jcc(Assembler::notZero, loop);
// call Java function
__ BIND(parameters_done);
__ movptr(rbx, method); // get Method*
__ movptr(c_rarg1, entry_point); // get entry_point
__ mov(r13, rsp); // set sender sp
BLOCK_COMMENT("call Java function");
__ call(c_rarg1);
BLOCK_COMMENT("call_stub_return_address:");
return_address = __ pc();
// store result depending on type (everything that is not
// T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
__ movptr(c_rarg0, result);
Label is_long, is_float, is_double, exit;
__ movl(c_rarg1, result_type);
__ cmpl(c_rarg1, T_OBJECT);
__ jcc(Assembler::equal, is_long);
__ cmpl(c_rarg1, T_LONG);
__ jcc(Assembler::equal, is_long);
__ cmpl(c_rarg1, T_FLOAT);
__ jcc(Assembler::equal, is_float);
__ cmpl(c_rarg1, T_DOUBLE);
__ jcc(Assembler::equal, is_double);
// handle T_INT case
__ movl(Address(c_rarg0, 0), rax);
__ BIND(exit);
// pop parameters
__ lea(rsp, rsp_after_call);
#ifdef ASSERT
// verify that threads correspond
{
Label L, S;
__ cmpptr(r15_thread, thread);
__ jcc(Assembler::notEqual, S);
__ get_thread(rbx);
__ cmpptr(r15_thread, rbx);
__ jcc(Assembler::equal, L);
__ bind(S);
__ jcc(Assembler::equal, L);
__ stop("StubRoutines::call_stub: threads must correspond");
__ bind(L);
}
#endif
// restore regs belonging to calling function
#ifdef _WIN64
for (int i = 15; i >= 6; i--) {
__ movdqu(as_XMMRegister(i), xmm_save(i));
}
#endif
__ movptr(r15, r15_save);
__ movptr(r14, r14_save);
__ movptr(r13, r13_save);
__ movptr(r12, r12_save);
__ movptr(rbx, rbx_save);
#ifdef _WIN64
__ movptr(rdi, rdi_save);
__ movptr(rsi, rsi_save);
#else
__ ldmxcsr(mxcsr_save);
#endif
// restore rsp
__ addptr(rsp, -rsp_after_call_off * wordSize);
// return
__ pop(rbp);
__ ret(0);
// handle return types different from T_INT
__ BIND(is_long);
__ movq(Address(c_rarg0, 0), rax);
__ jmp(exit);
__ BIND(is_float);
__ movflt(Address(c_rarg0, 0), xmm0);
__ jmp(exit);
__ BIND(is_double);
__ movdbl(Address(c_rarg0, 0), xmm0);
__ jmp(exit);
return start;
}
// Return point for a Java call if there's an exception thrown in
// Java code. The exception is caught and transformed into a
// pending exception stored in JavaThread that can be tested from
// within the VM.
//
// Note: Usually the parameters are removed by the callee. In case
// of an exception crossing an activation frame boundary, that is
// not the case if the callee is compiled code => need to setup the
// rsp.
//
// rax: exception oop
address generate_catch_exception() {
StubCodeMark mark(this, "StubRoutines", "catch_exception");
address start = __ pc();
// same as in generate_call_stub():
const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
const Address thread (rbp, thread_off * wordSize);
#ifdef ASSERT
// verify that threads correspond
{
Label L, S;
__ cmpptr(r15_thread, thread);
__ jcc(Assembler::notEqual, S);
__ get_thread(rbx);
__ cmpptr(r15_thread, rbx);
__ jcc(Assembler::equal, L);
__ bind(S);
__ stop("StubRoutines::catch_exception: threads must correspond");
__ bind(L);
}
#endif
// set pending exception
__ verify_oop(rax);
__ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
__ lea(rscratch1, ExternalAddress((address)__FILE__));
__ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
__ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
// complete return to VM
assert(StubRoutines::_call_stub_return_address != NULL,
"_call_stub_return_address must have been generated before");
__ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
return start;
}
// Continuation point for runtime calls returning with a pending
// exception. The pending exception check happened in the runtime
// or native call stub. The pending exception in Thread is
// converted into a Java-level exception.
//
// Contract with Java-level exception handlers:
// rax: exception
// rdx: throwing pc
//
// NOTE: At entry of this stub, exception-pc must be on stack !!
address generate_forward_exception() {
StubCodeMark mark(this, "StubRoutines", "forward exception");
address start = __ pc();
// Upon entry, the sp points to the return address returning into
// Java (interpreted or compiled) code; i.e., the return address
// becomes the throwing pc.
//
// Arguments pushed before the runtime call are still on the stack
// but the exception handler will reset the stack pointer ->
// ignore them. A potential result in registers can be ignored as
// well.
#ifdef ASSERT
// make sure this code is only executed if there is a pending exception
{
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
__ jcc(Assembler::notEqual, L);
__ stop("StubRoutines::forward exception: no pending exception (1)");
__ bind(L);
}
#endif
// compute exception handler into rbx
__ movptr(c_rarg0, Address(rsp, 0));
BLOCK_COMMENT("call exception_handler_for_return_address");
__ call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
r15_thread, c_rarg0);
__ mov(rbx, rax);
// setup rax & rdx, remove return address & clear pending exception
__ pop(rdx);
__ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
__ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
#ifdef ASSERT
// make sure exception is set
{
Label L;
__ testptr(rax, rax);
__ jcc(Assembler::notEqual, L);
__ stop("StubRoutines::forward exception: no pending exception (2)");
__ bind(L);
}
#endif
// continue at exception handler (return address removed)
// rax: exception
// rbx: exception handler
// rdx: throwing pc
__ verify_oop(rax);
__ jmp(rbx);
return start;
}
// Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
//
// Arguments :
// c_rarg0: exchange_value
// c_rarg0: dest
//
// Result:
// *dest <- ex, return (orig *dest)
address generate_atomic_xchg() {
StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
address start = __ pc();
__ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
__ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
__ ret(0);
return start;
}
// Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
//
// Arguments :
// c_rarg0: exchange_value
// c_rarg1: dest
//
// Result:
// *dest <- ex, return (orig *dest)
address generate_atomic_xchg_ptr() {
StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
address start = __ pc();
__ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
__ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
__ ret(0);
return start;
}
// Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
// jint compare_value)
//
// Arguments :
// c_rarg0: exchange_value
// c_rarg1: dest
// c_rarg2: compare_value
//
// Result:
// if ( compare_value == *dest ) {
// *dest = exchange_value
// return compare_value;
// else
// return *dest;
address generate_atomic_cmpxchg() {
StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
address start = __ pc();
__ movl(rax, c_rarg2);
if ( os::is_MP() ) __ lock();
__ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
__ ret(0);
return start;
}
// Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
// volatile jlong* dest,
// jlong compare_value)
// Arguments :
// c_rarg0: exchange_value
// c_rarg1: dest
// c_rarg2: compare_value
//
// Result:
// if ( compare_value == *dest ) {
// *dest = exchange_value
// return compare_value;
// else
// return *dest;
address generate_atomic_cmpxchg_long() {
StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
address start = __ pc();
__ movq(rax, c_rarg2);
if ( os::is_MP() ) __ lock();
__ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
__ ret(0);
return start;
}
// Support for jint atomic::add(jint add_value, volatile jint* dest)
//
// Arguments :
// c_rarg0: add_value
// c_rarg1: dest
//
// Result:
// *dest += add_value
// return *dest;
address generate_atomic_add() {
StubCodeMark mark(this, "StubRoutines", "atomic_add");
address start = __ pc();
__ movl(rax, c_rarg0);
if ( os::is_MP() ) __ lock();
__ xaddl(Address(c_rarg1, 0), c_rarg0);
__ addl(rax, c_rarg0);
__ ret(0);
return start;
}
// Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
//
// Arguments :
// c_rarg0: add_value
// c_rarg1: dest
//
// Result:
// *dest += add_value
// return *dest;
address generate_atomic_add_ptr() {
StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
address start = __ pc();
__ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
if ( os::is_MP() ) __ lock();
__ xaddptr(Address(c_rarg1, 0), c_rarg0);
__ addptr(rax, c_rarg0);
__ ret(0);
return start;
}
// Support for intptr_t OrderAccess::fence()
//
// Arguments :
//
// Result:
address generate_orderaccess_fence() {
StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
address start = __ pc();
__ membar(Assembler::StoreLoad);
__ ret(0);
return start;
}
// Support for intptr_t get_previous_fp()
//
// This routine is used to find the previous frame pointer for the
// caller (current_frame_guess). This is used as part of debugging
// ps() is seemingly lost trying to find frames.
