6800154: Add comments to long_by_long_mulhi() for better understandability
Summary: This patch adds a comment pointing to the Hacker's Delight version of the algorithm plus a verbatim copy of it. Furthermore it adds inline comments.
Reviewed-by: kvn, jrose
/*
* Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_sharedRuntime_sparc.cpp.incl"
#define __ masm->
#ifdef COMPILER2
UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
#endif // COMPILER2
DeoptimizationBlob* SharedRuntime::_deopt_blob;
SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
RuntimeStub* SharedRuntime::_wrong_method_blob;
RuntimeStub* SharedRuntime::_ic_miss_blob;
RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub* SharedRuntime::_resolve_static_call_blob;
class RegisterSaver {
// Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
// The Oregs are problematic. In the 32bit build the compiler can
// have O registers live with 64 bit quantities. A window save will
// cut the heads off of the registers. We have to do a very extensive
// stack dance to save and restore these properly.
// Note that the Oregs problem only exists if we block at either a polling
// page exception a compiled code safepoint that was not originally a call
// or deoptimize following one of these kinds of safepoints.
// Lots of registers to save. For all builds, a window save will preserve
// the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit
// builds a window-save will preserve the %o registers. In the LION build
// we need to save the 64-bit %o registers which requires we save them
// before the window-save (as then they become %i registers and get their
// heads chopped off on interrupt). We have to save some %g registers here
// as well.
enum {
// This frame's save area. Includes extra space for the native call:
// vararg's layout space and the like. Briefly holds the caller's
// register save area.
call_args_area = frame::register_save_words_sp_offset +
frame::memory_parameter_word_sp_offset*wordSize,
// Make sure save locations are always 8 byte aligned.
// can't use round_to because it doesn't produce compile time constant
start_of_extra_save_area = ((call_args_area + 7) & ~7),
g1_offset = start_of_extra_save_area, // g-regs needing saving
g3_offset = g1_offset+8,
g4_offset = g3_offset+8,
g5_offset = g4_offset+8,
o0_offset = g5_offset+8,
o1_offset = o0_offset+8,
o2_offset = o1_offset+8,
o3_offset = o2_offset+8,
o4_offset = o3_offset+8,
o5_offset = o4_offset+8,
start_of_flags_save_area = o5_offset+8,
ccr_offset = start_of_flags_save_area,
fsr_offset = ccr_offset + 8,
d00_offset = fsr_offset+8, // Start of float save area
register_save_size = d00_offset+8*32
};
public:
static int Oexception_offset() { return o0_offset; };
static int G3_offset() { return g3_offset; };
static int G5_offset() { return g5_offset; };
static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
static void restore_live_registers(MacroAssembler* masm);
// During deoptimization only the result register need to be restored
// all the other values have already been extracted.
static void restore_result_registers(MacroAssembler* masm);
};
OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
// Record volatile registers as callee-save values in an OopMap so their save locations will be
// propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
// deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
// are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
// (as the stub's I's) when the runtime routine called by the stub creates its frame.
int i;
// Always make the frame size 16 bytr aligned.
int frame_size = round_to(additional_frame_words + register_save_size, 16);
// OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
int frame_size_in_slots = frame_size / sizeof(jint);
// CodeBlob frame size is in words.
*total_frame_words = frame_size / wordSize;
// OopMap* map = new OopMap(*total_frame_words, 0);
OopMap* map = new OopMap(frame_size_in_slots, 0);
#if !defined(_LP64)
// Save 64-bit O registers; they will get their heads chopped off on a 'save'.
__ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
__ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
__ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
__ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
__ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
__ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
#endif /* _LP64 */
__ save(SP, -frame_size, SP);
#ifndef _LP64
// Reload the 64 bit Oregs. Although they are now Iregs we load them
// to Oregs here to avoid interrupts cutting off their heads
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
__ stx(O0, SP, o0_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
__ stx(O1, SP, o1_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
__ stx(O2, SP, o2_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
__ stx(O3, SP, o3_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
__ stx(O4, SP, o4_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
__ stx(O5, SP, o5_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
#endif /* _LP64 */
#ifdef _LP64
int debug_offset = 0;
#else
int debug_offset = 4;
#endif
// Save the G's
__ stx(G1, SP, g1_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
__ stx(G3, SP, g3_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
__ stx(G4, SP, g4_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
__ stx(G5, SP, g5_offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
// This is really a waste but we'll keep things as they were for now
if (true) {
#ifndef _LP64
map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
#endif /* _LP64 */
}
// Save the flags
__ rdccr( G5 );
__ stx(G5, SP, ccr_offset+STACK_BIAS);
__ stxfsr(SP, fsr_offset+STACK_BIAS);
// Save all the FP registers
int offset = d00_offset;
for( int i=0; i<64; i+=2 ) {
FloatRegister f = as_FloatRegister(i);
__ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS);
map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
if (true) {
map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
}
offset += sizeof(double);
}
// And we're done.
return map;
}
// Pop the current frame and restore all the registers that we
// saved.
void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
// Restore all the FP registers
for( int i=0; i<64; i+=2 ) {
__ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
}
__ ldx(SP, ccr_offset+STACK_BIAS, G1);
__ wrccr (G1) ;
// Restore the G's
// Note that G2 (AKA GThread) must be saved and restored separately.
// TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
__ ldx(SP, g1_offset+STACK_BIAS, G1);
__ ldx(SP, g3_offset+STACK_BIAS, G3);
__ ldx(SP, g4_offset+STACK_BIAS, G4);
__ ldx(SP, g5_offset+STACK_BIAS, G5);
#if !defined(_LP64)
// Restore the 64-bit O's.
__ ldx(SP, o0_offset+STACK_BIAS, O0);
__ ldx(SP, o1_offset+STACK_BIAS, O1);
__ ldx(SP, o2_offset+STACK_BIAS, O2);
__ ldx(SP, o3_offset+STACK_BIAS, O3);
__ ldx(SP, o4_offset+STACK_BIAS, O4);
__ ldx(SP, o5_offset+STACK_BIAS, O5);
// And temporarily place them in TLS
__ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
__ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
__ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
__ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
__ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
__ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
#endif /* _LP64 */
// Restore flags
__ ldxfsr(SP, fsr_offset+STACK_BIAS);
__ restore();
#if !defined(_LP64)
// Now reload the 64bit Oregs after we've restore the window.
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
#endif /* _LP64 */
}
// Pop the current frame and restore the registers that might be holding
// a result.
void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
#if !defined(_LP64)
// 32bit build returns longs in G1
__ ldx(SP, g1_offset+STACK_BIAS, G1);
// Retrieve the 64-bit O's.
__ ldx(SP, o0_offset+STACK_BIAS, O0);
__ ldx(SP, o1_offset+STACK_BIAS, O1);
// and save to TLS
__ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
__ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
#endif /* _LP64 */
__ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
__ restore();
#if !defined(_LP64)
// Now reload the 64bit Oregs after we've restore the window.
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
__ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
#endif /* _LP64 */
}
// The java_calling_convention describes stack locations as ideal slots on
// a frame with no abi restrictions. Since we must observe abi restrictions
// (like the placement of the register window) the slots must be biased by
// the following value.
static int reg2offset(VMReg r) {
return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}
// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
// quantities. Values less than VMRegImpl::stack0 are registers, those above
// refer to 4-byte stack slots. All stack slots are based off of the window
// top. VMRegImpl::stack0 refers to the first slot past the 16-word window,
// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
// integer registers. Values 64-95 are the (32-bit only) float registers.
// Each 32-bit quantity is given its own number, so the integer registers
// (in either 32- or 64-bit builds) use 2 numbers. For example, there is
// an O0-low and an O0-high. Essentially, all int register numbers are doubled.
// Register results are passed in O0-O5, for outgoing call arguments. To
// convert to incoming arguments, convert all O's to I's. The regs array
// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
// 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was
// passed (used as a placeholder for the other half of longs and doubles in
// the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is
// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
// same VMRegPair.
// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
// units regardless of build.
// ---------------------------------------------------------------------------
// The compiled Java calling convention. The Java convention always passes
// 64-bit values in adjacent aligned locations (either registers or stack),
// floats in float registers and doubles in aligned float pairs. Values are
// packed in the registers. There is no backing varargs store for values in
// registers. In the 32-bit build, longs are passed in G1 and G4 (cannot be
// passed in I's, because longs in I's get their heads chopped off at
// interrupt).
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed,
int is_outgoing) {
assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
// Convention is to pack the first 6 int/oop args into the first 6 registers
// (I0-I5), extras spill to the stack. Then pack the first 8 float args
// into F0-F7, extras spill to the stack. Then pad all register sets to
// align. Then put longs and doubles into the same registers as they fit,
// else spill to the stack.
const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
const int flt_reg_max = 8;
//
// Where 32-bit 1-reg longs start being passed
// In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
// So make it look like we've filled all the G regs that c2 wants to use.
Register g_reg = TieredCompilation ? noreg : G1;
// Count int/oop and float args. See how many stack slots we'll need and
// where the longs & doubles will go.
int int_reg_cnt = 0;
int flt_reg_cnt = 0;
// int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
// int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
int stk_reg_pairs = 0;
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_LONG: // LP64, longs compete with int args
assert(sig_bt[i+1] == T_VOID, "");
#ifdef _LP64
if (int_reg_cnt < int_reg_max) int_reg_cnt++;
#endif
break;
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
if (int_reg_cnt < int_reg_max) int_reg_cnt++;
#ifndef _LP64
else stk_reg_pairs++;
#endif
break;
case T_INT:
case T_SHORT:
case T_CHAR:
case T_BYTE:
case T_BOOLEAN:
if (int_reg_cnt < int_reg_max) int_reg_cnt++;
else stk_reg_pairs++;
break;
case T_FLOAT:
if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
else stk_reg_pairs++;
break;
case T_DOUBLE:
assert(sig_bt[i+1] == T_VOID, "");
break;
case T_VOID:
break;
default:
ShouldNotReachHere();
}
}
// This is where the longs/doubles start on the stack.
stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
// int stk_reg = frame::register_save_words*(wordSize>>2);
// int stk_reg = SharedRuntime::out_preserve_stack_slots();
int stk_reg = 0;
int int_reg = 0;
int flt_reg = 0;
// Now do the signature layout
for (int i = 0; i < total_args_passed; i++) {
switch (sig_bt[i]) {
case T_INT:
case T_SHORT:
case T_CHAR:
case T_BYTE:
case T_BOOLEAN:
#ifndef _LP64
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
#endif // _LP64
if (int_reg < int_reg_max) {
Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
regs[i].set1(r->as_VMReg());
} else {
regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
}
break;
#ifdef _LP64
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
if (int_reg < int_reg_max) {
Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
regs[i].set2(r->as_VMReg());
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
stk_reg_pairs += 2;
}
break;
#endif // _LP64
case T_LONG:
assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
#ifdef _LP64
if (int_reg < int_reg_max) {
Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
regs[i].set2(r->as_VMReg());
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
stk_reg_pairs += 2;
}
#else
#ifdef COMPILER2
// For 32-bit build, can't pass longs in O-regs because they become
// I-regs and get trashed. Use G-regs instead. G1 and G4 are almost
// spare and available. This convention isn't used by the Sparc ABI or
// anywhere else. If we're tiered then we don't use G-regs because c1
// can't deal with them as a "pair". (Tiered makes this code think g's are filled)
// G0: zero
// G1: 1st Long arg
// G2: global allocated to TLS
// G3: used in inline cache check
// G4: 2nd Long arg
// G5: used in inline cache check
// G6: used by OS
// G7: used by OS
if (g_reg == G1) {
regs[i].set2(G1->as_VMReg()); // This long arg in G1
g_reg = G4; // Where the next arg goes
} else if (g_reg == G4) {
regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
g_reg = noreg; // No more longs in registers
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
stk_reg_pairs += 2;
}
#else // COMPILER2
if (int_reg_pairs + 1 < int_reg_max) {
if (is_outgoing) {
regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
} else {
regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
}
int_reg_pairs += 2;
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
stk_reg_pairs += 2;
}
#endif // COMPILER2
#endif // _LP64
break;
case T_FLOAT:
if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
else regs[i].set1( VMRegImpl::stack2reg(stk_reg++));
break;
case T_DOUBLE:
assert(sig_bt[i+1] == T_VOID, "expecting half");
if (flt_reg_pairs + 1 < flt_reg_max) {
regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
flt_reg_pairs += 2;
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
stk_reg_pairs += 2;
}
break;
case T_VOID: regs[i].set_bad(); break; // Halves of longs & doubles
default:
ShouldNotReachHere();
}
}
// retun the amount of stack space these arguments will need.
return stk_reg_pairs;
}
// Helper class mostly to avoid passing masm everywhere, and handle store
// displacement overflow logic for LP64
class AdapterGenerator {
MacroAssembler *masm;
#ifdef _LP64
Register Rdisp;
void set_Rdisp(Register r) { Rdisp = r; }
#endif // _LP64
void patch_callers_callsite();
void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
// base+st_off points to top of argument
int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
int next_arg_offset(const int st_off) {
return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
}
#ifdef _LP64
// On _LP64 argument slot values are loaded first into a register
// because they might not fit into displacement.