// This code assumes that caller current_frame_guess) has a frame.
address generate_get_previous_fp() {
StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
const Address old_fp(rbp, 0);
const Address older_fp(rax, 0);
address start = __ pc();
__ enter();
__ movptr(rax, old_fp); // callers fp
__ movptr(rax, older_fp); // the frame for ps()
__ pop(rbp);
__ ret(0);
return start;
}
// Support for intptr_t get_previous_sp()
//
// This routine is used to find the previous stack pointer for the
// caller.
address generate_get_previous_sp() {
StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
address start = __ pc();
__ movptr(rax, rsp);
__ addptr(rax, 8); // return address is at the top of the stack.
__ ret(0);
return start;
}
//----------------------------------------------------------------------------------------------------
// Support for void verify_mxcsr()
//
// This routine is used with -Xcheck:jni to verify that native
// JNI code does not return to Java code without restoring the
// MXCSR register to our expected state.
address generate_verify_mxcsr() {
StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
address start = __ pc();
const Address mxcsr_save(rsp, 0);
if (CheckJNICalls) {
Label ok_ret;
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ push(rax);
__ subptr(rsp, wordSize); // allocate a temp location
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK); // Only check control and mask bits
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, ok_ret);
__ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
__ ldmxcsr(mxcsr_std);
__ bind(ok_ret);
__ addptr(rsp, wordSize);
__ pop(rax);
}
__ ret(0);
return start;
}
address generate_f2i_fixup() {
StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
Address inout(rsp, 5 * wordSize); // return address + 4 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ movl(rax, 0x7f800000);
__ xorl(c_rarg3, c_rarg3);
__ movl(c_rarg2, inout);
__ movl(c_rarg1, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ cmpl(rax, c_rarg1); // NaN? -> 0
__ jcc(Assembler::negative, L);
__ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
__ movl(c_rarg3, 0x80000000);
__ movl(rax, 0x7fffffff);
__ cmovl(Assembler::positive, c_rarg3, rax);
__ bind(L);
__ movptr(inout, c_rarg3);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_f2l_fixup() {
StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
Address inout(rsp, 5 * wordSize); // return address + 4 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ movl(rax, 0x7f800000);
__ xorl(c_rarg3, c_rarg3);
__ movl(c_rarg2, inout);
__ movl(c_rarg1, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ cmpl(rax, c_rarg1); // NaN? -> 0
__ jcc(Assembler::negative, L);
__ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
__ mov64(c_rarg3, 0x8000000000000000);
__ mov64(rax, 0x7fffffffffffffff);
__ cmov(Assembler::positive, c_rarg3, rax);
__ bind(L);
__ movptr(inout, c_rarg3);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_d2i_fixup() {
StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
Address inout(rsp, 6 * wordSize); // return address + 5 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ push(c_rarg0);
__ movl(rax, 0x7ff00000);
__ movq(c_rarg2, inout);
__ movl(c_rarg3, c_rarg2);
__ mov(c_rarg1, c_rarg2);
__ mov(c_rarg0, c_rarg2);
__ negl(c_rarg3);
__ shrptr(c_rarg1, 0x20);
__ orl(c_rarg3, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ xorl(c_rarg2, c_rarg2);
__ shrl(c_rarg3, 0x1f);
__ orl(c_rarg1, c_rarg3);
__ cmpl(rax, c_rarg1);
__ jcc(Assembler::negative, L); // NaN -> 0
__ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
__ movl(c_rarg2, 0x80000000);
__ movl(rax, 0x7fffffff);
__ cmov(Assembler::positive, c_rarg2, rax);
__ bind(L);
__ movptr(inout, c_rarg2);
__ pop(c_rarg0);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_d2l_fixup() {
StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
Address inout(rsp, 6 * wordSize); // return address + 5 saves
address start = __ pc();
Label L;
__ push(rax);
__ push(c_rarg3);
__ push(c_rarg2);
__ push(c_rarg1);
__ push(c_rarg0);
__ movl(rax, 0x7ff00000);
__ movq(c_rarg2, inout);
__ movl(c_rarg3, c_rarg2);
__ mov(c_rarg1, c_rarg2);
__ mov(c_rarg0, c_rarg2);
__ negl(c_rarg3);
__ shrptr(c_rarg1, 0x20);
__ orl(c_rarg3, c_rarg2);
__ andl(c_rarg1, 0x7fffffff);
__ xorl(c_rarg2, c_rarg2);
__ shrl(c_rarg3, 0x1f);
__ orl(c_rarg1, c_rarg3);
__ cmpl(rax, c_rarg1);
__ jcc(Assembler::negative, L); // NaN -> 0
__ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
__ mov64(c_rarg2, 0x8000000000000000);
__ mov64(rax, 0x7fffffffffffffff);
__ cmovq(Assembler::positive, c_rarg2, rax);
__ bind(L);
__ movq(inout, c_rarg2);
__ pop(c_rarg0);
__ pop(c_rarg1);
__ pop(c_rarg2);
__ pop(c_rarg3);
__ pop(rax);
__ ret(0);
return start;
}
address generate_fp_mask(const char *stub_name, int64_t mask) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", stub_name);
address start = __ pc();
__ emit_data64( mask, relocInfo::none );
__ emit_data64( mask, relocInfo::none );
return start;
}
// The following routine generates a subroutine to throw an
// asynchronous UnknownError when an unsafe access gets a fault that
// could not be reasonably prevented by the programmer. (Example:
// SIGBUS/OBJERR.)
address generate_handler_for_unsafe_access() {
StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
address start = __ pc();
__ push(0); // hole for return address-to-be
__ pusha(); // push registers
Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
// FIXME: this probably needs alignment logic
__ subptr(rsp, frame::arg_reg_save_area_bytes);
BLOCK_COMMENT("call handle_unsafe_access");
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
__ addptr(rsp, frame::arg_reg_save_area_bytes);
__ movptr(next_pc, rax); // stuff next address
__ popa();
__ ret(0); // jump to next address
return start;
}
// Non-destructive plausibility checks for oops
//
// Arguments:
// all args on stack!
//
// Stack after saving c_rarg3:
// [tos + 0]: saved c_rarg3
// [tos + 1]: saved c_rarg2
// [tos + 2]: saved r12 (several TemplateTable methods use it)
// [tos + 3]: saved flags
// [tos + 4]: return address
// * [tos + 5]: error message (char*)
// * [tos + 6]: object to verify (oop)
// * [tos + 7]: saved rax - saved by caller and bashed
// * [tos + 8]: saved r10 (rscratch1) - saved by caller
// * = popped on exit
address generate_verify_oop() {
StubCodeMark mark(this, "StubRoutines", "verify_oop");
address start = __ pc();
Label exit, error;
__ pushf();
__ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
__ push(r12);
// save c_rarg2 and c_rarg3
__ push(c_rarg2);
__ push(c_rarg3);
enum {
// After previous pushes.
oop_to_verify = 6 * wordSize,
saved_rax = 7 * wordSize,
saved_r10 = 8 * wordSize,
// Before the call to MacroAssembler::debug(), see below.
return_addr = 16 * wordSize,
error_msg = 17 * wordSize
};
// get object
__ movptr(rax, Address(rsp, oop_to_verify));
// make sure object is 'reasonable'
__ testptr(rax, rax);
__ jcc(Assembler::zero, exit); // if obj is NULL it is OK
// Check if the oop is in the right area of memory
__ movptr(c_rarg2, rax);
__ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
__ andptr(c_rarg2, c_rarg3);
__ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
__ cmpptr(c_rarg2, c_rarg3);
__ jcc(Assembler::notZero, error);
// set r12 to heapbase for load_klass()
__ reinit_heapbase();
// make sure klass is 'reasonable', which is not zero.
__ load_klass(rax, rax); // get klass
__ testptr(rax, rax);
__ jcc(Assembler::zero, error); // if klass is NULL it is broken
// return if everything seems ok
__ bind(exit);
__ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
__ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
__ pop(c_rarg3); // restore c_rarg3
__ pop(c_rarg2); // restore c_rarg2
__ pop(r12); // restore r12
__ popf(); // restore flags
__ ret(4 * wordSize); // pop caller saved stuff
// handle errors
__ bind(error);
__ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
__ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
__ pop(c_rarg3); // get saved c_rarg3 back
__ pop(c_rarg2); // get saved c_rarg2 back
__ pop(r12); // get saved r12 back
__ popf(); // get saved flags off stack --
// will be ignored
__ pusha(); // push registers
// (rip is already
// already pushed)
// debug(char* msg, int64_t pc, int64_t regs[])
// We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
// pushed all the registers, so now the stack looks like:
// [tos + 0] 16 saved registers
// [tos + 16] return address
// * [tos + 17] error message (char*)
// * [tos + 18] object to verify (oop)
// * [tos + 19] saved rax - saved by caller and bashed
// * [tos + 20] saved r10 (rscratch1) - saved by caller
// * = popped on exit
__ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
__ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
__ movq(c_rarg2, rsp); // pass address of regs on stack
__ mov(r12, rsp); // remember rsp
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
BLOCK_COMMENT("call MacroAssembler::debug");
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
__ mov(rsp, r12); // restore rsp
__ popa(); // pop registers (includes r12)
__ ret(4 * wordSize); // pop caller saved stuff
return start;
}
//
// Verify that a register contains clean 32-bits positive value
// (high 32-bits are 0) so it could be used in 64-bits shifts.