Register arg_slot(const int st_off);
Register next_arg_slot(const int st_off);
#else
int arg_slot(const int st_off) { return arg_offset(st_off); }
int next_arg_slot(const int st_off) { return next_arg_offset(st_off); }
#endif // _LP64
// Stores long into offset pointed to by base
void store_c2i_long(Register r, Register base,
const int st_off, bool is_stack);
void store_c2i_object(Register r, Register base,
const int st_off);
void store_c2i_int(Register r, Register base,
const int st_off);
void store_c2i_double(VMReg r_2,
VMReg r_1, Register base, const int st_off);
void store_c2i_float(FloatRegister f, Register base,
const int st_off);
public:
void gen_c2i_adapter(int total_args_passed,
// VMReg max_arg,
int comp_args_on_stack, // VMRegStackSlots
const BasicType *sig_bt,
const VMRegPair *regs,
Label& skip_fixup);
void gen_i2c_adapter(int total_args_passed,
// VMReg max_arg,
int comp_args_on_stack, // VMRegStackSlots
const BasicType *sig_bt,
const VMRegPair *regs);
AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
};
// Patch the callers callsite with entry to compiled code if it exists.
void AdapterGenerator::patch_callers_callsite() {
Label L;
__ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
__ br_null(G3_scratch, false, __ pt, L);
// Schedule the branch target address early.
__ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
// Call into the VM to patch the caller, then jump to compiled callee
__ save_frame(4); // Args in compiled layout; do not blow them
// Must save all the live Gregs the list is:
// G1: 1st Long arg (32bit build)
// G2: global allocated to TLS
// G3: used in inline cache check (scratch)
// G4: 2nd Long arg (32bit build);
// G5: used in inline cache check (methodOop)
// The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
#ifdef _LP64
// mov(s,d)
__ mov(G1, L1);
__ mov(G4, L4);
__ mov(G5_method, L5);
__ mov(G5_method, O0); // VM needs target method
__ mov(I7, O1); // VM needs caller's callsite
// Must be a leaf call...
// can be very far once the blob has been relocated
Address dest(O7, CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
__ relocate(relocInfo::runtime_call_type);
__ jumpl_to(dest, O7);
__ delayed()->mov(G2_thread, L7_thread_cache);
__ mov(L7_thread_cache, G2_thread);
__ mov(L1, G1);
__ mov(L4, G4);
__ mov(L5, G5_method);
#else
__ stx(G1, FP, -8 + STACK_BIAS);
__ stx(G4, FP, -16 + STACK_BIAS);
__ mov(G5_method, L5);
__ mov(G5_method, O0); // VM needs target method
__ mov(I7, O1); // VM needs caller's callsite
// Must be a leaf call...
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
__ delayed()->mov(G2_thread, L7_thread_cache);
__ mov(L7_thread_cache, G2_thread);
__ ldx(FP, -8 + STACK_BIAS, G1);
__ ldx(FP, -16 + STACK_BIAS, G4);
__ mov(L5, G5_method);
__ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
#endif /* _LP64 */
__ restore(); // Restore args
__ bind(L);
}
void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
Register scratch) {
if (TaggedStackInterpreter) {
int tag_off = st_off + Interpreter::tag_offset_in_bytes();
#ifdef _LP64
Register tag_slot = Rdisp;
__ set(tag_off, tag_slot);
#else
int tag_slot = tag_off;
#endif // _LP64
// have to store zero because local slots can be reused (rats!)
if (t == frame::TagValue) {
__ st_ptr(G0, base, tag_slot);
} else if (t == frame::TagCategory2) {
__ st_ptr(G0, base, tag_slot);
int next_tag_off = st_off - Interpreter::stackElementSize() +
Interpreter::tag_offset_in_bytes();
#ifdef _LP64
__ set(next_tag_off, tag_slot);
#else
tag_slot = next_tag_off;
#endif // _LP64
__ st_ptr(G0, base, tag_slot);
} else {
__ mov(t, scratch);
__ st_ptr(scratch, base, tag_slot);
}
}
}
#ifdef _LP64
Register AdapterGenerator::arg_slot(const int st_off) {
__ set( arg_offset(st_off), Rdisp);
return Rdisp;
}
Register AdapterGenerator::next_arg_slot(const int st_off){
__ set( next_arg_offset(st_off), Rdisp);
return Rdisp;
}
#endif // _LP64
// Stores long into offset pointed to by base
void AdapterGenerator::store_c2i_long(Register r, Register base,
const int st_off, bool is_stack) {
#ifdef _LP64
// In V9, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
__ stx(r, base, next_arg_slot(st_off));
#else
#ifdef COMPILER2
// Misaligned store of 64-bit data
__ stw(r, base, arg_slot(st_off)); // lo bits
__ srlx(r, 32, r);
__ stw(r, base, next_arg_slot(st_off)); // hi bits
#else
if (is_stack) {
// Misaligned store of 64-bit data
__ stw(r, base, arg_slot(st_off)); // lo bits
__ srlx(r, 32, r);
__ stw(r, base, next_arg_slot(st_off)); // hi bits
} else {
__ stw(r->successor(), base, arg_slot(st_off) ); // lo bits
__ stw(r , base, next_arg_slot(st_off)); // hi bits
}
#endif // COMPILER2
#endif // _LP64
tag_c2i_arg(frame::TagCategory2, base, st_off, r);
}
void AdapterGenerator::store_c2i_object(Register r, Register base,
const int st_off) {
__ st_ptr (r, base, arg_slot(st_off));
tag_c2i_arg(frame::TagReference, base, st_off, r);
}
void AdapterGenerator::store_c2i_int(Register r, Register base,
const int st_off) {
__ st (r, base, arg_slot(st_off));
tag_c2i_arg(frame::TagValue, base, st_off, r);
}
// Stores into offset pointed to by base
void AdapterGenerator::store_c2i_double(VMReg r_2,
VMReg r_1, Register base, const int st_off) {
#ifdef _LP64
// In V9, doubles are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
__ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
#else
// Need to marshal 64-bit value from misaligned Lesp loads
__ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
__ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
#endif
tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
}
void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
const int st_off) {
__ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
}
void AdapterGenerator::gen_c2i_adapter(
int total_args_passed,
// VMReg max_arg,
int comp_args_on_stack, // VMRegStackSlots
const BasicType *sig_bt,
const VMRegPair *regs,
Label& skip_fixup) {
// Before we get into the guts of the C2I adapter, see if we should be here
// at all. We've come from compiled code and are attempting to jump to the
// interpreter, which means the caller made a static call to get here
// (vcalls always get a compiled target if there is one). Check for a
// compiled target. If there is one, we need to patch the caller's call.
// However we will run interpreted if we come thru here. The next pass
// thru the call site will run compiled. If we ran compiled here then
// we can (theorectically) do endless i2c->c2i->i2c transitions during
// deopt/uncommon trap cycles. If we always go interpreted here then
// we can have at most one and don't need to play any tricks to keep
// from endlessly growing the stack.
//
// Actually if we detected that we had an i2c->c2i transition here we
// ought to be able to reset the world back to the state of the interpreted
// call and not bother building another interpreter arg area. We don't
// do that at this point.
patch_callers_callsite();
__ bind(skip_fixup);
// Since all args are passed on the stack, total_args_passed*wordSize is the
// space we need. Add in varargs area needed by the interpreter. Round up
// to stack alignment.
const int arg_size = total_args_passed * Interpreter::stackElementSize();
const int varargs_area =
(frame::varargs_offset - frame::register_save_words)*wordSize;
const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
int bias = STACK_BIAS;
const int interp_arg_offset = frame::varargs_offset*wordSize +
(total_args_passed-1)*Interpreter::stackElementSize();
Register base = SP;
#ifdef _LP64
// In the 64bit build because of wider slots and STACKBIAS we can run
// out of bits in the displacement to do loads and stores. Use g3 as
// temporary displacement.
if (! __ is_simm13(extraspace)) {
__ set(extraspace, G3_scratch);
__ sub(SP, G3_scratch, SP);
} else {
__ sub(SP, extraspace, SP);
}
set_Rdisp(G3_scratch);
#else
__ sub(SP, extraspace, SP);
#endif // _LP64
// First write G1 (if used) to where ever it must go
for (int i=0; i<total_args_passed; i++) {
const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (r_1 == G1_scratch->as_VMReg()) {
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
store_c2i_object(G1_scratch, base, st_off);
} else if (sig_bt[i] == T_LONG) {
assert(!TieredCompilation, "should not use register args for longs");
store_c2i_long(G1_scratch, base, st_off, false);
} else {
store_c2i_int(G1_scratch, base, st_off);
}
}
}
// Now write the args into the outgoing interpreter space
for (int i=0; i<total_args_passed; i++) {
const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
// Skip G1 if found as we did it first in order to free it up
if (r_1 == G1_scratch->as_VMReg()) {
continue;
}
#ifdef ASSERT
bool G1_forced = false;
#endif // ASSERT
if (r_1->is_stack()) { // Pretend stack targets are loaded into G1
#ifdef _LP64
Register ld_off = Rdisp;
__ set(reg2offset(r_1) + extraspace + bias, ld_off);
#else
int ld_off = reg2offset(r_1) + extraspace + bias;
#ifdef ASSERT
G1_forced = true;
#endif // ASSERT
#endif // _LP64
r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
else __ ldx(base, ld_off, G1_scratch);
}
if (r_1->is_Register()) {
Register r = r_1->as_Register()->after_restore();
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
store_c2i_object(r, base, st_off);
} else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
if (TieredCompilation) {
assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
}
store_c2i_long(r, base, st_off, r_2->is_stack());
} else {
store_c2i_int(r, base, st_off);
}
} else {
assert(r_1->is_FloatRegister(), "");
if (sig_bt[i] == T_FLOAT) {
store_c2i_float(r_1->as_FloatRegister(), base, st_off);
} else {
assert(sig_bt[i] == T_DOUBLE, "wrong type");
store_c2i_double(r_2, r_1, base, st_off);
}
}
}
#ifdef _LP64
// Need to reload G3_scratch, used for temporary displacements.
__ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
// Pass O5_savedSP as an argument to the interpreter.
// The interpreter will restore SP to this value before returning.
__ set(extraspace, G1);
__ add(SP, G1, O5_savedSP);
#else
// Pass O5_savedSP as an argument to the interpreter.
// The interpreter will restore SP to this value before returning.
__ add(SP, extraspace, O5_savedSP);
#endif // _LP64
__ mov((frame::varargs_offset)*wordSize -
1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
// Jump to the interpreter just as if interpreter was doing it.
__ jmpl(G3_scratch, 0, G0);
// Setup Lesp for the call. Cannot actually set Lesp as the current Lesp
// (really L0) is in use by the compiled frame as a generic temp. However,
// the interpreter does not know where its args are without some kind of
// arg pointer being passed in. Pass it in Gargs.
__ delayed()->add(SP, G1, Gargs);
}
void AdapterGenerator::gen_i2c_adapter(
int total_args_passed,
// VMReg max_arg,
int comp_args_on_stack, // VMRegStackSlots
const BasicType *sig_bt,
const VMRegPair *regs) {
// Generate an I2C adapter: adjust the I-frame to make space for the C-frame
// layout. Lesp was saved by the calling I-frame and will be restored on
// return. Meanwhile, outgoing arg space is all owned by the callee
// C-frame, so we can mangle it at will. After adjusting the frame size,
// hoist register arguments and repack other args according to the compiled
// code convention. Finally, end in a jump to the compiled code. The entry
// point address is the start of the buffer.