//
// Input:
// Rint - 32-bits value
// Rtmp - scratch
//
void assert_clean_int(Register Rint, Register Rtmp) {
#ifdef ASSERT
Label L;
assert_different_registers(Rtmp, Rint);
__ movslq(Rtmp, Rint);
__ cmpq(Rtmp, Rint);
__ jcc(Assembler::equal, L);
__ stop("high 32-bits of int value are not 0");
__ bind(L);
#endif
}
// Generate overlap test for array copy stubs
//
// Input:
// c_rarg0 - from
// c_rarg1 - to
// c_rarg2 - element count
//
// Output:
// rax - &from[element count - 1]
//
void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
assert(no_overlap_target != NULL, "must be generated");
array_overlap_test(no_overlap_target, NULL, sf);
}
void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
array_overlap_test(NULL, &L_no_overlap, sf);
}
void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
const Register from = c_rarg0;
const Register to = c_rarg1;
const Register count = c_rarg2;
const Register end_from = rax;
__ cmpptr(to, from);
__ lea(end_from, Address(from, count, sf, 0));
if (NOLp == NULL) {
ExternalAddress no_overlap(no_overlap_target);
__ jump_cc(Assembler::belowEqual, no_overlap);
__ cmpptr(to, end_from);
__ jump_cc(Assembler::aboveEqual, no_overlap);
} else {
__ jcc(Assembler::belowEqual, (*NOLp));
__ cmpptr(to, end_from);
__ jcc(Assembler::aboveEqual, (*NOLp));
}
}
// Shuffle first three arg regs on Windows into Linux/Solaris locations.
//
// Outputs:
// rdi - rcx
// rsi - rdx
// rdx - r8
// rcx - r9
//
// Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
// are non-volatile. r9 and r10 should not be used by the caller.
//
void setup_arg_regs(int nargs = 3) {
const Register saved_rdi = r9;
const Register saved_rsi = r10;
assert(nargs == 3 || nargs == 4, "else fix");
#ifdef _WIN64
assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
"unexpected argument registers");
if (nargs >= 4)
__ mov(rax, r9); // r9 is also saved_rdi
__ movptr(saved_rdi, rdi);
__ movptr(saved_rsi, rsi);
__ mov(rdi, rcx); // c_rarg0
__ mov(rsi, rdx); // c_rarg1
__ mov(rdx, r8); // c_rarg2
if (nargs >= 4)
__ mov(rcx, rax); // c_rarg3 (via rax)
#else
assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
"unexpected argument registers");
#endif
}
void restore_arg_regs() {
const Register saved_rdi = r9;
const Register saved_rsi = r10;
#ifdef _WIN64
__ movptr(rdi, saved_rdi);
__ movptr(rsi, saved_rsi);
#endif
}
// Generate code for an array write pre barrier
//
// addr - starting address
// count - element count
// tmp - scratch register
//
// Destroy no registers!
//
void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!dest_uninitialized) {
__ pusha(); // push registers
if (count == c_rarg0) {
if (addr == c_rarg1) {
// exactly backwards!!
__ xchgptr(c_rarg1, c_rarg0);
} else {
__ movptr(c_rarg1, count);
__ movptr(c_rarg0, addr);
}
} else {
__ movptr(c_rarg0, addr);
__ movptr(c_rarg1, count);
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
__ popa();
}
break;
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
case BarrierSet::ModRef:
break;
default:
ShouldNotReachHere();
}
}
//
// Generate code for an array write post barrier
//
// Input:
// start - register containing starting address of destination array
// count - elements count
// scratch - scratch register
//
// The input registers are overwritten.
//
void gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) {
assert_different_registers(start, count, scratch);
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
{
__ pusha(); // push registers (overkill)
if (c_rarg0 == count) { // On win64 c_rarg0 == rcx
assert_different_registers(c_rarg1, start);
__ mov(c_rarg1, count);
__ mov(c_rarg0, start);
} else {
assert_different_registers(c_rarg0, count);
__ mov(c_rarg0, start);
__ mov(c_rarg1, count);
}
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
__ popa();
}
break;
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
{
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
Label L_loop;
const Register end = count;
__ leaq(end, Address(start, count, TIMES_OOP, 0)); // end == start+count*oop_size
__ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive
__ shrptr(start, CardTableModRefBS::card_shift);
__ shrptr(end, CardTableModRefBS::card_shift);
__ subptr(end, start); // end --> cards count
int64_t disp = (int64_t) ct->byte_map_base;
__ mov64(scratch, disp);
__ addptr(start, scratch);
__ BIND(L_loop);
__ movb(Address(start, count, Address::times_1), 0);
__ decrement(count);
__ jcc(Assembler::greaterEqual, L_loop);
}
break;
default:
ShouldNotReachHere();
}
}
// Copy big chunks forward
//
// Inputs:
// end_from - source arrays end address
// end_to - destination array end address
// qword_count - 64-bits element count, negative
// to - scratch
// L_copy_bytes - entry label
// L_copy_8_bytes - exit label
//
void copy_bytes_forward(Register end_from, Register end_to,
Register qword_count, Register to,
Label& L_copy_bytes, Label& L_copy_8_bytes) {
DEBUG_ONLY(__ stop("enter at entry label, not here"));
Label L_loop;
__ align(OptoLoopAlignment);
if (UseUnalignedLoadStores) {
Label L_end;
// Copy 64-bytes per iteration
__ BIND(L_loop);
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
__ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
__ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
__ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
} else {
__ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
__ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
__ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
__ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
__ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
__ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
__ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
__ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
}
__ BIND(L_copy_bytes);
__ addptr(qword_count, 8);
__ jcc(Assembler::lessEqual, L_loop);
__ subptr(qword_count, 4); // sub(8) and add(4)
__ jccb(Assembler::greater, L_end);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
__ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
} else {
__ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
__ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
__ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
__ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
}
__ addptr(qword_count, 4);
__ BIND(L_end);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
__ vzeroupper();
}
} else {
// Copy 32-bytes per iteration
__ BIND(L_loop);
__ movq(to, Address(end_from, qword_count, Address::times_8, -24));
__ movq(Address(end_to, qword_count, Address::times_8, -24), to);
__ movq(to, Address(end_from, qword_count, Address::times_8, -16));
__ movq(Address(end_to, qword_count, Address::times_8, -16), to);
__ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
__ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
__ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
__ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
__ BIND(L_copy_bytes);
__ addptr(qword_count, 4);
__ jcc(Assembler::lessEqual, L_loop);
}
__ subptr(qword_count, 4);
__ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
}
// Copy big chunks backward
//
// Inputs:
// from - source arrays address
// dest - destination array address
// qword_count - 64-bits element count
// to - scratch
// L_copy_bytes - entry label
// L_copy_8_bytes - exit label
//
void copy_bytes_backward(Register from, Register dest,
Register qword_count, Register to,
Label& L_copy_bytes, Label& L_copy_8_bytes) {
DEBUG_ONLY(__ stop("enter at entry label, not here"));
Label L_loop;
__ align(OptoLoopAlignment);
if (UseUnalignedLoadStores) {
Label L_end;
// Copy 64-bytes per iteration
__ BIND(L_loop);
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
__ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
__ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
__ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
} else {
__ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
__ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
__ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
__ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
__ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
__ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
__ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0));
__ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3);
}
__ BIND(L_copy_bytes);
__ subptr(qword_count, 8);
__ jcc(Assembler::greaterEqual, L_loop);
__ addptr(qword_count, 4); // add(8) and sub(4)
__ jccb(Assembler::less, L_end);
// Copy trailing 32 bytes
if (UseAVX >= 2) {
__ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
__ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
} else {
__ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
__ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
__ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
__ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
}
__ subptr(qword_count, 4);
__ BIND(L_end);
if (UseAVX >= 2) {
// clean upper bits of YMM registers
__ vzeroupper();
}
} else {
// Copy 32-bytes per iteration
__ BIND(L_loop);
__ movq(to, Address(from, qword_count, Address::times_8, 24));
__ movq(Address(dest, qword_count, Address::times_8, 24), to);
__ movq(to, Address(from, qword_count, Address::times_8, 16));
__ movq(Address(dest, qword_count, Address::times_8, 16), to);
__ movq(to, Address(from, qword_count, Address::times_8, 8));
__ movq(Address(dest, qword_count, Address::times_8, 8), to);
__ movq(to, Address(from, qword_count, Address::times_8, 0));
__ movq(Address(dest, qword_count, Address::times_8, 0), to);
__ BIND(L_copy_bytes);
__ subptr(qword_count, 4);
__ jcc(Assembler::greaterEqual, L_loop);
}
__ addptr(qword_count, 4);
__ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_byte_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_byte_copy().
//
address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
Label L_copy_byte, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register byte_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
// 'from', 'to' and 'count' are now valid
__ movptr(byte_count, count);
__ shrptr(count, 3); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count); // make the count negative
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(byte_count, 4);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ addptr(end_from, 4);
__ addptr(end_to, 4);
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(byte_count, 2);
__ jccb(Assembler::zero, L_copy_byte);
__ movw(rax, Address(end_from, 8));
__ movw(Address(end_to, 8), rax);
__ addptr(end_from, 2);
__ addptr(end_to, 2);
// Check for and copy trailing byte
__ BIND(L_copy_byte);
__ testl(byte_count, 1);
__ jccb(Assembler::zero, L_exit);
__ movb(rax, Address(end_from, 8));
__ movb(Address(end_to, 8), rax);
__ BIND(L_exit);
restore_arg_regs();
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ jmp(L_copy_4_bytes);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
// we let the hardware handle it. The one to eight bytes within words,
// dwords or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
address* entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register byte_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_1);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
// 'from', 'to' and 'count' are now valid
__ movptr(byte_count, count);
__ shrptr(count, 3); // count => qword_count
// Copy from high to low addresses.