// We will only enter here from an interpreted frame and never from after
// passing thru a c2i. Azul allowed this but we do not. If we lose the
// race and use a c2i we will remain interpreted for the race loser(s).
// This removes all sorts of headaches on the x86 side and also eliminates
// the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
// As you can see from the list of inputs & outputs there are not a lot
// of temp registers to work with: mostly G1, G3 & G4.
// Inputs:
// G2_thread - TLS
// G5_method - Method oop
// O0 - Flag telling us to restore SP from O5
// O4_args - Pointer to interpreter's args
// O5 - Caller's saved SP, to be restored if needed
// O6 - Current SP!
// O7 - Valid return address
// L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
// Outputs:
// G2_thread - TLS
// G1, G4 - Outgoing long args in 32-bit build
// O0-O5 - Outgoing args in compiled layout
// O6 - Adjusted or restored SP
// O7 - Valid return address
// L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
// F0-F7 - more outgoing args
// O4 is about to get loaded up with compiled callee's args
__ sub(Gargs, BytesPerWord, Gargs);
#ifdef ASSERT
{
// on entry OsavedSP and SP should be equal
Label ok;
__ cmp(O5_savedSP, SP);
__ br(Assembler::equal, false, Assembler::pt, ok);
__ delayed()->nop();
__ stop("I5_savedSP not set");
__ should_not_reach_here();
__ bind(ok);
}
#endif
// ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
// WITH O7 HOLDING A VALID RETURN PC
//
// | |
// : java stack :
// | |
// +--------------+ <--- start of outgoing args
// | receiver | |
// : rest of args : |---size is java-arg-words
// | | |
// +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
// | | |
// : unused : |---Space for max Java stack, plus stack alignment
// | | |
// +--------------+ <--- SP + 16*wordsize
// | |
// : window :
// | |
// +--------------+ <--- SP
// WE REPACK THE STACK. We use the common calling convention layout as
// discovered by calling SharedRuntime::calling_convention. We assume it
// causes an arbitrary shuffle of memory, which may require some register
// temps to do the shuffle. We hope for (and optimize for) the case where
// temps are not needed. We may have to resize the stack slightly, in case
// we need alignment padding (32-bit interpreter can pass longs & doubles
// misaligned, but the compilers expect them aligned).
//
// | |
// : java stack :
// | |
// +--------------+ <--- start of outgoing args
// | pad, align | |
// +--------------+ |
// | ints, floats | |---Outgoing stack args, packed low.
// +--------------+ | First few args in registers.
// : doubles : |
// | longs | |
// +--------------+ <--- SP' + 16*wordsize
// | |
// : window :
// | |
// +--------------+ <--- SP'
// ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
// WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
// FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
// Cut-out for having no stack args. Since up to 6 args are passed
// in registers, we will commonly have no stack args.
if (comp_args_on_stack > 0) {
// Convert VMReg stack slots to words.
int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
// Round up to miminum stack alignment, in wordSize
comp_words_on_stack = round_to(comp_words_on_stack, 2);
// Now compute the distance from Lesp to SP. This calculation does not
// include the space for total_args_passed because Lesp has not yet popped
// the arguments.
__ sub(SP, (comp_words_on_stack)*wordSize, SP);
}
// Will jump to the compiled code just as if compiled code was doing it.
// Pre-load the register-jump target early, to schedule it better.
__ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
// Now generate the shuffle code. Pick up all register args and move the
// rest through G1_scratch.
for (int i=0; i<total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
// Longs and doubles are passed in native word order, but misaligned
// in the 32-bit build.
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the
// 32-bit build and aligned in the 64-bit build. Look for the obvious
// ldx/lddf optimizations.
// Load in argument order going down.
const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
#ifdef _LP64
set_Rdisp(G1_scratch);
#endif // _LP64
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9
r_1 = F8->as_VMReg(); // as part of the load/store shuffle
if (r_2->is_valid()) r_2 = r_1->next();
}
if (r_1->is_Register()) { // Register argument
Register r = r_1->as_Register()->after_restore();
if (!r_2->is_valid()) {
__ ld(Gargs, arg_slot(ld_off), r);
} else {
#ifdef _LP64
// In V9, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
Register slot = (sig_bt[i]==T_LONG) ?
next_arg_slot(ld_off) : arg_slot(ld_off);
__ ldx(Gargs, slot, r);
#else
// Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
// stack shuffle. Load the first 2 longs into G1/G4 later.
#endif
}
} else {
assert(r_1->is_FloatRegister(), "");
if (!r_2->is_valid()) {
__ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
} else {
#ifdef _LP64
// In V9, doubles are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot. This code also handles longs that
// are passed on the stack, but need a stack-to-stack move through a
// spare float register.
Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ?
next_arg_slot(ld_off) : arg_slot(ld_off);
__ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
#else
// Need to marshal 64-bit value from misaligned Lesp loads
__ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
__ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
#endif
}
}
// Was the argument really intended to be on the stack, but was loaded
// into F8/F9?
if (regs[i].first()->is_stack()) {
assert(r_1->as_FloatRegister() == F8, "fix this code");
// Convert stack slot to an SP offset
int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
// Store down the shuffled stack word. Target address _is_ aligned.
if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off);
else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off);
}
}
bool made_space = false;
#ifndef _LP64
// May need to pick up a few long args in G1/G4
bool g4_crushed = false;
bool g3_crushed = false;
for (int i=0; i<total_args_passed; i++) {
if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
// Load in argument order going down
int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
// Need to marshal 64-bit value from misaligned Lesp loads
Register r = regs[i].first()->as_Register()->after_restore();
if (r == G1 || r == G4) {
assert(!g4_crushed, "ordering problem");
if (r == G4){
g4_crushed = true;
__ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits
__ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
} else {
// better schedule this way
__ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
__ lduw(Gargs, arg_slot(ld_off) , G3_scratch); // Load lo bits
}
g3_crushed = true;
__ sllx(r, 32, r);
__ or3(G3_scratch, r, r);
} else {
assert(r->is_out(), "longs passed in two O registers");
__ ld (Gargs, arg_slot(ld_off) , r->successor()); // Load lo bits
__ ld (Gargs, next_arg_slot(ld_off), r); // Load hi bits
}
}
}
#endif
// Jump to the compiled code just as if compiled code was doing it.
//
#ifndef _LP64
if (g3_crushed) {
// Rats load was wasted, at least it is in cache...
__ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
}
#endif /* _LP64 */
// 6243940 We might end up in handle_wrong_method if
// the callee is deoptimized as we race thru here. If that
// happens we don't want to take a safepoint because the
// caller frame will look interpreted and arguments are now
// "compiled" so it is much better to make this transition
// invisible to the stack walking code. Unfortunately if
// we try and find the callee by normal means a safepoint
// is possible. So we stash the desired callee in the thread
// and the vm will find there should this case occur.
Address callee_target_addr(G2_thread, 0, in_bytes(JavaThread::callee_target_offset()));
__ st_ptr(G5_method, callee_target_addr);
if (StressNonEntrant) {
// Open a big window for deopt failure
__ save_frame(0);
__ mov(G0, L0);
Label loop;
__ bind(loop);
__ sub(L0, 1, L0);
__ br_null(L0, false, Assembler::pt, loop);
__ delayed()->nop();
__ restore();
}
__ jmpl(G3, 0, G0);
__ delayed()->nop();
}
// ---------------------------------------------------------------
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
int total_args_passed,
// VMReg max_arg,
int comp_args_on_stack, // VMRegStackSlots
const BasicType *sig_bt,
const VMRegPair *regs) {
address i2c_entry = __ pc();
AdapterGenerator agen(masm);
agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
// -------------------------------------------------------------------------
// Generate a C2I adapter. On entry we know G5 holds the methodOop. The
// args start out packed in the compiled layout. They need to be unpacked
// into the interpreter layout. This will almost always require some stack
// space. We grow the current (compiled) stack, then repack the args. We
// finally end in a jump to the generic interpreter entry point. On exit
// from the interpreter, the interpreter will restore our SP (lest the
// compiled code, which relys solely on SP and not FP, get sick).
address c2i_unverified_entry = __ pc();
Label skip_fixup;
{
#if !defined(_LP64) && defined(COMPILER2)
Register R_temp = L0; // another scratch register
#else
Register R_temp = G1; // another scratch register
#endif
Address ic_miss(G3_scratch, SharedRuntime::get_ic_miss_stub());
__ verify_oop(O0);
__ verify_oop(G5_method);
__ load_klass(O0, G3_scratch);
__ verify_oop(G3_scratch);
#if !defined(_LP64) && defined(COMPILER2)
__ save(SP, -frame::register_save_words*wordSize, SP);
__ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
__ verify_oop(R_temp);
__ cmp(G3_scratch, R_temp);
__ restore();
#else
__ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
__ verify_oop(R_temp);
__ cmp(G3_scratch, R_temp);
#endif
Label ok, ok2;
__ brx(Assembler::equal, false, Assembler::pt, ok);
__ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
__ jump_to(ic_miss);
__ delayed()->nop();
__ bind(ok);
// Method might have been compiled since the call site was patched to
// interpreted if that is the case treat it as a miss so we can get
// the call site corrected.
__ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
__ bind(ok2);
__ br_null(G3_scratch, false, __ pt, skip_fixup);
__ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
__ jump_to(ic_miss);
__ delayed()->nop();
}
address c2i_entry = __ pc();
agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
__ flush();
return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
}
// Helper function for native calling conventions
static VMReg int_stk_helper( int i ) {
// Bias any stack based VMReg we get by ignoring the window area
// but not the register parameter save area.
//
// This is strange for the following reasons. We'd normally expect
// the calling convention to return an VMReg for a stack slot
// completely ignoring any abi reserved area. C2 thinks of that
// abi area as only out_preserve_stack_slots. This does not include
// the area allocated by the C abi to store down integer arguments
// because the java calling convention does not use it. So
// since c2 assumes that there are only out_preserve_stack_slots
// to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
// location the c calling convention must add in this bias amount
// to make up for the fact that the out_preserve_stack_slots is
// insufficient for C calls. What a mess. I sure hope those 6
// stack words were worth it on every java call!
// Another way of cleaning this up would be for out_preserve_stack_slots
// to take a parameter to say whether it was C or java calling conventions.
// Then things might look a little better (but not much).
int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
if( mem_parm_offset < 0 ) {
return as_oRegister(i)->as_VMReg();
} else {
int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
// Now return a biased offset that will be correct when out_preserve_slots is added back in
return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
}
}
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed) {
// Return the number of VMReg stack_slots needed for the args.
// This value does not include an abi space (like register window
// save area).
// The native convention is V8 if !LP64
// The LP64 convention is the V9 convention which is slightly more sane.
// We return the amount of VMReg stack slots we need to reserve for all
// the arguments NOT counting out_preserve_stack_slots. Since we always
// have space for storing at least 6 registers to memory we start with that.
// See int_stk_helper for a further discussion.
int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
#ifdef _LP64
// V9 convention: All things "as-if" on double-wide stack slots.
// Hoist any int/ptr/long's in the first 6 to int regs.
// Hoist any flt/dbl's in the first 16 dbl regs.
int j = 0; // Count of actual args, not HALVES
for( int i=0; i<total_args_passed; i++, j++ ) {
switch( sig_bt[i] ) {
case T_BOOLEAN:
case T_BYTE:
case T_CHAR:
case T_INT:
case T_SHORT:
regs[i].set1( int_stk_helper( j ) ); break;
case T_LONG:
assert( sig_bt[i+1] == T_VOID, "expecting half" );
case T_ADDRESS: // raw pointers, like current thread, for VM calls
case T_ARRAY:
case T_OBJECT:
regs[i].set2( int_stk_helper( j ) );
break;
case T_FLOAT:
if ( j < 16 ) {
// V9ism: floats go in ODD registers
regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
} else {
// V9ism: floats go in ODD stack slot
regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
}
break;
case T_DOUBLE:
assert( sig_bt[i+1] == T_VOID, "expecting half" );
if ( j < 16 ) {
// V9ism: doubles go in EVEN/ODD regs
regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
} else {
// V9ism: doubles go in EVEN/ODD stack slots
regs[i].set2(VMRegImpl::stack2reg(j<<1));
}
break;
case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES
default:
ShouldNotReachHere();
}
if (regs[i].first()->is_stack()) {
int off = regs[i].first()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off;
}
if (regs[i].second()->is_stack()) {
int off = regs[i].second()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off;
}
}
#else // _LP64
// V8 convention: first 6 things in O-regs, rest on stack.
// Alignment is willy-nilly.
for( int i=0; i<total_args_passed; i++ ) {
switch( sig_bt[i] ) {
case T_ADDRESS: // raw pointers, like current thread, for VM calls
case T_ARRAY:
case T_BOOLEAN:
case T_BYTE:
case T_CHAR:
case T_FLOAT:
case T_INT:
case T_OBJECT:
case T_SHORT:
regs[i].set1( int_stk_helper( i ) );
break;
case T_DOUBLE:
case T_LONG:
assert( sig_bt[i+1] == T_VOID, "expecting half" );
regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
break;
case T_VOID: regs[i].set_bad(); break;
default:
ShouldNotReachHere();
}
if (regs[i].first()->is_stack()) {
int off = regs[i].first()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off;
}
if (regs[i].second()->is_stack()) {
int off = regs[i].second()->reg2stack();
if (off > max_stack_slots) max_stack_slots = off;
}
}
#endif // _LP64
return round_to(max_stack_slots + 1, 2);
}
// ---------------------------------------------------------------------------
void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
switch (ret_type) {
case T_FLOAT:
__ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
break;
case T_DOUBLE:
__ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
break;
}
}
void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
switch (ret_type) {
case T_FLOAT:
__ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
break;
case T_DOUBLE:
__ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
break;
}
}
// Check and forward and pending exception. Thread is stored in
// L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there
// is no exception handler. We merely pop this frame off and throw the
// exception in the caller's frame.
static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
Label L;
__ br_null(Rex_oop, false, Assembler::pt, L);
__ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
// Since this is a native call, we *know* the proper exception handler
// without calling into the VM: it's the empty function. Just pop this
// frame and then jump to forward_exception_entry; O7 will contain the
// native caller's return PC.
Address exception_entry(G3_scratch, StubRoutines::forward_exception_entry());
__ jump_to(exception_entry);
__ delayed()->restore(); // Pop this frame off.
__ bind(L);
}
// A simple move of integer like type
static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
__ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
// stack to reg
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
__ mov(src.first()->as_Register(), dst.first()->as_Register());
}
}
// On 64 bit we will store integer like items to the stack as
// 64 bits items (sparc abi) even though java would only store
// 32bits for a parameter. On 32bit it will simply be 32 bits
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
__ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
// stack to reg
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
}
} else if (dst.first()->is_stack()) {
// reg to stack
__ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
__ mov(src.first()->as_Register(), dst.first()->as_Register());
}
}
// An oop arg. Must pass a handle not the oop itself
static void object_move(MacroAssembler* masm,
OopMap* map,
int oop_handle_offset,
int framesize_in_slots,
VMRegPair src,
VMRegPair dst,
bool is_receiver,
int* receiver_offset) {
// must pass a handle. First figure out the location we use as a handle
if (src.first()->is_stack()) {
// Oop is already on the stack
Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
__ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
__ ld_ptr(rHandle, 0, L4);
#ifdef _LP64
__ movr( Assembler::rc_z, L4, G0, rHandle );
#else
__ tst( L4 );
__ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
#endif
if (dst.first()->is_stack()) {
__ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
}
int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
if (is_receiver) {
*receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
}
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
} else {
// Oop is in an input register pass we must flush it to the stack
const Register rOop = src.first()->as_Register();
const Register rHandle = L5;
int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
int offset = oop_slot*VMRegImpl::stack_slot_size;
Label skip;
__ st_ptr(rOop, SP, offset + STACK_BIAS);
if (is_receiver) {
*receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
}
map->set_oop(VMRegImpl::stack2reg(oop_slot));
__ add(SP, offset + STACK_BIAS, rHandle);
#ifdef _LP64
__ movr( Assembler::rc_z, rOop, G0, rHandle );
#else
__ tst( rOop );
__ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
#endif
if (dst.first()->is_stack()) {
__ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
__ mov(rHandle, dst.first()->as_Register());
}
}
}
// A float arg may have to do float reg int reg conversion
static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack the easiest of the bunch
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
__ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
// stack to reg
if (dst.first()->is_Register()) {
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
} else {
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
}
}
} else if (dst.first()->is_stack()) {
// reg to stack
if (src.first()->is_Register()) {
__ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
} else {
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
}
} else {
// reg to reg
if (src.first()->is_Register()) {
if (dst.first()->is_Register()) {
// gpr -> gpr
__ mov(src.first()->as_Register(), dst.first()->as_Register());
} else {
// gpr -> fpr
__ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
__ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
}
} else if (dst.first()->is_Register()) {
// fpr -> gpr
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
__ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
} else {
// fpr -> fpr
// In theory these overlap but the ordering is such that this is likely a nop
if ( src.first() != dst.first()) {
__ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
}
}
}
}
static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
VMRegPair src_lo(src.first());
VMRegPair src_hi(src.second());
VMRegPair dst_lo(dst.first());
VMRegPair dst_hi(dst.second());
simple_move32(masm, src_lo, dst_lo);
simple_move32(masm, src_hi, dst_hi);
}
// A long move
static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
// Do the simple ones here else do two int moves
if (src.is_single_phys_reg() ) {
if (dst.is_single_phys_reg()) {
__ mov(src.first()->as_Register(), dst.first()->as_Register());
} else {
// split src into two separate registers
// Remember hi means hi address or lsw on sparc
// Move msw to lsw
if (dst.second()->is_reg()) {
// MSW -> MSW
__ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
// Now LSW -> LSW
// this will only move lo -> lo and ignore hi
VMRegPair split(dst.second());
simple_move32(masm, src, split);
} else {
VMRegPair split(src.first(), L4->as_VMReg());
// MSW -> MSW (lo ie. first word)
__ srax(src.first()->as_Register(), 32, L4);
split_long_move(masm, split, dst);
}
}
} else if (dst.is_single_phys_reg()) {
if (src.is_adjacent_aligned_on_stack(2)) {
__ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
} else {
// dst is a single reg.
// Remember lo is low address not msb for stack slots
// and lo is the "real" register for registers
// src is
VMRegPair split;
if (src.first()->is_reg()) {
// src.lo (msw) is a reg, src.hi is stk/reg
// we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
split.set_pair(dst.first(), src.first());
} else {
// msw is stack move to L5
// lsw is stack move to dst.lo (real reg)
// we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
split.set_pair(dst.first(), L5->as_VMReg());
}
// src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
// msw -> src.lo/L5, lsw -> dst.lo
split_long_move(masm, src, split);
// So dst now has the low order correct position the
// msw half
__ sllx(split.first()->as_Register(), 32, L5);
const Register d = dst.first()->as_Register();
__ or3(L5, d, d);
}
} else {
// For LP64 we can probably do better.
split_long_move(masm, src, dst);
}
}
// A double move
static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
// The painful thing here is that like long_move a VMRegPair might be
// 1: a single physical register
// 2: two physical registers (v8)
// 3: a physical reg [lo] and a stack slot [hi] (v8)
// 4: two stack slots
// Since src is always a java calling convention we know that the src pair
// is always either all registers or all stack (and aligned?)
// in a register [lo] and a stack slot [hi]
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack the easiest of the bunch
// ought to be a way to do this where if alignment is ok we use ldd/std when possible
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
__ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
} else {
// stack to reg
if (dst.second()->is_stack()) {
// stack -> reg, stack -> stack
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
if (dst.first()->is_Register()) {
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
} else {
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
}
// This was missing. (very rare case)
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
} else {
// stack -> reg
// Eventually optimize for alignment QQQ
if (dst.first()->is_Register()) {
__ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
} else {
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
__ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
}
}
}
} else if (dst.first()->is_stack()) {
// reg to stack
if (src.first()->is_Register()) {
// Eventually optimize for alignment QQQ
__ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
if (src.second()->is_stack()) {
__ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
} else {
__ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
}
} else {
// fpr to stack
if (src.second()->is_stack()) {
ShouldNotReachHere();
} else {
// Is the stack aligned?
if (reg2offset(dst.first()) & 0x7) {
// No do as pairs
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
__ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
} else {
__ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
}
}
}
} else {
// reg to reg
if (src.first()->is_Register()) {
if (dst.first()->is_Register()) {
// gpr -> gpr
__ mov(src.first()->as_Register(), dst.first()->as_Register());
__ mov(src.second()->as_Register(), dst.second()->as_Register());
} else {
// gpr -> fpr
// ought to be able to do a single store
__ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
__ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
// ought to be able to do a single load
__ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
__ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
}
} else if (dst.first()->is_Register()) {
// fpr -> gpr
// ought to be able to do a single store
__ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
// ought to be able to do a single load
// REMEMBER first() is low address not LSB
__ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
if (dst.second()->is_Register()) {
__ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
} else {
__ ld(FP, -4 + STACK_BIAS, L4);
__ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
}
} else {
// fpr -> fpr
// In theory these overlap but the ordering is such that this is likely a nop
if ( src.first() != dst.first()) {
__ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
}
}
}
}
// Creates an inner frame if one hasn't already been created, and
// saves a copy of the thread in L7_thread_cache
static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
if (!*already_created) {
__ save_frame(0);
// Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
// Don't use save_thread because it smashes G2 and we merely want to save a
// copy
__ mov(G2_thread, L7_thread_cache);
*already_created = true;
}
}
// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
methodHandle method,
int total_in_args,
int comp_args_on_stack, // in VMRegStackSlots
BasicType *in_sig_bt,
VMRegPair *in_regs,
BasicType ret_type) {
// Native nmethod wrappers never take possesion of the oop arguments.
// So the caller will gc the arguments. The only thing we need an
// oopMap for is if the call is static
//
// An OopMap for lock (and class if static), and one for the VM call itself
OopMapSet *oop_maps = new OopMapSet();
intptr_t start = (intptr_t)__ pc();
// First thing make an ic check to see if we should even be here
{
Label L;
const Register temp_reg = G3_scratch;
Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
__ verify_oop(O0);
__ load_klass(O0, temp_reg);
__ cmp(temp_reg, G5_inline_cache_reg);
__ brx(Assembler::equal, true, Assembler::pt, L);
__ delayed()->nop();
__ jump_to(ic_miss, 0);
__ delayed()->nop();
__ align(CodeEntryAlignment);
__ bind(L);
}
int vep_offset = ((intptr_t)__ pc()) - start;
#ifdef COMPILER1
if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
// Object.hashCode can pull the hashCode from the header word
// instead of doing a full VM transition once it's been computed.
// Since hashCode is usually polymorphic at call sites we can't do
// this optimization at the call site without a lot of work.
Label slowCase;
Register receiver = O0;
Register result = O0;
Register header = G3_scratch;
Register hash = G3_scratch; // overwrite header value with hash value
Register mask = G1; // to get hash field from header
// Read the header and build a mask to get its hash field. Give up if the object is not unlocked.
// We depend on hash_mask being at most 32 bits and avoid the use of
// hash_mask_in_place because it could be larger than 32 bits in a 64-bit
// vm: see markOop.hpp.
__ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
__ sethi(markOopDesc::hash_mask, mask);
__ btst(markOopDesc::unlocked_value, header);
__ br(Assembler::zero, false, Assembler::pn, slowCase);
if (UseBiasedLocking) {
// Check if biased and fall through to runtime if so
__ delayed()->nop();
__ btst(markOopDesc::biased_lock_bit_in_place, header);
__ br(Assembler::notZero, false, Assembler::pn, slowCase);
}
__ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
// Check for a valid (non-zero) hash code and get its value.
#ifdef _LP64
__ srlx(header, markOopDesc::hash_shift, hash);
#else
__ srl(header, markOopDesc::hash_shift, hash);
#endif
__ andcc(hash, mask, hash);
__ br(Assembler::equal, false, Assembler::pn, slowCase);
__ delayed()->nop();
// leaf return.