// Check for and copy trailing byte
__ testl(byte_count, 1);
__ jcc(Assembler::zero, L_copy_2_bytes);
__ movb(rax, Address(from, byte_count, Address::times_1, -1));
__ movb(Address(to, byte_count, Address::times_1, -1), rax);
__ decrement(byte_count); // Adjust for possible trailing word
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(byte_count, 2);
__ jcc(Assembler::zero, L_copy_4_bytes);
__ movw(rax, Address(from, byte_count, Address::times_1, -2));
__ movw(Address(to, byte_count, Address::times_1, -2), rax);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(byte_count, 4);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, qword_count, Address::times_8));
__ movl(Address(to, qword_count, Address::times_8), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
restore_arg_regs();
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
restore_arg_regs();
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
// Side Effects:
// disjoint_short_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_short_copy().
//
address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register word_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
// 'from', 'to' and 'count' are now valid
__ movptr(word_count, count);
__ shrptr(count, 2); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Original 'dest' is trashed, so we can't use it as a
// base register for a possible trailing word copy
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(word_count, 2);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ addptr(end_from, 4);
__ addptr(end_to, 4);
// Check for and copy trailing word
__ BIND(L_copy_2_bytes);
__ testl(word_count, 1);
__ jccb(Assembler::zero, L_exit);
__ movw(rax, Address(end_from, 8));
__ movw(Address(end_to, 8), rax);
__ BIND(L_exit);
restore_arg_regs();
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ jmp(L_copy_4_bytes);
return start;
}
address generate_fill(BasicType t, bool aligned, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
BLOCK_COMMENT("Entry:");
const Register to = c_rarg0; // source array address
const Register value = c_rarg1; // value
const Register count = c_rarg2; // elements count
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ generate_fill(t, aligned, to, value, count, rax, xmm0);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
// let the hardware handle it. The two or four words within dwords
// or qwords that span cache line boundaries will still be loaded
// and stored atomically.
//
address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
address *entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register word_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_2);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
// 'from', 'to' and 'count' are now valid
__ movptr(word_count, count);
__ shrptr(count, 2); // count => qword_count
// Copy from high to low addresses. Use 'to' as scratch.
// Check for and copy trailing word
__ testl(word_count, 1);
__ jccb(Assembler::zero, L_copy_4_bytes);
__ movw(rax, Address(from, word_count, Address::times_2, -2));
__ movw(Address(to, word_count, Address::times_2, -2), rax);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(word_count, 2);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, qword_count, Address::times_8));
__ movl(Address(to, qword_count, Address::times_8), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
restore_arg_regs();
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
restore_arg_regs();
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
// Side Effects:
// disjoint_int_copy_entry is set to the no-overlap entry point
// used by generate_conjoint_int_oop_copy().
//
address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
const char *name, bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register dword_count = rcx;
const Register qword_count = count;
const Register end_from = from; // source array end address
const Register end_to = to; // destination array end address
const Register saved_to = r11; // saved destination array address
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
if (is_oop) {
__ movq(saved_to, to);
gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
}
// 'from', 'to' and 'count' are now valid
__ movptr(dword_count, count);
__ shrptr(count, 1); // count => qword_count
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
// Check for and copy trailing dword
__ BIND(L_copy_4_bytes);
__ testl(dword_count, 1); // Only byte test since the value is 0 or 1
__ jccb(Assembler::zero, L_exit);
__ movl(rax, Address(end_from, 8));
__ movl(Address(end_to, 8), rax);
__ BIND(L_exit);
if (is_oop) {
gen_write_ref_array_post_barrier(saved_to, dword_count, rax);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ jmp(L_copy_4_bytes);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
// the hardware handle it. The two dwords within qwords that span
// cache line boundaries will still be loaded and stored atomicly.
//
address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
address *entry, const char *name,
bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register count = rdx; // elements count
const Register dword_count = rcx;
const Register qword_count = count;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_4);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
if (is_oop) {
// no registers are destroyed by this call
gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
}
assert_clean_int(count, rax); // Make sure 'count' is clean int.
// 'from', 'to' and 'count' are now valid
__ movptr(dword_count, count);
__ shrptr(count, 1); // count => qword_count
// Copy from high to low addresses. Use 'to' as scratch.
// Check for and copy trailing dword
__ testl(dword_count, 1);
__ jcc(Assembler::zero, L_copy_bytes);
__ movl(rax, Address(from, dword_count, Address::times_4, -4));
__ movl(Address(to, dword_count, Address::times_4, -4), rax);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
if (is_oop) {
__ jmp(L_exit);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
__ BIND(L_exit);
if (is_oop) {
gen_write_ref_array_post_barrier(to, dword_count, rax);
}
restore_arg_regs();
inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
// Side Effects:
// disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
// no-overlap entry point used by generate_conjoint_long_oop_copy().
//
address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
const char *name, bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register qword_count = rdx; // elements count
const Register end_from = from; // source array end address
const Register end_to = rcx; // destination array end address
const Register saved_to = to;
const Register saved_count = r11;
// End pointers are inclusive, and if count is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
__ enter(); // required for proper stackwalking of RuntimeStub frame
// Save no-overlap entry point for generate_conjoint_long_oop_copy()
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
// 'from', 'to' and 'qword_count' are now valid
if (is_oop) {
// Save to and count for store barrier
__ movptr(saved_count, qword_count);
// no registers are destroyed by this call
gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
}
// Copy from low to high addresses. Use 'to' as scratch.
__ lea(end_from, Address(from, qword_count, Address::times_8, -8));
__ lea(end_to, Address(to, qword_count, Address::times_8, -8));
__ negptr(qword_count);
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
__ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
__ increment(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
if (is_oop) {
__ jmp(L_exit);
} else {
restore_arg_regs();
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
}
// Copy in multi-bytes chunks
copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
if (is_oop) {
__ BIND(L_exit);
gen_write_ref_array_post_barrier(saved_to, saved_count, rax);
}
restore_arg_regs();
if (is_oop) {
inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
} else {
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
}
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
// aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
// ignored
// is_oop - true => oop array, so generate store check code
// name - stub name string
//
// Inputs:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
//
address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
address nooverlap_target, address *entry,
const char *name, bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_bytes, L_copy_8_bytes, L_exit;
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register qword_count = rdx; // elements count
const Register saved_count = rcx;
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
if (entry != NULL) {
*entry = __ pc();
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
BLOCK_COMMENT("Entry:");
}
array_overlap_test(nooverlap_target, Address::times_8);
setup_arg_regs(); // from => rdi, to => rsi, count => rdx
// r9 and r10 may be used to save non-volatile registers
// 'from', 'to' and 'qword_count' are now valid
if (is_oop) {
// Save to and count for store barrier
__ movptr(saved_count, qword_count);
// No registers are destroyed by this call
gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
}
__ jmp(L_copy_bytes);
// Copy trailing qwords
__ BIND(L_copy_8_bytes);
__ movq(rax, Address(from, qword_count, Address::times_8, -8));
__ movq(Address(to, qword_count, Address::times_8, -8), rax);
__ decrement(qword_count);
__ jcc(Assembler::notZero, L_copy_8_bytes);
if (is_oop) {
__ jmp(L_exit);
} else {
restore_arg_regs();
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
}
// Copy in multi-bytes chunks
copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
if (is_oop) {
__ BIND(L_exit);
gen_write_ref_array_post_barrier(to, saved_count, rax);
}
restore_arg_regs();
if (is_oop) {
inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
} else {
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
}
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Helper for generating a dynamic type check.
// Smashes no registers.
void generate_type_check(Register sub_klass,
Register super_check_offset,
Register super_klass,
Label& L_success) {
assert_different_registers(sub_klass, super_check_offset, super_klass);
BLOCK_COMMENT("type_check:");
Label L_miss;
__ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
super_check_offset);
__ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
// Fall through on failure!
__ BIND(L_miss);
}
//
// Generate checkcasting array copy stub
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - element count, treated as ssize_t, can be zero
// c_rarg3 - size_t ckoff (super_check_offset)
// not Win64
// c_rarg4 - oop ckval (super_klass)
// Win64
// rsp+40 - oop ckval (super_klass)
//
// Output:
// rax == 0 - success
// rax == -1^K - failure, where K is partial transfer count
//
address generate_checkcast_copy(const char *name, address *entry,
bool dest_uninitialized = false) {
Label L_load_element, L_store_element, L_do_card_marks, L_done;
// Input registers (after setup_arg_regs)
const Register from = rdi; // source array address
const Register to = rsi; // destination array address
const Register length = rdx; // elements count
const Register ckoff = rcx; // super_check_offset
const Register ckval = r8; // super_klass
// Registers used as temps (r13, r14 are save-on-entry)
const Register end_from = from; // source array end address
const Register end_to = r13; // destination array end address
const Register count = rdx; // -(count_remaining)
const Register r14_length = r14; // saved copy of length
// End pointers are inclusive, and if length is not zero they point
// to the last unit copied: end_to[0] := end_from[0]
const Register rax_oop = rax; // actual oop copied
const Register r11_klass = r11; // oop._klass
//---------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the two arrays are subtypes of Object[] but the
// destination array type is not equal to or a supertype
// of the source type. Each element must be separately
// checked.