__ retl();
__ delayed()->mov(hash, result);
__ bind(slowCase);
}
#endif // COMPILER1
// We have received a description of where all the java arg are located
// on entry to the wrapper. We need to convert these args to where
// the jni function will expect them. To figure out where they go
// we convert the java signature to a C signature by inserting
// the hidden arguments as arg[0] and possibly arg[1] (static method)
int total_c_args = total_in_args + 1;
if (method->is_static()) {
total_c_args++;
}
BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
VMRegPair * out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
int argc = 0;
out_sig_bt[argc++] = T_ADDRESS;
if (method->is_static()) {
out_sig_bt[argc++] = T_OBJECT;
}
for (int i = 0; i < total_in_args ; i++ ) {
out_sig_bt[argc++] = in_sig_bt[i];
}
// Now figure out where the args must be stored and how much stack space
// they require (neglecting out_preserve_stack_slots but space for storing
// the 1st six register arguments). It's weird see int_stk_helper.
//
int out_arg_slots;
out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
// Compute framesize for the wrapper. We need to handlize all oops in
// registers. We must create space for them here that is disjoint from
// the windowed save area because we have no control over when we might
// flush the window again and overwrite values that gc has since modified.
// (The live window race)
//
// We always just allocate 6 word for storing down these object. This allow
// us to simply record the base and use the Ireg number to decide which
// slot to use. (Note that the reg number is the inbound number not the
// outbound number).
// We must shuffle args to match the native convention, and include var-args space.
// Calculate the total number of stack slots we will need.
// First count the abi requirement plus all of the outgoing args
int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
// Now the space for the inbound oop handle area
int oop_handle_offset = stack_slots;
stack_slots += 6*VMRegImpl::slots_per_word;
// Now any space we need for handlizing a klass if static method
int oop_temp_slot_offset = 0;
int klass_slot_offset = 0;
int klass_offset = -1;
int lock_slot_offset = 0;
bool is_static = false;
if (method->is_static()) {
klass_slot_offset = stack_slots;
stack_slots += VMRegImpl::slots_per_word;
klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
is_static = true;
}
// Plus a lock if needed
if (method->is_synchronized()) {
lock_slot_offset = stack_slots;
stack_slots += VMRegImpl::slots_per_word;
}
// Now a place to save return value or as a temporary for any gpr -> fpr moves
stack_slots += 2;
// Ok The space we have allocated will look like:
//
//
// FP-> | |
// |---------------------|
// | 2 slots for moves |
// |---------------------|
// | lock box (if sync) |
// |---------------------| <- lock_slot_offset
// | klass (if static) |
// |---------------------| <- klass_slot_offset
// | oopHandle area |
// |---------------------| <- oop_handle_offset
// | outbound memory |
// | based arguments |
// | |
// |---------------------|
// | vararg area |
// |---------------------|
// | |
// SP-> | out_preserved_slots |
//
//
// Now compute actual number of stack words we need rounding to make
// stack properly aligned.
stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
int stack_size = stack_slots * VMRegImpl::stack_slot_size;
// Generate stack overflow check before creating frame
__ generate_stack_overflow_check(stack_size);
// Generate a new frame for the wrapper.
__ save(SP, -stack_size, SP);
int frame_complete = ((intptr_t)__ pc()) - start;
__ verify_thread();
//
// We immediately shuffle the arguments so that any vm call we have to
// make from here on out (sync slow path, jvmti, etc.) we will have
// captured the oops from our caller and have a valid oopMap for
// them.
// -----------------
// The Grand Shuffle
//
// Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
// (derived from JavaThread* which is in L7_thread_cache) and, if static,
// the class mirror instead of a receiver. This pretty much guarantees that
// register layout will not match. We ignore these extra arguments during
// the shuffle. The shuffle is described by the two calling convention
// vectors we have in our possession. We simply walk the java vector to
// get the source locations and the c vector to get the destinations.
// Because we have a new window and the argument registers are completely
// disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
// here.
// This is a trick. We double the stack slots so we can claim
// the oops in the caller's frame. Since we are sure to have
// more args than the caller doubling is enough to make
// sure we can capture all the incoming oop args from the
// caller.
//
OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
int c_arg = total_c_args - 1;
// Record sp-based slot for receiver on stack for non-static methods
int receiver_offset = -1;
// We move the arguments backward because the floating point registers
// destination will always be to a register with a greater or equal register
// number or the stack.
#ifdef ASSERT
bool reg_destroyed[RegisterImpl::number_of_registers];
bool freg_destroyed[FloatRegisterImpl::number_of_registers];
for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
reg_destroyed[r] = false;
}
for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
freg_destroyed[f] = false;
}
#endif /* ASSERT */
for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
#ifdef ASSERT
if (in_regs[i].first()->is_Register()) {
assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
} else if (in_regs[i].first()->is_FloatRegister()) {
assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
}
if (out_regs[c_arg].first()->is_Register()) {
reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
} else if (out_regs[c_arg].first()->is_FloatRegister()) {
freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
}
#endif /* ASSERT */
switch (in_sig_bt[i]) {
case T_ARRAY:
case T_OBJECT:
object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
((i == 0) && (!is_static)),
&receiver_offset);
break;
case T_VOID:
break;
case T_FLOAT:
float_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_DOUBLE:
assert( i + 1 < total_in_args &&
in_sig_bt[i + 1] == T_VOID &&
out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
double_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_LONG :
long_move(masm, in_regs[i], out_regs[c_arg]);
break;
case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
default:
move32_64(masm, in_regs[i], out_regs[c_arg]);
}
}
// Pre-load a static method's oop into O1. Used both by locking code and
// the normal JNI call code.
if (method->is_static()) {
__ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
// Now handlize the static class mirror in O1. It's known not-null.
__ st_ptr(O1, SP, klass_offset + STACK_BIAS);
map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
__ add(SP, klass_offset + STACK_BIAS, O1);
}
const Register L6_handle = L6;
if (method->is_synchronized()) {
__ mov(O1, L6_handle);
}
// We have all of the arguments setup at this point. We MUST NOT touch any Oregs
// except O6/O7. So if we must call out we must push a new frame. We immediately
// push a new frame and flush the windows.
#ifdef _LP64
intptr_t thepc = (intptr_t) __ pc();
{
address here = __ pc();
// Call the next instruction
__ call(here + 8, relocInfo::none);
__ delayed()->nop();
}
#else
intptr_t thepc = __ load_pc_address(O7, 0);
#endif /* _LP64 */
// We use the same pc/oopMap repeatedly when we call out
oop_maps->add_gc_map(thepc - start, map);
// O7 now has the pc loaded that we will use when we finally call to native.
// Save thread in L7; it crosses a bunch of VM calls below
// Don't use save_thread because it smashes G2 and we merely
// want to save a copy
__ mov(G2_thread, L7_thread_cache);
// If we create an inner frame once is plenty
// when we create it we must also save G2_thread
bool inner_frame_created = false;
// dtrace method entry support
{
SkipIfEqual skip_if(
masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
// create inner frame
__ save_frame(0);
__ mov(G2_thread, L7_thread_cache);
__ set_oop_constant(JNIHandles::make_local(method()), O1);
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
G2_thread, O1);
__ restore();
}
// We are in the jni frame unless saved_frame is true in which case
// we are in one frame deeper (the "inner" frame). If we are in the
// "inner" frames the args are in the Iregs and if the jni frame then
// they are in the Oregs.
// If we ever need to go to the VM (for locking, jvmti) then
// we will always be in the "inner" frame.
// Lock a synchronized method
int lock_offset = -1; // Set if locked
if (method->is_synchronized()) {
Register Roop = O1;
const Register L3_box = L3;
create_inner_frame(masm, &inner_frame_created);
__ ld_ptr(I1, 0, O1);
Label done;
lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
__ add(FP, lock_offset+STACK_BIAS, L3_box);
#ifdef ASSERT
if (UseBiasedLocking) {
// making the box point to itself will make it clear it went unused
// but also be obviously invalid
__ st_ptr(L3_box, L3_box, 0);
}
#endif // ASSERT
//
// Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
//
__ compiler_lock_object(Roop, L1, L3_box, L2);
__ br(Assembler::equal, false, Assembler::pt, done);
__ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
// None of the above fast optimizations worked so we have to get into the
// slow case of monitor enter. Inline a special case of call_VM that
// disallows any pending_exception.
__ mov(Roop, O0); // Need oop in O0
__ mov(L3_box, O1);
// Record last_Java_sp, in case the VM code releases the JVM lock.
__ set_last_Java_frame(FP, I7);
// do the call
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
__ delayed()->mov(L7_thread_cache, O2);
__ restore_thread(L7_thread_cache); // restore G2_thread
__ reset_last_Java_frame();
#ifdef ASSERT
{ Label L;
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
__ br_null(O0, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("no pending exception allowed on exit from IR::monitorenter");
__ bind(L);
}
#endif
__ bind(done);
}
// Finally just about ready to make the JNI call
__ flush_windows();
if (inner_frame_created) {
__ restore();
} else {
// Store only what we need from this frame
// QQQ I think that non-v9 (like we care) we don't need these saves
// either as the flush traps and the current window goes too.
__ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
__ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
}
// get JNIEnv* which is first argument to native
__ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
// Use that pc we placed in O7 a while back as the current frame anchor
__ set_last_Java_frame(SP, O7);
// Transition from _thread_in_Java to _thread_in_native.
__ set(_thread_in_native, G3_scratch);
__ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
// We flushed the windows ages ago now mark them as flushed
// mark windows as flushed
__ set(JavaFrameAnchor::flushed, G3_scratch);
Address flags(G2_thread,
0,
in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
#ifdef _LP64
Address dest(O7, method->native_function());
__ relocate(relocInfo::runtime_call_type);
__ jumpl_to(dest, O7);
#else
__ call(method->native_function(), relocInfo::runtime_call_type);
#endif
__ delayed()->st(G3_scratch, flags);
__ restore_thread(L7_thread_cache); // restore G2_thread
// Unpack native results. For int-types, we do any needed sign-extension
// and move things into I0. The return value there will survive any VM
// calls for blocking or unlocking. An FP or OOP result (handle) is done
// specially in the slow-path code.
switch (ret_type) {
case T_VOID: break; // Nothing to do!
case T_FLOAT: break; // Got it where we want it (unless slow-path)
case T_DOUBLE: break; // Got it where we want it (unless slow-path)
// In 64 bits build result is in O0, in O0, O1 in 32bit build
case T_LONG:
#ifndef _LP64
__ mov(O1, I1);
#endif
// Fall thru
case T_OBJECT: // Really a handle
case T_ARRAY:
case T_INT:
__ mov(O0, I0);
break;
case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break;
case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value!
case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break;
break; // Cannot de-handlize until after reclaiming jvm_lock
default:
ShouldNotReachHere();
}
// must we block?
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after blocking.
{ Label no_block;
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
// Switch thread to "native transition" state before reading the synchronization state.
// This additional state is necessary because reading and testing the synchronization
// state is not atomic w.r.t. GC, as this scenario demonstrates:
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
// VM thread changes sync state to synchronizing and suspends threads for GC.
// Thread A is resumed to finish this native method, but doesn't block here since it
// didn't see any synchronization is progress, and escapes.
__ set(_thread_in_native_trans, G3_scratch);
__ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
if(os::is_MP()) {
if (UseMembar) {
// Force this write out before the read below
__ membar(Assembler::StoreLoad);
} else {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(G2_thread, G1_scratch, G3_scratch);
}
}
__ load_contents(sync_state, G3_scratch);
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
Label L;
Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
__ br(Assembler::notEqual, false, Assembler::pn, L);
__ delayed()->
ld(suspend_state, G3_scratch);
__ cmp(G3_scratch, 0);
__ br(Assembler::equal, false, Assembler::pt, no_block);
__ delayed()->nop();
__ bind(L);
// Block. Save any potential method result value before the operation and
// use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
// lets us share the oopMap we used when we went native rather the create
// a distinct one for this pc
//
save_native_result(masm, ret_type, stack_slots);
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
G2_thread);
// Restore any method result value
restore_native_result(masm, ret_type, stack_slots);
__ bind(no_block);
}
// thread state is thread_in_native_trans. Any safepoint blocking has already
// happened so we can now change state to _thread_in_Java.