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef ASSERT
// caller guarantees that the arrays really are different
// otherwise, we would have to make conjoint checks
{ Label L;
array_overlap_test(L, TIMES_OOP);
__ stop("checkcast_copy within a single array");
__ bind(L);
}
#endif //ASSERT
setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
// ckoff => rcx, ckval => r8
// r9 and r10 may be used to save non-volatile registers
#ifdef _WIN64
// last argument (#4) is on stack on Win64
__ movptr(ckval, Address(rsp, 6 * wordSize));
#endif
// Caller of this entry point must set up the argument registers.
if (entry != NULL) {
*entry = __ pc();
BLOCK_COMMENT("Entry:");
}
// allocate spill slots for r13, r14
enum {
saved_r13_offset,
saved_r14_offset,
saved_rbp_offset
};
__ subptr(rsp, saved_rbp_offset * wordSize);
__ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
__ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
// check that int operands are properly extended to size_t
assert_clean_int(length, rax);
assert_clean_int(ckoff, rax);
#ifdef ASSERT
BLOCK_COMMENT("assert consistent ckoff/ckval");
// The ckoff and ckval must be mutually consistent,
// even though caller generates both.
{ Label L;
int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ cmpl(ckoff, Address(ckval, sco_offset));
__ jcc(Assembler::equal, L);
__ stop("super_check_offset inconsistent");
__ bind(L);
}
#endif //ASSERT
// Loop-invariant addresses. They are exclusive end pointers.
Address end_from_addr(from, length, TIMES_OOP, 0);
Address end_to_addr(to, length, TIMES_OOP, 0);
// Loop-variant addresses. They assume post-incremented count < 0.
Address from_element_addr(end_from, count, TIMES_OOP, 0);
Address to_element_addr(end_to, count, TIMES_OOP, 0);
gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
// Copy from low to high addresses, indexed from the end of each array.
__ lea(end_from, end_from_addr);
__ lea(end_to, end_to_addr);
__ movptr(r14_length, length); // save a copy of the length
assert(length == count, ""); // else fix next line:
__ negptr(count); // negate and test the length
__ jcc(Assembler::notZero, L_load_element);
// Empty array: Nothing to do.
__ xorptr(rax, rax); // return 0 on (trivial) success
__ jmp(L_done);
// ======== begin loop ========
// (Loop is rotated; its entry is L_load_element.)
// Loop control:
// for (count = -count; count != 0; count++)
// Base pointers src, dst are biased by 8*(count-1),to last element.
__ align(OptoLoopAlignment);
__ BIND(L_store_element);
__ store_heap_oop(to_element_addr, rax_oop); // store the oop
__ increment(count); // increment the count toward zero
__ jcc(Assembler::zero, L_do_card_marks);
// ======== loop entry is here ========
__ BIND(L_load_element);
__ load_heap_oop(rax_oop, from_element_addr); // load the oop
__ testptr(rax_oop, rax_oop);
__ jcc(Assembler::zero, L_store_element);
__ load_klass(r11_klass, rax_oop);// query the object klass
generate_type_check(r11_klass, ckoff, ckval, L_store_element);
// ======== end loop ========
// It was a real error; we must depend on the caller to finish the job.
// Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
// Emit GC store barriers for the oops we have copied (r14 + rdx),
// and report their number to the caller.
assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
Label L_post_barrier;
__ addptr(r14_length, count); // K = (original - remaining) oops
__ movptr(rax, r14_length); // save the value
__ notptr(rax); // report (-1^K) to caller (does not affect flags)
__ jccb(Assembler::notZero, L_post_barrier);
__ jmp(L_done); // K == 0, nothing was copied, skip post barrier
// Come here on success only.
__ BIND(L_do_card_marks);
__ xorptr(rax, rax); // return 0 on success
__ BIND(L_post_barrier);
gen_write_ref_array_post_barrier(to, r14_length, rscratch1);
// Common exit point (success or failure).
__ BIND(L_done);
__ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
__ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
restore_arg_regs();
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
//
// Generate 'unsafe' array copy stub
// Though just as safe as the other stubs, it takes an unscaled
// size_t argument instead of an element count.
//
// Input:
// c_rarg0 - source array address
// c_rarg1 - destination array address
// c_rarg2 - byte count, treated as ssize_t, can be zero
//
// Examines the alignment of the operands and dispatches
// to a long, int, short, or byte copy loop.
//
address generate_unsafe_copy(const char *name,
address byte_copy_entry, address short_copy_entry,
address int_copy_entry, address long_copy_entry) {
Label L_long_aligned, L_int_aligned, L_short_aligned;
// Input registers (before setup_arg_regs)
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register size = c_rarg2; // byte count (size_t)
// Register used as a temp
const Register bits = rax; // test copy of low bits
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
__ mov(bits, from);
__ orptr(bits, to);
__ orptr(bits, size);
__ testb(bits, BytesPerLong-1);
__ jccb(Assembler::zero, L_long_aligned);
__ testb(bits, BytesPerInt-1);
__ jccb(Assembler::zero, L_int_aligned);
__ testb(bits, BytesPerShort-1);
__ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
__ BIND(L_short_aligned);
__ shrptr(size, LogBytesPerShort); // size => short_count
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_int_aligned);
__ shrptr(size, LogBytesPerInt); // size => int_count
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_long_aligned);
__ shrptr(size, LogBytesPerLong); // size => qword_count
__ jump(RuntimeAddress(long_copy_entry));
return start;
}
// Perform range checks on the proposed arraycopy.
// Kills temp, but nothing else.
// Also, clean the sign bits of src_pos and dst_pos.
void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
Register src_pos, // source position (c_rarg1)
Register dst, // destination array oo (c_rarg2)
Register dst_pos, // destination position (c_rarg3)
Register length,
Register temp,
Label& L_failed) {
BLOCK_COMMENT("arraycopy_range_checks:");
// if (src_pos + length > arrayOop(src)->length()) FAIL;
__ movl(temp, length);
__ addl(temp, src_pos); // src_pos + length
__ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// if (dst_pos + length > arrayOop(dst)->length()) FAIL;
__ movl(temp, length);
__ addl(temp, dst_pos); // dst_pos + length
__ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
// Move with sign extension can be used since they are positive.
__ movslq(src_pos, src_pos);
__ movslq(dst_pos, dst_pos);
BLOCK_COMMENT("arraycopy_range_checks done");
}
//
// Generate generic array copy stubs
//
// Input:
// c_rarg0 - src oop
// c_rarg1 - src_pos (32-bits)
// c_rarg2 - dst oop
// c_rarg3 - dst_pos (32-bits)
// not Win64
// c_rarg4 - element count (32-bits)
// Win64
// rsp+40 - element count (32-bits)
//
// Output:
// rax == 0 - success
// rax == -1^K - failure, where K is partial transfer count
//
address generate_generic_copy(const char *name,
address byte_copy_entry, address short_copy_entry,
address int_copy_entry, address oop_copy_entry,
address long_copy_entry, address checkcast_copy_entry) {
Label L_failed, L_failed_0, L_objArray;
Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
// Input registers
const Register src = c_rarg0; // source array oop
const Register src_pos = c_rarg1; // source position
const Register dst = c_rarg2; // destination array oop
const Register dst_pos = c_rarg3; // destination position
#ifndef _WIN64
const Register length = c_rarg4;
#else
const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
#endif
{ int modulus = CodeEntryAlignment;
int target = modulus - 5; // 5 = sizeof jmp(L_failed)
int advance = target - (__ offset() % modulus);
if (advance < 0) advance += modulus;
if (advance > 0) __ nop(advance);
}
StubCodeMark mark(this, "StubRoutines", name);
// Short-hop target to L_failed. Makes for denser prologue code.
__ BIND(L_failed_0);
__ jmp(L_failed);
assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
__ align(CodeEntryAlignment);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
//-----------------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the following conditions are met:
//
// (1) src and dst must not be null.
// (2) src_pos must not be negative.
// (3) dst_pos must not be negative.
// (4) length must not be negative.
// (5) src klass and dst klass should be the same and not NULL.
// (6) src and dst should be arrays.
// (7) src_pos + length must not exceed length of src.
// (8) dst_pos + length must not exceed length of dst.
//
// if (src == NULL) return -1;
__ testptr(src, src); // src oop
size_t j1off = __ offset();
__ jccb(Assembler::zero, L_failed_0);
// if (src_pos < 0) return -1;
__ testl(src_pos, src_pos); // src_pos (32-bits)
__ jccb(Assembler::negative, L_failed_0);
// if (dst == NULL) return -1;
__ testptr(dst, dst); // dst oop
__ jccb(Assembler::zero, L_failed_0);
// if (dst_pos < 0) return -1;
__ testl(dst_pos, dst_pos); // dst_pos (32-bits)
size_t j4off = __ offset();
__ jccb(Assembler::negative, L_failed_0);
// The first four tests are very dense code,
// but not quite dense enough to put four
// jumps in a 16-byte instruction fetch buffer.
// That's good, because some branch predicters
// do not like jumps so close together.
// Make sure of this.
guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
// registers used as temp
const Register r11_length = r11; // elements count to copy
const Register r10_src_klass = r10; // array klass
// if (length < 0) return -1;
__ movl(r11_length, length); // length (elements count, 32-bits value)
__ testl(r11_length, r11_length);
__ jccb(Assembler::negative, L_failed_0);
__ load_klass(r10_src_klass, src);
#ifdef ASSERT
// assert(src->klass() != NULL);
{
BLOCK_COMMENT("assert klasses not null {");
Label L1, L2;
__ testptr(r10_src_klass, r10_src_klass);
__ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
__ bind(L1);
__ stop("broken null klass");
__ bind(L2);
__ load_klass(rax, dst);
__ cmpq(rax, 0);
__ jcc(Assembler::equal, L1); // this would be broken also
BLOCK_COMMENT("} assert klasses not null done");
}
#endif
// Load layout helper (32-bits)
//
// |array_tag| | header_size | element_type | |log2_element_size|
// 32 30 24 16 8 2 0
//
// array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
//
const int lh_offset = in_bytes(Klass::layout_helper_offset());
// Handle objArrays completely differently...
const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
__ jcc(Assembler::equal, L_objArray);
// if (src->klass() != dst->klass()) return -1;
__ load_klass(rax, dst);
__ cmpq(r10_src_klass, rax);
__ jcc(Assembler::notEqual, L_failed);
const Register rax_lh = rax; // layout helper
__ movl(rax_lh, Address(r10_src_klass, lh_offset));
// if (!src->is_Array()) return -1;
__ cmpl(rax_lh, Klass::_lh_neutral_value);
__ jcc(Assembler::greaterEqual, L_failed);
// At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
{
BLOCK_COMMENT("assert primitive array {");
Label L;
__ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
__ jcc(Assembler::greaterEqual, L);
__ stop("must be a primitive array");
__ bind(L);
BLOCK_COMMENT("} assert primitive array done");
}
#endif
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
r10, L_failed);
// TypeArrayKlass
//
// src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
// dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
//
const Register r10_offset = r10; // array offset
const Register rax_elsize = rax_lh; // element size
__ movl(r10_offset, rax_lh);
__ shrl(r10_offset, Klass::_lh_header_size_shift);
__ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
__ addptr(src, r10_offset); // src array offset
__ addptr(dst, r10_offset); // dst array offset
BLOCK_COMMENT("choose copy loop based on element size");
__ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
// next registers should be set before the jump to corresponding stub
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register count = c_rarg2; // elements count
// 'from', 'to', 'count' registers should be set in such order
// since they are the same as 'src', 'src_pos', 'dst'.
__ BIND(L_copy_bytes);
__ cmpl(rax_elsize, 0);
__ jccb(Assembler::notEqual, L_copy_shorts);
__ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(byte_copy_entry));
__ BIND(L_copy_shorts);
__ cmpl(rax_elsize, LogBytesPerShort);
__ jccb(Assembler::notEqual, L_copy_ints);
__ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_copy_ints);
__ cmpl(rax_elsize, LogBytesPerInt);
__ jccb(Assembler::notEqual, L_copy_longs);
__ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_copy_longs);
#ifdef ASSERT
{
BLOCK_COMMENT("assert long copy {");
Label L;
__ cmpl(rax_elsize, LogBytesPerLong);
__ jcc(Assembler::equal, L);
__ stop("must be long copy, but elsize is wrong");
__ bind(L);
BLOCK_COMMENT("} assert long copy done");
}
#endif
__ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
__ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
__ movl2ptr(count, r11_length); // length
__ jump(RuntimeAddress(long_copy_entry));
// ObjArrayKlass
__ BIND(L_objArray);
// live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
Label L_plain_copy, L_checkcast_copy;
// test array classes for subtyping
__ load_klass(rax, dst);
__ cmpq(r10_src_klass, rax); // usual case is exact equality
__ jcc(Assembler::notEqual, L_checkcast_copy);
// Identically typed arrays can be copied without element-wise checks.
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
r10, L_failed);
__ lea(from, Address(src, src_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
__ lea(to, Address(dst, dst_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
__ movl2ptr(count, r11_length); // length
__ BIND(L_plain_copy);
__ jump(RuntimeAddress(oop_copy_entry));
__ BIND(L_checkcast_copy);
// live at this point: r10_src_klass, r11_length, rax (dst_klass)
{
// Before looking at dst.length, make sure dst is also an objArray.
__ cmpl(Address(rax, lh_offset), objArray_lh);
__ jcc(Assembler::notEqual, L_failed);
// It is safe to examine both src.length and dst.length.
arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
rax, L_failed);
const Register r11_dst_klass = r11;
__ load_klass(r11_dst_klass, dst); // reload
// Marshal the base address arguments now, freeing registers.
__ lea(from, Address(src, src_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ lea(to, Address(dst, dst_pos, TIMES_OOP,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ movl(count, length); // length (reloaded)
Register sco_temp = c_rarg3; // this register is free now
assert_different_registers(from, to, count, sco_temp,
r11_dst_klass, r10_src_klass);
assert_clean_int(count, sco_temp);
// Generate the type check.
const int sco_offset = in_bytes(Klass::super_check_offset_offset());
__ movl(sco_temp, Address(r11_dst_klass, sco_offset));
assert_clean_int(sco_temp, rax);
generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
// Fetch destination element klass from the ObjArrayKlass header.
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
__ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
__ movl( sco_temp, Address(r11_dst_klass, sco_offset));
assert_clean_int(sco_temp, rax);
// the checkcast_copy loop needs two extra arguments:
assert(c_rarg3 == sco_temp, "#3 already in place");
// Set up arguments for checkcast_copy_entry.
setup_arg_regs(4);
__ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
__ jump(RuntimeAddress(checkcast_copy_entry));
}
__ BIND(L_failed);
__ xorptr(rax, rax);
__ notptr(rax); // return -1
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
void generate_arraycopy_stubs() {
address entry;
address entry_jbyte_arraycopy;
address entry_jshort_arraycopy;
address entry_jint_arraycopy;
address entry_oop_arraycopy;
address entry_jlong_arraycopy;
address entry_checkcast_arraycopy;
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
"jbyte_disjoint_arraycopy");
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
"jbyte_arraycopy");
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
"jshort_disjoint_arraycopy");
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
"jshort_arraycopy");
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
"jint_disjoint_arraycopy");
StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
&entry_jint_arraycopy, "jint_arraycopy");
StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
"jlong_disjoint_arraycopy");
StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
&entry_jlong_arraycopy, "jlong_arraycopy");
if (UseCompressedOops) {
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy");
StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
&entry_oop_arraycopy, "oop_arraycopy");
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
NULL, "oop_arraycopy_uninit",
/*dest_uninitialized*/true);
} else {
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy");
StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
&entry_oop_arraycopy, "oop_arraycopy");
StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
"oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
NULL, "oop_arraycopy_uninit",
/*dest_uninitialized*/true);
}
StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
/*dest_uninitialized*/true);
StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_jlong_arraycopy);
StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_oop_arraycopy,
entry_jlong_arraycopy,
entry_checkcast_arraycopy);
StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
// We don't generate specialized code for HeapWord-aligned source
// arrays, so just use the code we've already generated
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
}
void generate_math_stubs() {
{
StubCodeMark mark(this, "StubRoutines", "log");
StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ flog();
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
{
StubCodeMark mark(this, "StubRoutines", "log10");
StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ flog10();
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
{
StubCodeMark mark(this, "StubRoutines", "sin");
StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ trigfunc('s');
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
{
StubCodeMark mark(this, "StubRoutines", "cos");
StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ trigfunc('c');
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
{
StubCodeMark mark(this, "StubRoutines", "tan");
StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ trigfunc('t');
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
{
StubCodeMark mark(this, "StubRoutines", "exp");
StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ exp_with_fallback(0);
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
{
StubCodeMark mark(this, "StubRoutines", "pow");
StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
__ subq(rsp, 8);
__ movdbl(Address(rsp, 0), xmm1);
__ fld_d(Address(rsp, 0));
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ pow_with_fallback(0);
__ fstp_d(Address(rsp, 0));
__ movdbl(xmm0, Address(rsp, 0));
__ addq(rsp, 8);
__ ret(0);
}
}
// AES intrinsic stubs
enum {AESBlockSize = 16};
address generate_key_shuffle_mask() {
__ align(16);
StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
address start = __ pc();
__ emit_data64( 0x0405060700010203, relocInfo::none );
__ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
return start;
}
// Utility routine for loading a 128-bit key word in little endian format
// can optionally specify that the shuffle mask is already in an xmmregister
void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
__ movdqu(xmmdst, Address(key, offset));
if (xmm_shuf_mask != NULL) {
__ pshufb(xmmdst, xmm_shuf_mask);
} else {
__ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
}
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_encryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
Label L_doLast;
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register keylen = rax;
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1;
// On win64 xmm6-xmm15 must be preserved so don't use them.