__ set(_thread_in_Java, G3_scratch);
__ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
Label no_reguard;
__ ld(G2_thread, in_bytes(JavaThread::stack_guard_state_offset()), G3_scratch);
__ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
__ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
__ delayed()->nop();
save_native_result(masm, ret_type, stack_slots);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
__ delayed()->nop();
__ restore_thread(L7_thread_cache); // restore G2_thread
restore_native_result(masm, ret_type, stack_slots);
__ bind(no_reguard);
// Handle possible exception (will unlock if necessary)
// native result if any is live in freg or I0 (and I1 if long and 32bit vm)
// Unlock
if (method->is_synchronized()) {
Label done;
Register I2_ex_oop = I2;
const Register L3_box = L3;
// Get locked oop from the handle we passed to jni
__ ld_ptr(L6_handle, 0, L4);
__ add(SP, lock_offset+STACK_BIAS, L3_box);
// Must save pending exception around the slow-path VM call. Since it's a
// leaf call, the pending exception (if any) can be kept in a register.
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
// Now unlock
// (Roop, Rmark, Rbox, Rscratch)
__ compiler_unlock_object(L4, L1, L3_box, L2);
__ br(Assembler::equal, false, Assembler::pt, done);
__ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
// save and restore any potential method result value around the unlocking
// operation. Will save in I0 (or stack for FP returns).
save_native_result(masm, ret_type, stack_slots);
// Must clear pending-exception before re-entering the VM. Since this is
// a leaf call, pending-exception-oop can be safely kept in a register.
__ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
// slow case of monitor enter. Inline a special case of call_VM that
// disallows any pending_exception.
__ mov(L3_box, O1);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
__ delayed()->mov(L4, O0); // Need oop in O0
__ restore_thread(L7_thread_cache); // restore G2_thread
#ifdef ASSERT
{ Label L;
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
__ br_null(O0, false, Assembler::pt, L);
__ delayed()->nop();
__ stop("no pending exception allowed on exit from IR::monitorexit");
__ bind(L);
}
#endif
restore_native_result(masm, ret_type, stack_slots);
// check_forward_pending_exception jump to forward_exception if any pending
// exception is set. The forward_exception routine expects to see the
// exception in pending_exception and not in a register. Kind of clumsy,
// since all folks who branch to forward_exception must have tested
// pending_exception first and hence have it in a register already.
__ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
__ bind(done);
}
// Tell dtrace about this method exit
{
SkipIfEqual skip_if(
masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
save_native_result(masm, ret_type, stack_slots);
__ set_oop_constant(JNIHandles::make_local(method()), O1);
__ call_VM_leaf(L7_thread_cache,
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
G2_thread, O1);
restore_native_result(masm, ret_type, stack_slots);
}
// Clear "last Java frame" SP and PC.
__ verify_thread(); // G2_thread must be correct
__ reset_last_Java_frame();
// Unpack oop result
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
Label L;
__ addcc(G0, I0, G0);
__ brx(Assembler::notZero, true, Assembler::pt, L);
__ delayed()->ld_ptr(I0, 0, I0);
__ mov(G0, I0);
__ bind(L);
__ verify_oop(I0);
}
// reset handle block
__ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
__ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
check_forward_pending_exception(masm, G3_scratch);
// Return
#ifndef _LP64
if (ret_type == T_LONG) {
// Must leave proper result in O0,O1 and G1 (c2/tiered only)
__ sllx(I0, 32, G1); // Shift bits into high G1
__ srl (I1, 0, I1); // Zero extend O1 (harmless?)
__ or3 (I1, G1, G1); // OR 64 bits into G1
}
#endif
__ ret();
__ delayed()->restore();
__ flush();
nmethod *nm = nmethod::new_native_nmethod(method,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
(is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
in_ByteSize(lock_offset),
oop_maps);
return nm;
}
#ifdef HAVE_DTRACE_H
// ---------------------------------------------------------------------------
// Generate a dtrace nmethod for a given signature. The method takes arguments
// in the Java compiled code convention, marshals them to the native
// abi and then leaves nops at the position you would expect to call a native
// function. When the probe is enabled the nops are replaced with a trap
// instruction that dtrace inserts and the trace will cause a notification
// to dtrace.
//
// The probes are only able to take primitive types and java/lang/String as
// arguments. No other java types are allowed. Strings are converted to utf8
// strings so that from dtrace point of view java strings are converted to C
// strings. There is an arbitrary fixed limit on the total space that a method
// can use for converting the strings. (256 chars per string in the signature).
// So any java string larger then this is truncated.
static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
static bool offsets_initialized = false;
static VMRegPair reg64_to_VMRegPair(Register r) {
VMRegPair ret;
if (wordSize == 8) {
ret.set2(r->as_VMReg());
} else {
ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
}
return ret;
}
nmethod *SharedRuntime::generate_dtrace_nmethod(
MacroAssembler *masm, methodHandle method) {
// generate_dtrace_nmethod is guarded by a mutex so we are sure to
// be single threaded in this method.
assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
// Fill in the signature array, for the calling-convention call.
int total_args_passed = method->size_of_parameters();
BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
// The signature we are going to use for the trap that dtrace will see
// java/lang/String is converted. We drop "this" and any other object
// is converted to NULL. (A one-slot java/lang/Long object reference
// is converted to a two-slot long, which is why we double the allocation).
BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
int i=0;
int total_strings = 0;
int first_arg_to_pass = 0;
int total_c_args = 0;
// Skip the receiver as dtrace doesn't want to see it
if( !method->is_static() ) {
in_sig_bt[i++] = T_OBJECT;
first_arg_to_pass = 1;
}
SignatureStream ss(method->signature());
for ( ; !ss.at_return_type(); ss.next()) {
BasicType bt = ss.type();
in_sig_bt[i++] = bt; // Collect remaining bits of signature
out_sig_bt[total_c_args++] = bt;
if( bt == T_OBJECT) {
symbolOop s = ss.as_symbol_or_null();
if (s == vmSymbols::java_lang_String()) {
total_strings++;
out_sig_bt[total_c_args-1] = T_ADDRESS;
} else if (s == vmSymbols::java_lang_Boolean() ||
s == vmSymbols::java_lang_Byte()) {
out_sig_bt[total_c_args-1] = T_BYTE;
} else if (s == vmSymbols::java_lang_Character() ||
s == vmSymbols::java_lang_Short()) {
out_sig_bt[total_c_args-1] = T_SHORT;
} else if (s == vmSymbols::java_lang_Integer() ||
s == vmSymbols::java_lang_Float()) {
out_sig_bt[total_c_args-1] = T_INT;
} else if (s == vmSymbols::java_lang_Long() ||
s == vmSymbols::java_lang_Double()) {
out_sig_bt[total_c_args-1] = T_LONG;
out_sig_bt[total_c_args++] = T_VOID;
}
} else if ( bt == T_LONG || bt == T_DOUBLE ) {
in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
// We convert double to long
out_sig_bt[total_c_args-1] = T_LONG;
out_sig_bt[total_c_args++] = T_VOID;
} else if ( bt == T_FLOAT) {
// We convert float to int
out_sig_bt[total_c_args-1] = T_INT;
}
}
assert(i==total_args_passed, "validly parsed signature");
// Now get the compiled-Java layout as input arguments
int comp_args_on_stack;
comp_args_on_stack = SharedRuntime::java_calling_convention(
in_sig_bt, in_regs, total_args_passed, false);
// We have received a description of where all the java arg are located
// on entry to the wrapper. We need to convert these args to where
// the a native (non-jni) function would expect them. To figure out
// where they go we convert the java signature to a C signature and remove
// T_VOID for any long/double we might have received.
// Now figure out where the args must be stored and how much stack space
// they require (neglecting out_preserve_stack_slots but space for storing
// the 1st six register arguments). It's weird see int_stk_helper.
//
int out_arg_slots;
out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
// Calculate the total number of stack slots we will need.
// First count the abi requirement plus all of the outgoing args
int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
// Plus a temp for possible converion of float/double/long register args
int conversion_temp = stack_slots;
stack_slots += 2;
// Now space for the string(s) we must convert
int string_locs = stack_slots;
stack_slots += total_strings *
(max_dtrace_string_size / VMRegImpl::stack_slot_size);
// Ok The space we have allocated will look like:
//
//
// FP-> | |
// |---------------------|
// | string[n] |
// |---------------------| <- string_locs[n]
// | string[n-1] |
// |---------------------| <- string_locs[n-1]
// | ... |
// | ... |
// |---------------------| <- string_locs[1]
// | string[0] |
// |---------------------| <- string_locs[0]
// | temp |
// |---------------------| <- conversion_temp
// | outbound memory |
// | based arguments |
// | |
// |---------------------|
// | |
// SP-> | out_preserved_slots |
//
//
// Now compute actual number of stack words we need rounding to make
// stack properly aligned.
stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
int stack_size = stack_slots * VMRegImpl::stack_slot_size;
intptr_t start = (intptr_t)__ pc();
// First thing make an ic check to see if we should even be here
{
Label L;
const Register temp_reg = G3_scratch;
Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
__ verify_oop(O0);
__ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
__ cmp(temp_reg, G5_inline_cache_reg);
__ brx(Assembler::equal, true, Assembler::pt, L);
__ delayed()->nop();
__ jump_to(ic_miss, 0);
__ delayed()->nop();
__ align(CodeEntryAlignment);
__ bind(L);
}
int vep_offset = ((intptr_t)__ pc()) - start;
// The instruction at the verified entry point must be 5 bytes or longer
// because it can be patched on the fly by make_non_entrant. The stack bang
// instruction fits that requirement.
// Generate stack overflow check before creating frame
__ generate_stack_overflow_check(stack_size);
assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
"valid size for make_non_entrant");
// Generate a new frame for the wrapper.
__ save(SP, -stack_size, SP);
// Frame is now completed as far a size and linkage.
int frame_complete = ((intptr_t)__ pc()) - start;
#ifdef ASSERT
bool reg_destroyed[RegisterImpl::number_of_registers];
bool freg_destroyed[FloatRegisterImpl::number_of_registers];
for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
reg_destroyed[r] = false;
}
for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
freg_destroyed[f] = false;
}
#endif /* ASSERT */
VMRegPair zero;
const Register g0 = G0; // without this we get a compiler warning (why??)
zero.set2(g0->as_VMReg());
int c_arg, j_arg;
Register conversion_off = noreg;
for (j_arg = first_arg_to_pass, c_arg = 0 ;
j_arg < total_args_passed ; j_arg++, c_arg++ ) {
VMRegPair src = in_regs[j_arg];
VMRegPair dst = out_regs[c_arg];
#ifdef ASSERT
if (src.first()->is_Register()) {
assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
} else if (src.first()->is_FloatRegister()) {
assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
FloatRegisterImpl::S)], "ack!");
}
if (dst.first()->is_Register()) {
reg_destroyed[dst.first()->as_Register()->encoding()] = true;
} else if (dst.first()->is_FloatRegister()) {
freg_destroyed[dst.first()->as_FloatRegister()->encoding(
FloatRegisterImpl::S)] = true;
}
#endif /* ASSERT */
switch (in_sig_bt[j_arg]) {
case T_ARRAY:
case T_OBJECT:
{
if (out_sig_bt[c_arg] == T_BYTE || out_sig_bt[c_arg] == T_SHORT ||
out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
// need to unbox a one-slot value
Register in_reg = L0;
Register tmp = L2;
if ( src.first()->is_reg() ) {
in_reg = src.first()->as_Register();
} else {
assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
"must be");
__ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
}
// If the final destination is an acceptable register
if ( dst.first()->is_reg() ) {
if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
tmp = dst.first()->as_Register();
}
}
Label skipUnbox;
if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
__ mov(G0, tmp->successor());
}
__ br_null(in_reg, true, Assembler::pn, skipUnbox);
__ delayed()->mov(G0, tmp);
BasicType bt = out_sig_bt[c_arg];
int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
switch (bt) {
case T_BYTE:
__ ldub(in_reg, box_offset, tmp); break;
case T_SHORT:
__ lduh(in_reg, box_offset, tmp); break;
case T_INT:
__ ld(in_reg, box_offset, tmp); break;
case T_LONG:
__ ld_long(in_reg, box_offset, tmp); break;
default: ShouldNotReachHere();
}
__ bind(skipUnbox);
// If tmp wasn't final destination copy to final destination
if (tmp == L2) {
VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
if (out_sig_bt[c_arg] == T_LONG) {
long_move(masm, tmp_as_VM, dst);
} else {
move32_64(masm, tmp_as_VM, out_regs[c_arg]);
}
}
if (out_sig_bt[c_arg] == T_LONG) {
assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
++c_arg; // move over the T_VOID to keep the loop indices in sync
}
} else if (out_sig_bt[c_arg] == T_ADDRESS) {
Register s =
src.first()->is_reg() ? src.first()->as_Register() : L2;
Register d =
dst.first()->is_reg() ? dst.first()->as_Register() : L2;
// We store the oop now so that the conversion pass can reach
// while in the inner frame. This will be the only store if
// the oop is NULL.