const XMMRegister xmm_temp1 = xmm2;
const XMMRegister xmm_temp2 = xmm3;
const XMMRegister xmm_temp3 = xmm4;
const XMMRegister xmm_temp4 = xmm5;
__ enter(); // required for proper stackwalking of RuntimeStub frame
// keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
// For encryption, the java expanded key ordering is just what we need
// we don't know if the key is aligned, hence not using load-execute form
load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
__ pxor(xmm_result, xmm_temp1);
load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
__ aesenc(xmm_result, xmm_temp3);
__ aesenc(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
__ aesenc(xmm_result, xmm_temp3);
__ aesenc(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
__ cmpl(keylen, 44);
__ jccb(Assembler::equal, L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(keylen, 52);
__ jccb(Assembler::equal, L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
__ BIND(L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenclast(xmm_result, xmm_temp2);
__ movdqu(Address(to, 0), xmm_result); // store the result
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_decryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
Label L_doLast;
address start = __ pc();
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register keylen = rax;
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1;
// On win64 xmm6-xmm15 must be preserved so don't use them.
const XMMRegister xmm_temp1 = xmm2;
const XMMRegister xmm_temp2 = xmm3;
const XMMRegister xmm_temp3 = xmm4;
const XMMRegister xmm_temp4 = xmm5;
__ enter(); // required for proper stackwalking of RuntimeStub frame
// keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_result, Address(from, 0));
// for decryption java expanded key ordering is rotated one position from what we want
// so we start from 0x10 here and hit 0x00 last
// we don't know if the key is aligned, hence not using load-execute form
load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
__ pxor (xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
__ aesdec(xmm_result, xmm_temp3);
__ aesdec(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
__ aesdec(xmm_result, xmm_temp3);
__ aesdec(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
__ cmpl(keylen, 44);
__ jccb(Assembler::equal, L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(keylen, 52);
__ jccb(Assembler::equal, L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
__ BIND(L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
// for decryption the aesdeclast operation is always on key+0x00
__ aesdeclast(xmm_result, xmm_temp3);
__ movdqu(Address(to, 0), xmm_result); // store the result
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_encryptAESCrypt() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
address start = __ pc();
Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
#ifndef _WIN64
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Register len_reg = r10; // pick the first volatile windows register
#endif
const Register pos = rax;
// xmm register assignments for the loops below
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_temp = xmm1;
// keys 0-10 preloaded into xmm2-xmm12
const int XMM_REG_NUM_KEY_FIRST = 2;
const int XMM_REG_NUM_KEY_LAST = 15;
const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
// save the xmm registers which must be preserved 6-15
__ subptr(rsp, -rsp_after_call_off * wordSize);
for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
__ movdqu(xmm_save(i), as_XMMRegister(i));
}
#else
__ push(len_reg); // Save
#endif
const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
// load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
offset += 0x10;
}
__ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
// now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
__ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rax, 44);
__ jcc(Assembler::notEqual, L_key_192_256);
// 128 bit code follows here
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_128);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
__ aesenclast(xmm_result, xmm_key10);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_128);
__ BIND(L_exit);
__ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
#ifdef _WIN64
// restore xmm regs belonging to calling function
for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
__ movdqu(as_XMMRegister(i), xmm_save(i));
}
__ movl(rax, len_mem);
#else
__ pop(rax); // return length
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
__ BIND(L_key_192_256);
// here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(rax, 52);
__ jcc(Assembler::notEqual, L_key_256);
// 192-bit code follows here (could be changed to use more xmm registers)
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_192);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
__ aesenclast(xmm_result, xmm_key12);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_192);
__ jmp(L_exit);
__ BIND(L_key_256);
// 256-bit code follows here (could be changed to use more xmm registers)
load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_256);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
load_key(xmm_temp, key, 0xe0);
__ aesenclast(xmm_result, xmm_temp);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_256);
__ jmp(L_exit);
return start;
}
// Safefetch stubs.
void generate_safefetch(const char* name, int size, address* entry,
address* fault_pc, address* continuation_pc) {
// safefetch signatures:
// int SafeFetch32(int* adr, int errValue);
// intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
//
// arguments:
// c_rarg0 = adr
// c_rarg1 = errValue
//
// result:
// PPC_RET = *adr or errValue
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
*entry = __ pc();
// Load *adr into c_rarg1, may fault.
*fault_pc = __ pc();
switch (size) {
case 4:
// int32_t
__ movl(c_rarg1, Address(c_rarg0, 0));
break;
case 8:
// int64_t
__ movq(c_rarg1, Address(c_rarg0, 0));
break;
default:
ShouldNotReachHere();
}
// return errValue or *adr
*continuation_pc = __ pc();
__ movq(rax, c_rarg1);
__ ret(0);
}
// This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
// to hide instruction latency
//
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
address start = __ pc();
Label L_exit, L_key_192_256, L_key_256;
Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
const Register from = c_rarg0; // source array address
const Register to = c_rarg1; // destination array address
const Register key = c_rarg2; // key array address
const Register rvec = c_rarg3; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
#ifndef _WIN64
const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
#else
const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
const Register len_reg = r10; // pick the first volatile windows register
#endif
const Register pos = rax;
// keys 0-10 preloaded into xmm2-xmm12
const int XMM_REG_NUM_KEY_FIRST = 5;
const int XMM_REG_NUM_KEY_LAST = 15;
const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifdef _WIN64
// on win64, fill len_reg from stack position
__ movl(len_reg, len_mem);
// save the xmm registers which must be preserved 6-15
__ subptr(rsp, -rsp_after_call_off * wordSize);
for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
__ movdqu(xmm_save(i), as_XMMRegister(i));
}
#else
__ push(len_reg); // Save
#endif
// the java expanded key ordering is rotated one position from what we want
// so we start from 0x10 here and hit 0x00 last
const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
// load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
offset += 0x10;
}
load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block
// registers holding the four results in the parallelized loop
const XMMRegister xmm_result0 = xmm0;
const XMMRegister xmm_result1 = xmm2;
const XMMRegister xmm_result2 = xmm3;
const XMMRegister xmm_result3 = xmm4;
__ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
// now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
__ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rax, 44);
__ jcc(Assembler::notEqual, L_key_192_256);
// 128-bit code follows here, parallelized
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_multiBlock_loopTop_128);
__ cmpptr(len_reg, 4*AESBlockSize); // see if at least 4 blocks left
__ jcc(Assembler::less, L_singleBlock_loopTop_128);
__ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize)); // get next 4 blocks into xmmresult registers
__ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
__ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
__ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
#define DoFour(opc, src_reg) \
__ opc(xmm_result0, src_reg); \
__ opc(xmm_result1, src_reg); \
__ opc(xmm_result2, src_reg); \
__ opc(xmm_result3, src_reg);
DoFour(pxor, xmm_key_first);
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
DoFour(aesdec, as_XMMRegister(rnum));
}
DoFour(aesdeclast, xmm_key_last);
// for each result, xor with the r vector of previous cipher block
__ pxor(xmm_result0, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
__ pxor(xmm_result1, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
__ pxor(xmm_result2, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
__ pxor(xmm_result3, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize)); // this will carry over to next set of blocks
__ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output
__ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
__ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
__ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
__ addptr(pos, 4*AESBlockSize);
__ subptr(len_reg, 4*AESBlockSize);
__ jmp(L_multiBlock_loopTop_128);
// registers used in the non-parallelized loops
// xmm register assignments for the loops below
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_prev_block_cipher_save = xmm2;
const XMMRegister xmm_key11 = xmm3;
const XMMRegister xmm_key12 = xmm4;
const XMMRegister xmm_temp = xmm4;