if (s != L2) {
// src is register
if (d != L2) {
// dst is register
__ mov(s, d);
} else {
assert(Assembler::is_simm13(reg2offset(dst.first()) +
STACK_BIAS), "must be");
__ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
}
} else {
// src not a register
assert(Assembler::is_simm13(reg2offset(src.first()) +
STACK_BIAS), "must be");
__ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
if (d == L2) {
assert(Assembler::is_simm13(reg2offset(dst.first()) +
STACK_BIAS), "must be");
__ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
}
}
} else if (out_sig_bt[c_arg] != T_VOID) {
// Convert the arg to NULL
if (dst.first()->is_reg()) {
__ mov(G0, dst.first()->as_Register());
} else {
assert(Assembler::is_simm13(reg2offset(dst.first()) +
STACK_BIAS), "must be");
__ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
}
}
}
break;
case T_VOID:
break;
case T_FLOAT:
if (src.first()->is_stack()) {
// Stack to stack/reg is simple
move32_64(masm, src, dst);
} else {
if (dst.first()->is_reg()) {
// freg -> reg
int off =
STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
Register d = dst.first()->as_Register();
if (Assembler::is_simm13(off)) {
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
SP, off);
__ ld(SP, off, d);
} else {
if (conversion_off == noreg) {
__ set(off, L6);
conversion_off = L6;
}
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
SP, conversion_off);
__ ld(SP, conversion_off , d);
}
} else {
// freg -> mem
int off = STACK_BIAS + reg2offset(dst.first());
if (Assembler::is_simm13(off)) {
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
SP, off);
} else {
if (conversion_off == noreg) {
__ set(off, L6);
conversion_off = L6;
}
__ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
SP, conversion_off);
}
}
}
break;
case T_DOUBLE:
assert( j_arg + 1 < total_args_passed &&
in_sig_bt[j_arg + 1] == T_VOID &&
out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
if (src.first()->is_stack()) {
// Stack to stack/reg is simple
long_move(masm, src, dst);
} else {
Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
// Destination could be an odd reg on 32bit in which case
// we can't load direct to the destination.
if (!d->is_even() && wordSize == 4) {
d = L2;
}
int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
if (Assembler::is_simm13(off)) {
__ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
SP, off);
__ ld_long(SP, off, d);
} else {
if (conversion_off == noreg) {
__ set(off, L6);
conversion_off = L6;
}
__ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
SP, conversion_off);
__ ld_long(SP, conversion_off, d);
}
if (d == L2) {
long_move(masm, reg64_to_VMRegPair(L2), dst);
}
}
break;
case T_LONG :
// 32bit can't do a split move of something like g1 -> O0, O1
// so use a memory temp
if (src.is_single_phys_reg() && wordSize == 4) {
Register tmp = L2;
if (dst.first()->is_reg() &&
(wordSize == 8 || dst.first()->as_Register()->is_even())) {
tmp = dst.first()->as_Register();
}
int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
if (Assembler::is_simm13(off)) {
__ stx(src.first()->as_Register(), SP, off);
__ ld_long(SP, off, tmp);
} else {
if (conversion_off == noreg) {
__ set(off, L6);
conversion_off = L6;
}
__ stx(src.first()->as_Register(), SP, conversion_off);
__ ld_long(SP, conversion_off, tmp);
}
if (tmp == L2) {
long_move(masm, reg64_to_VMRegPair(L2), dst);
}
} else {
long_move(masm, src, dst);
}
break;
case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
default:
move32_64(masm, src, dst);
}
}
// If we have any strings we must store any register based arg to the stack
// This includes any still live xmm registers too.
if (total_strings > 0 ) {
// protect all the arg registers
__ save_frame(0);
__ mov(G2_thread, L7_thread_cache);
const Register L2_string_off = L2;
// Get first string offset
__ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
if (out_sig_bt[c_arg] == T_ADDRESS) {
VMRegPair dst = out_regs[c_arg];
const Register d = dst.first()->is_reg() ?
dst.first()->as_Register()->after_save() : noreg;
// It's a string the oop and it was already copied to the out arg
// position
if (d != noreg) {
__ mov(d, O0);
} else {
assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
"must be");
__ ld_ptr(FP, reg2offset(dst.first()) + STACK_BIAS, O0);
}
Label skip;
__ br_null(O0, false, Assembler::pn, skip);
__ delayed()->add(FP, L2_string_off, O1);
if (d != noreg) {
__ mov(O1, d);
} else {
assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
"must be");
__ st_ptr(O1, FP, reg2offset(dst.first()) + STACK_BIAS);
}
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
relocInfo::runtime_call_type);
__ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
__ bind(skip);
}
}
__ mov(L7_thread_cache, G2_thread);
__ restore();
}
// Ok now we are done. Need to place the nop that dtrace wants in order to
// patch in the trap
int patch_offset = ((intptr_t)__ pc()) - start;
__ nop();
// Return
__ ret();
__ delayed()->restore();
__ flush();
nmethod *nm = nmethod::new_dtrace_nmethod(
method, masm->code(), vep_offset, patch_offset, frame_complete,
stack_slots / VMRegImpl::slots_per_word);
return nm;
}
#endif // HAVE_DTRACE_H
// this function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
assert(callee_locals >= callee_parameters,
"test and remove; got more parms than locals");
if (callee_locals < callee_parameters)
return 0; // No adjustment for negative locals
int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
return round_to(diff, WordsPerLong);
}
// "Top of Stack" slots that may be unused by the calling convention but must
// otherwise be preserved.
// On Intel these are not necessary and the value can be zero.
// On Sparc this describes the words reserved for storing a register window
// when an interrupt occurs.
uint SharedRuntime::out_preserve_stack_slots() {
return frame::register_save_words * VMRegImpl::slots_per_word;
}
static void gen_new_frame(MacroAssembler* masm, bool deopt) {
//
// Common out the new frame generation for deopt and uncommon trap
//
Register G3pcs = G3_scratch; // Array of new pcs (input)
Register Oreturn0 = O0;
Register Oreturn1 = O1;
Register O2UnrollBlock = O2;
Register O3array = O3; // Array of frame sizes (input)
Register O4array_size = O4; // number of frames (input)
Register O7frame_size = O7; // number of frames (input)
__ ld_ptr(O3array, 0, O7frame_size);
__ sub(G0, O7frame_size, O7frame_size);
__ save(SP, O7frame_size, SP);
__ ld_ptr(G3pcs, 0, I7); // load frame's new pc
#ifdef ASSERT
// make sure that the frames are aligned properly
#ifndef _LP64
__ btst(wordSize*2-1, SP);
__ breakpoint_trap(Assembler::notZero);
#endif
#endif
// Deopt needs to pass some extra live values from frame to frame
if (deopt) {
__ mov(Oreturn0->after_save(), Oreturn0);
__ mov(Oreturn1->after_save(), Oreturn1);
}
__ mov(O4array_size->after_save(), O4array_size);
__ sub(O4array_size, 1, O4array_size);
__ mov(O3array->after_save(), O3array);
__ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
__ add(G3pcs, wordSize, G3pcs); // point to next pc value
#ifdef ASSERT
// trash registers to show a clear pattern in backtraces
__ set(0xDEAD0000, I0);
__ add(I0, 2, I1);
__ add(I0, 4, I2);
__ add(I0, 6, I3);
__ add(I0, 8, I4);
// Don't touch I5 could have valuable savedSP
__ set(0xDEADBEEF, L0);
__ mov(L0, L1);
__ mov(L0, L2);
__ mov(L0, L3);
__ mov(L0, L4);
__ mov(L0, L5);
// trash the return value as there is nothing to return yet
__ set(0xDEAD0001, O7);
#endif
__ mov(SP, O5_savedSP);
}
static void make_new_frames(MacroAssembler* masm, bool deopt) {
//
// loop through the UnrollBlock info and create new frames
//
Register G3pcs = G3_scratch;
Register Oreturn0 = O0;
Register Oreturn1 = O1;
Register O2UnrollBlock = O2;
Register O3array = O3;
Register O4array_size = O4;
Label loop;
// Before we make new frames, check to see if stack is available.
// Do this after the caller's return address is on top of stack
if (UseStackBanging) {
// Get total frame size for interpreted frames
__ ld(Address(O2UnrollBlock, 0,
Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()), O4);
__ bang_stack_size(O4, O3, G3_scratch);
}
__ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()), O4array_size);
__ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()), G3pcs);
__ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()), O3array);
// Adjust old interpreter frame to make space for new frame's extra java locals
//
// We capture the original sp for the transition frame only because it is needed in
// order to properly calculate interpreter_sp_adjustment. Even though in real life
// every interpreter frame captures a savedSP it is only needed at the transition
// (fortunately). If we had to have it correct everywhere then we would need to
// be told the sp_adjustment for each frame we create. If the frame size array
// were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
// for each frame we create and keep up the illusion every where.
//
__ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()), O7);
__ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment
__ sub(SP, O7, SP);
#ifdef ASSERT
// make sure that there is at least one entry in the array
__ tst(O4array_size);
__ breakpoint_trap(Assembler::zero);
#endif
// Now push the new interpreter frames
__ bind(loop);
// allocate a new frame, filling the registers
gen_new_frame(masm, deopt); // allocate an interpreter frame
__ tst(O4array_size);
__ br(Assembler::notZero, false, Assembler::pn, loop);
__ delayed()->add(O3array, wordSize, O3array);
__ ld_ptr(G3pcs, 0, O7); // load final frame new pc
}
//------------------------------generate_deopt_blob----------------------------
// Ought to generate an ideal graph & compile, but here's some SPARC ASM
// instead.
void SharedRuntime::generate_deopt_blob() {
// allocate space for the code
ResourceMark rm;
// setup code generation tools
int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
#ifdef _LP64
CodeBuffer buffer("deopt_blob", 2100+pad, 512);
#else
// Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
// Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
CodeBuffer buffer("deopt_blob", 1600+pad, 512);
#endif /* _LP64 */
MacroAssembler* masm = new MacroAssembler(&buffer);
FloatRegister Freturn0 = F0;
Register Greturn1 = G1;
Register Oreturn0 = O0;
Register Oreturn1 = O1;
Register O2UnrollBlock = O2;
Register O3tmp = O3;
Register I5exception_tmp = I5;
Register G4exception_tmp = G4_scratch;
int frame_size_words;
Address saved_Freturn0_addr(FP, 0, -sizeof(double) + STACK_BIAS);
#if !defined(_LP64) && defined(COMPILER2)
Address saved_Greturn1_addr(FP, 0, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
#endif
Label cont;
OopMapSet *oop_maps = new OopMapSet();
//
// This is the entry point for code which is returning to a de-optimized
// frame.
// The steps taken by this frame are as follows:
// - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
// and all potentially live registers (at a pollpoint many registers can be live).
//
// - call the C routine: Deoptimization::fetch_unroll_info (this function
// returns information about the number and size of interpreter frames
// which are equivalent to the frame which is being deoptimized)
// - deallocate the unpack frame, restoring only results values. Other
// volatile registers will now be captured in the vframeArray as needed.
// - deallocate the deoptimization frame
// - in a loop using the information returned in the previous step
// push new interpreter frames (take care to propagate the return
// values through each new frame pushed)
// - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
// - call the C routine: Deoptimization::unpack_frames (this function
// lays out values on the interpreter frame which was just created)
// - deallocate the dummy unpack_frame
// - ensure that all the return values are correctly set and then do
// a return to the interpreter entry point
//
// Refer to the following methods for more information:
// - Deoptimization::fetch_unroll_info
// - Deoptimization::unpack_frames
OopMap* map = NULL;
int start = __ offset();
// restore G2, the trampoline destroyed it
__ get_thread();
// On entry we have been called by the deoptimized nmethod with a call that
// replaced the original call (or safepoint polling location) so the deoptimizing
// pc is now in O7. Return values are still in the expected places
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
__ ba(false, cont);
__ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp);
int exception_offset = __ offset() - start;
// restore G2, the trampoline destroyed it
__ get_thread();
// On entry we have been jumped to by the exception handler (or exception_blob
// for server). O0 contains the exception oop and O7 contains the original
// exception pc. So if we push a frame here it will look to the
// stack walking code (fetch_unroll_info) just like a normal call so
// state will be extracted normally.