__ align(OptoLoopAlignment);
__ BIND(L_singleBlock_loopTop_128);
__ cmpptr(len_reg, 0); // any blocks left??
__ jcc(Assembler::equal, L_exit);
__ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
__ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
__ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
__ aesdec(xmm_result, as_XMMRegister(rnum));
}
__ aesdeclast(xmm_result, xmm_key_last);
__ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jmp(L_singleBlock_loopTop_128);
__ BIND(L_exit);
__ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
#ifdef _WIN64
// restore regs belonging to calling function
for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
__ movdqu(as_XMMRegister(i), xmm_save(i));
}
__ movl(rax, len_mem);
#else
__ pop(rax); // return length
#endif
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
__ BIND(L_key_192_256);
// here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
load_key(xmm_key11, key, 0xb0);
__ cmpl(rax, 52);
__ jcc(Assembler::notEqual, L_key_256);
// 192-bit code follows here (could be optimized to use parallelism)
load_key(xmm_key12, key, 0xc0); // 192-bit key goes up to c0
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_singleBlock_loopTop_192);
__ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
__ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
__ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
__ aesdec(xmm_result, as_XMMRegister(rnum));
}
__ aesdec(xmm_result, xmm_key11);
__ aesdec(xmm_result, xmm_key12);
__ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0
__ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
__ jmp(L_exit);
__ BIND(L_key_256);
// 256-bit code follows here (could be optimized to use parallelism)
__ movptr(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_singleBlock_loopTop_256);
__ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
__ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
__ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
__ aesdec(xmm_result, as_XMMRegister(rnum));
}
__ aesdec(xmm_result, xmm_key11);
load_key(xmm_temp, key, 0xc0);
__ aesdec(xmm_result, xmm_temp);
load_key(xmm_temp, key, 0xd0);
__ aesdec(xmm_result, xmm_temp);
load_key(xmm_temp, key, 0xe0); // 256-bit key goes up to e0
__ aesdec(xmm_result, xmm_temp);
__ aesdeclast(xmm_result, xmm_key_last); // xmm15 came from key+0
__ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
__ jmp(L_exit);
return start;
}
/**
* Arguments:
*
* Inputs:
* c_rarg0 - int crc
* c_rarg1 - byte* buf
* c_rarg2 - int length
*
* Ouput:
* rax - int crc result
*/
address generate_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
address start = __ pc();
// Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
// Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
// rscratch1: r10
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register table = c_rarg3; // crc_table address (reuse register)
const Register tmp = r11;
assert_different_registers(crc, buf, len, table, tmp, rax);
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ kernel_crc32(crc, buf, len, table, tmp);
__ movl(rax, crc);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
/**
* Arguments:
*
* Input:
* c_rarg0 - x address
* c_rarg1 - x length
* c_rarg2 - y address
* c_rarg3 - y lenth
* not Win64
* c_rarg4 - z address
* c_rarg5 - z length
* Win64
* rsp+40 - z address
* rsp+48 - z length
*/
address generate_multiplyToLen() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
address start = __ pc();
// Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
// Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
const Register x = rdi;
const Register xlen = rax;
const Register y = rsi;
const Register ylen = rcx;
const Register z = r8;
const Register zlen = r11;
// Next registers will be saved on stack in multiply_to_len().
const Register tmp1 = r12;
const Register tmp2 = r13;
const Register tmp3 = r14;
const Register tmp4 = r15;
const Register tmp5 = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
#ifndef _WIN64
__ movptr(zlen, r9); // Save r9 in r11 - zlen
#endif
setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
// ylen => rcx, z => r8, zlen => r11
// r9 and r10 may be used to save non-volatile registers
#ifdef _WIN64
// last 2 arguments (#4, #5) are on stack on Win64
__ movptr(z, Address(rsp, 6 * wordSize));
__ movptr(zlen, Address(rsp, 7 * wordSize));
#endif
__ movptr(xlen, rsi);
__ movptr(y, rdx);
__ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
restore_arg_regs();
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
#undef __
#define __ masm->
// Continuation point for throwing of implicit exceptions that are
// not handled in the current activation. Fabricates an exception
// oop and initiates normal exception dispatching in this
// frame. Since we need to preserve callee-saved values (currently
// only for C2, but done for C1 as well) we need a callee-saved oop
// map and therefore have to make these stubs into RuntimeStubs
// rather than BufferBlobs. If the compiler needs all registers to
// be preserved between the fault point and the exception handler
// then it must assume responsibility for that in
// AbstractCompiler::continuation_for_implicit_null_exception or
// continuation_for_implicit_division_by_zero_exception. All other
// implicit exceptions (e.g., NullPointerException or
// AbstractMethodError on entry) are either at call sites or
// otherwise assume that stack unwinding will be initiated, so
// caller saved registers were assumed volatile in the compiler.
address generate_throw_exception(const char* name,
address runtime_entry,
Register arg1 = noreg,
Register arg2 = noreg) {
// Information about frame layout at time of blocking runtime call.
// Note that we only have to preserve callee-saved registers since
// the compilers are responsible for supplying a continuation point
// if they expect all registers to be preserved.
enum layout {
rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
rbp_off2,
return_off,
return_off2,
framesize // inclusive of return address
};
int insts_size = 512;
int locs_size = 64;
CodeBuffer code(name, insts_size, locs_size);
OopMapSet* oop_maps = new OopMapSet();
MacroAssembler* masm = new MacroAssembler(&code);
address start = __ pc();
// This is an inlined and slightly modified version of call_VM
// which has the ability to fetch the return PC out of
// thread-local storage and also sets up last_Java_sp slightly
// differently than the real call_VM
__ enter(); // required for proper stackwalking of RuntimeStub frame
assert(is_even(framesize/2), "sp not 16-byte aligned");
// return address and rbp are already in place
__ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
int frame_complete = __ pc() - start;
// Set up last_Java_sp and last_Java_fp
address the_pc = __ pc();
__ set_last_Java_frame(rsp, rbp, the_pc);
__ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
// Call runtime
if (arg1 != noreg) {
assert(arg2 != c_rarg1, "clobbered");
__ movptr(c_rarg1, arg1);
}
if (arg2 != noreg) {
__ movptr(c_rarg2, arg2);
}
__ movptr(c_rarg0, r15_thread);
BLOCK_COMMENT("call runtime_entry");
__ call(RuntimeAddress(runtime_entry));
// Generate oop map
OopMap* map = new OopMap(framesize, 0);
oop_maps->add_gc_map(the_pc - start, map);
__ reset_last_Java_frame(true, true);
__ leave(); // required for proper stackwalking of RuntimeStub frame
// check for pending exceptions
#ifdef ASSERT
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
(int32_t) NULL_WORD);
__ jcc(Assembler::notEqual, L);
__ should_not_reach_here();
__ bind(L);
#endif // ASSERT
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
// codeBlob framesize is in words (not VMRegImpl::slot_size)
RuntimeStub* stub =
RuntimeStub::new_runtime_stub(name,
&code,
frame_complete,
(framesize >> (LogBytesPerWord - LogBytesPerInt)),
oop_maps, false);
return stub->entry_point();
}
void create_control_words() {
// Round to nearest, 53-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
// Round to zero, 53-bit mode, exception mased
StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
// Round to nearest, 24-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
// Round to nearest, 64-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
// Round to nearest, 64-bit mode, exceptions masked
StubRoutines::_mxcsr_std = 0x1F80;
// Note: the following two constants are 80-bit values
// layout is critical for correct loading by FPU.
// Bias for strict fp multiply/divide
StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
// Un-Bias for strict fp multiply/divide
StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
}
// Initialization
void generate_initial() {
// Generates all stubs and initializes the entry points
// This platform-specific settings are needed by generate_call_stub()
create_control_words();
// entry points that exist in all platforms Note: This is code
// that could be shared among different platforms - however the
// benefit seems to be smaller than the disadvantage of having a
// much more complicated generator structure. See also comment in
// stubRoutines.hpp.
StubRoutines::_forward_exception_entry = generate_forward_exception();
StubRoutines::_call_stub_entry =
generate_call_stub(StubRoutines::_call_stub_return_address);
// is referenced by megamorphic call
StubRoutines::_catch_exception_entry = generate_catch_exception();
// atomic calls
StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
StubRoutines::_atomic_add_entry = generate_atomic_add();
StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
StubRoutines::_fence_entry = generate_orderaccess_fence();
StubRoutines::_handler_for_unsafe_access_entry =
generate_handler_for_unsafe_access();
// platform dependent
StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
// Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry =
generate_throw_exception("StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_StackOverflowError));
if (UseCRC32Intrinsics) {
// set table address before stub generation which use it
StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
}
}
void generate_all() {
// Generates all stubs and initializes the entry points
// These entry points require SharedInfo::stack0 to be set up in
// non-core builds and need to be relocatable, so they each
// fabricate a RuntimeStub internally.
StubRoutines::_throw_AbstractMethodError_entry =
generate_throw_exception("AbstractMethodError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_AbstractMethodError));
StubRoutines::_throw_IncompatibleClassChangeError_entry =
generate_throw_exception("IncompatibleClassChangeError throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_IncompatibleClassChangeError));
StubRoutines::_throw_NullPointerException_at_call_entry =
generate_throw_exception("NullPointerException at call throw_exception",
CAST_FROM_FN_PTR(address,
SharedRuntime::
throw_NullPointerException_at_call));
// entry points that are platform specific
StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
// support for verify_oop (must happen after universe_init)
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
generate_math_stubs();
// don't bother generating these AES intrinsic stubs unless global flag is set
if (UseAESIntrinsics) {
StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others
StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
}
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
&StubRoutines::_safefetch32_continuation_pc);
generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
&StubRoutines::_safefetchN_fault_pc,
&StubRoutines::_safefetchN_continuation_pc);
#ifdef COMPILER2
if (UseMultiplyToLenIntrinsic) {
StubRoutines::_multiplyToLen = generate_multiplyToLen();
}
#endif
}
public:
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
if (all) {
generate_all();
} else {
generate_initial();
}
}
}; // end class declaration
void StubGenerator_generate(CodeBuffer* code, bool all) {
StubGenerator g(code, all);
}