// save exception oop in JavaThread and fall through into the
// exception_in_tls case since they are handled in same way except
// for where the pending exception is kept.
__ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
//
// Vanilla deoptimization with an exception pending in exception_oop
//
int exception_in_tls_offset = __ offset() - start;
// No need to update oop_map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
// Restore G2_thread
__ get_thread();
#ifdef ASSERT
{
// verify that there is really an exception oop in exception_oop
Label has_exception;
__ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
__ br_notnull(Oexception, false, Assembler::pt, has_exception);
__ delayed()-> nop();
__ stop("no exception in thread");
__ bind(has_exception);
// verify that there is no pending exception
Label no_pending_exception;
Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
__ ld_ptr(exception_addr, Oexception);
__ br_null(Oexception, false, Assembler::pt, no_pending_exception);
__ delayed()->nop();
__ stop("must not have pending exception here");
__ bind(no_pending_exception);
}
#endif
__ ba(false, cont);
__ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);;
//
// Reexecute entry, similar to c2 uncommon trap
//
int reexecute_offset = __ offset() - start;
// No need to update oop_map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
__ mov(Deoptimization::Unpack_reexecute, I5exception_tmp);
__ bind(cont);
__ set_last_Java_frame(SP, noreg);
// do the call by hand so we can get the oopmap
__ mov(G2_thread, L7_thread_cache);
__ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
__ delayed()->mov(G2_thread, O0);
// Set an oopmap for the call site this describes all our saved volatile registers
oop_maps->add_gc_map( __ offset()-start, map);
__ mov(L7_thread_cache, G2_thread);
__ reset_last_Java_frame();
// NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
// so this move will survive
__ mov(I5exception_tmp, G4exception_tmp);
__ mov(O0, O2UnrollBlock->after_save());
RegisterSaver::restore_result_registers(masm);
Label noException;
__ cmp(G4exception_tmp, Deoptimization::Unpack_exception); // Was exception pending?
__ br(Assembler::notEqual, false, Assembler::pt, noException);
__ delayed()->nop();
// Move the pending exception from exception_oop to Oexception so
// the pending exception will be picked up the interpreter.
__ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
__ bind(noException);
// deallocate the deoptimization frame taking care to preserve the return values
__ mov(Oreturn0, Oreturn0->after_save());
__ mov(Oreturn1, Oreturn1->after_save());
__ mov(O2UnrollBlock, O2UnrollBlock->after_save());
__ restore();
// Allocate new interpreter frame(s) and possible c2i adapter frame
make_new_frames(masm, true);
// push a dummy "unpack_frame" taking care of float return values and
// call Deoptimization::unpack_frames to have the unpacker layout
// information in the interpreter frames just created and then return
// to the interpreter entry point
__ save(SP, -frame_size_words*wordSize, SP);
__ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
#if !defined(_LP64)
#if defined(COMPILER2)
if (!TieredCompilation) {
// 32-bit 1-register longs return longs in G1
__ stx(Greturn1, saved_Greturn1_addr);
}
#endif
__ set_last_Java_frame(SP, noreg);
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp);
#else
// LP64 uses g4 in set_last_Java_frame
__ mov(G4exception_tmp, O1);
__ set_last_Java_frame(SP, G0);
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
#endif
__ reset_last_Java_frame();
__ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
// In tiered we never use C2 to compile methods returning longs so
// the result is where we expect it already.
#if !defined(_LP64) && defined(COMPILER2)
// In 32 bit, C2 returns longs in G1 so restore the saved G1 into
// I0/I1 if the return value is long. In the tiered world there is
// a mismatch between how C1 and C2 return longs compiles and so
// currently compilation of methods which return longs is disabled
// for C2 and so is this code. Eventually C1 and C2 will do the
// same thing for longs in the tiered world.
if (!TieredCompilation) {
Label not_long;
__ cmp(O0,T_LONG);
__ br(Assembler::notEqual, false, Assembler::pt, not_long);
__ delayed()->nop();
__ ldd(saved_Greturn1_addr,I0);
__ bind(not_long);
}
#endif
__ ret();
__ delayed()->restore();
masm->flush();
_deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
}
#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
// Ought to generate an ideal graph & compile, but here's some SPARC ASM
// instead.
void SharedRuntime::generate_uncommon_trap_blob() {
// allocate space for the code
ResourceMark rm;
// setup code generation tools
int pad = VerifyThread ? 512 : 0;
#ifdef _LP64
CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
#else
// Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
// Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
#endif
MacroAssembler* masm = new MacroAssembler(&buffer);
Register O2UnrollBlock = O2;
Register O3tmp = O3;
Register O2klass_index = O2;
//
// This is the entry point for all traps the compiler takes when it thinks
// it cannot handle further execution of compilation code. The frame is
// deoptimized in these cases and converted into interpreter frames for
// execution
// The steps taken by this frame are as follows:
// - push a fake "unpack_frame"
// - call the C routine Deoptimization::uncommon_trap (this function
// packs the current compiled frame into vframe arrays and returns
// information about the number and size of interpreter frames which
// are equivalent to the frame which is being deoptimized)
// - deallocate the "unpack_frame"
// - deallocate the deoptimization frame
// - in a loop using the information returned in the previous step
// push interpreter frames;
// - create a dummy "unpack_frame"
// - call the C routine: Deoptimization::unpack_frames (this function
// lays out values on the interpreter frame which was just created)
// - deallocate the dummy unpack_frame
// - return to the interpreter entry point
//
// Refer to the following methods for more information:
// - Deoptimization::uncommon_trap
// - Deoptimization::unpack_frame
// the unloaded class index is in O0 (first parameter to this blob)
// push a dummy "unpack_frame"
// and call Deoptimization::uncommon_trap to pack the compiled frame into
// vframe array and return the UnrollBlock information
__ save_frame(0);
__ set_last_Java_frame(SP, noreg);
__ mov(I0, O2klass_index);
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
__ reset_last_Java_frame();
__ mov(O0, O2UnrollBlock->after_save());
__ restore();
// deallocate the deoptimized frame taking care to preserve the return values
__ mov(O2UnrollBlock, O2UnrollBlock->after_save());
__ restore();
// Allocate new interpreter frame(s) and possible c2i adapter frame
make_new_frames(masm, false);
// push a dummy "unpack_frame" taking care of float return values and
// call Deoptimization::unpack_frames to have the unpacker layout
// information in the interpreter frames just created and then return
// to the interpreter entry point
__ save_frame(0);
__ set_last_Java_frame(SP, noreg);
__ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
__ reset_last_Java_frame();
__ ret();
__ delayed()->restore();
masm->flush();
_uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
}
#endif // COMPILER2
//------------------------------generate_handler_blob-------------------
//
// Generate a special Compile2Runtime blob that saves all registers, and sets
// up an OopMap.
//
// This blob is jumped to (via a breakpoint and the signal handler) from a
// safepoint in compiled code. On entry to this blob, O7 contains the
// address in the original nmethod at which we should resume normal execution.
// Thus, this blob looks like a subroutine which must preserve lots of
// registers and return normally. Note that O7 is never register-allocated,
// so it is guaranteed to be free here.
//
// The hardest part of what this blob must do is to save the 64-bit %o
// registers in the 32-bit build. A simple 'save' turn the %o's to %i's and
// an interrupt will chop off their heads. Making space in the caller's frame
// first will let us save the 64-bit %o's before save'ing, but we cannot hand
// the adjusted FP off to the GC stack-crawler: this will modify the caller's
// SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save
// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
// Tricky, tricky, tricky...
static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
ResourceMark rm;
// setup code generation tools
// Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
// Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
// even larger with TraceJumps
int pad = TraceJumps ? 512 : 0;
CodeBuffer buffer("handler_blob", 1600 + pad, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_words;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = NULL;
int start = __ offset();
// If this causes a return before the processing, then do a "restore"
if (cause_return) {
__ restore();
} else {
// Make it look like we were called via the poll
// so that frame constructor always sees a valid return address
__ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
__ sub(O7, frame::pc_return_offset, O7);
}
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
// setup last_Java_sp (blows G4)
__ set_last_Java_frame(SP, noreg);
// call into the runtime to handle illegal instructions exception
// Do not use call_VM_leaf, because we need to make a GC map at this call site.
__ mov(G2_thread, O0);
__ save_thread(L7_thread_cache);
__ call(call_ptr);
__ delayed()->nop();
// Set an oopmap for the call site.
// We need this not only for callee-saved registers, but also for volatile
// registers that the compiler might be keeping live across a safepoint.
oop_maps->add_gc_map( __ offset() - start, map);
__ restore_thread(L7_thread_cache);
// clear last_Java_sp
__ reset_last_Java_frame();
// Check for exceptions
Label pending;
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
__ tst(O1);
__ brx(Assembler::notEqual, true, Assembler::pn, pending);
__ delayed()->nop();
RegisterSaver::restore_live_registers(masm);
// We are back the the original state on entry and ready to go.
__ retl();
__ delayed()->nop();
// Pending exception after the safepoint
__ bind(pending);
RegisterSaver::restore_live_registers(masm);
// We are back the the original state on entry.
// Tail-call forward_exception_entry, with the issuing PC in O7,
// so it looks like the original nmethod called forward_exception_entry.
__ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
__ JMP(O0, 0);
__ delayed()->nop();
// -------------
// make sure all code is generated
masm->flush();
// return exception blob
return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
}
//
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
//
// Generate a stub that calls into vm to find out the proper destination
// of a java call. All the argument registers are live at this point
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
ResourceMark rm;
// setup code generation tools
// Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
// Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
// even larger with TraceJumps
int pad = TraceJumps ? 512 : 0;
CodeBuffer buffer(name, 1600 + pad, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
int frame_size_words;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = NULL;
int start = __ offset();
map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
int frame_complete = __ offset();
// setup last_Java_sp (blows G4)
__ set_last_Java_frame(SP, noreg);
// call into the runtime to handle illegal instructions exception
// Do not use call_VM_leaf, because we need to make a GC map at this call site.
__ mov(G2_thread, O0);
__ save_thread(L7_thread_cache);
__ call(destination, relocInfo::runtime_call_type);
__ delayed()->nop();
// O0 contains the address we are going to jump to assuming no exception got installed
// Set an oopmap for the call site.
// We need this not only for callee-saved registers, but also for volatile
// registers that the compiler might be keeping live across a safepoint.
oop_maps->add_gc_map( __ offset() - start, map);
__ restore_thread(L7_thread_cache);
// clear last_Java_sp
__ reset_last_Java_frame();
// Check for exceptions
Label pending;
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
__ tst(O1);
__ brx(Assembler::notEqual, true, Assembler::pn, pending);
__ delayed()->nop();
// get the returned methodOop
__ get_vm_result(G5_method);
__ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
// O0 is where we want to jump, overwrite G3 which is saved and scratch
__ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
RegisterSaver::restore_live_registers(masm);
// We are back the the original state on entry and ready to go.
__ JMP(G3, 0);
__ delayed()->nop();
// Pending exception after the safepoint
__ bind(pending);
RegisterSaver::restore_live_registers(masm);
// We are back the the original state on entry.
// Tail-call forward_exception_entry, with the issuing PC in O7,
// so it looks like the original nmethod called forward_exception_entry.
__ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
__ JMP(O0, 0);
__ delayed()->nop();
// -------------
// make sure all code is generated
masm->flush();
// return the blob
// frame_size_words or bytes??
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
}
void SharedRuntime::generate_stubs() {
_wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
"wrong_method_stub");
_ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
"ic_miss_stub");
_resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
"resolve_opt_virtual_call");
_resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
"resolve_virtual_call");
_resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
"resolve_static_call");
_polling_page_safepoint_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), false);
_polling_page_return_handler_blob =
generate_handler_blob(CAST_FROM_FN_PTR(address,
SafepointSynchronize::handle_polling_page_exception), true);
generate_deopt_blob();
#ifdef COMPILER2
generate_uncommon_trap_blob();
#endif // COMPILER2
}