8012927: 'assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1))) failed: value out of range' in interpreter initialization.
Summary: Change br_null_short() to br_null().
Reviewed-by: coleenp, hseigel
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "interp_masm_sparc.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/methodCounters.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiRedefineClassesTrace.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.inline.hpp"
#ifndef CC_INTERP
#ifndef FAST_DISPATCH
#define FAST_DISPATCH 1
#endif
#undef FAST_DISPATCH
// Implementation of InterpreterMacroAssembler
// This file specializes the assember with interpreter-specific macros
const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
#else // CC_INTERP
#ifndef STATE
#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
#endif // STATE
#endif // CC_INTERP
void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
// Note: this algorithm is also used by C1's OSR entry sequence.
// Any changes should also be applied to CodeEmitter::emit_osr_entry().
assert_different_registers(args_size, locals_size);
// max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
// Use br/mov combination because it works on both V8 and V9 and is
// faster.
Label skip_move;
br(Assembler::negative, true, Assembler::pt, skip_move);
delayed()->mov(G0, delta);
bind(skip_move);
round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
}
#ifndef CC_INTERP
// Dispatch code executed in the prolog of a bytecode which does not do it's
// own dispatch. The dispatch address is computed and placed in IdispatchAddress
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
assert_not_delayed();
#ifdef FAST_DISPATCH
// FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
// they both use I2.
assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
// add offset to correct dispatch table
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
#else
ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
// dispatch table to use
AddressLiteral tbl(Interpreter::dispatch_table(state));
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
set(tbl, G3_scratch); // compute addr of table
ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
#endif
}
// Dispatch code executed in the epilog of a bytecode which does not do it's
// own dispatch. The dispatch address in IdispatchAddress is used for the
// dispatch.
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
assert_not_delayed();
verify_FPU(1, state);
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
jmp( IdispatchAddress, 0 );
if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
else delayed()->nop();
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
// %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
assert_not_delayed();
ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
}
void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
// %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
assert_not_delayed();
ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
}
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
// load current bytecode
assert_not_delayed();
ldub( Lbcp, 0, Lbyte_code); // load next bytecode
dispatch_base(state, table);
}
void InterpreterMacroAssembler::call_VM_leaf_base(
Register java_thread,
address entry_point,
int number_of_arguments
) {
if (!java_thread->is_valid())
java_thread = L7_thread_cache;
// super call
MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
}
void InterpreterMacroAssembler::call_VM_base(
Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exception
) {
if (!java_thread->is_valid())
java_thread = L7_thread_cache;
// See class ThreadInVMfromInterpreter, which assumes that the interpreter
// takes responsibility for setting its own thread-state on call-out.
// However, ThreadInVMfromInterpreter resets the state to "in_Java".
//save_bcp(); // save bcp
MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
//restore_bcp(); // restore bcp
//restore_locals(); // restore locals pointer
}
void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
if (JvmtiExport::can_pop_frame()) {
Label L;
// Check the "pending popframe condition" flag in the current thread
ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
// Initiate popframe handling only if it is not already being processed. If the flag
// has the popframe_processing bit set, it means that this code is called *during* popframe
// handling - we don't want to reenter.
btst(JavaThread::popframe_pending_bit, scratch_reg);
br(zero, false, pt, L);
delayed()->nop();
btst(JavaThread::popframe_processing_bit, scratch_reg);
br(notZero, false, pt, L);
delayed()->nop();
// Call Interpreter::remove_activation_preserving_args_entry() to get the
// address of the same-named entrypoint in the generated interpreter code.
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
// Jump to Interpreter::_remove_activation_preserving_args_entry
jmpl(O0, G0, G0);
delayed()->nop();
bind(L);
}
}
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
Register thr_state = G4_scratch;
ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
switch (state) {
case ltos: ld_long(val_addr, Otos_l); break;
case atos: ld_ptr(oop_addr, Otos_l);
st_ptr(G0, oop_addr); break;
case btos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: ld(val_addr, Otos_l1); break;
case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
// Clean up tos value in the jvmti thread state
or3(G0, ilgl, G3_scratch);
stw(G3_scratch, tos_addr);
st_long(G0, val_addr);
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
}
void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
if (JvmtiExport::can_force_early_return()) {
Label L;
Register thr_state = G3_scratch;
ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
// Initiate earlyret handling only if it is not already being processed.
// If the flag has the earlyret_processing bit set, it means that this code
// is called *during* earlyret handling - we don't want to reenter.
ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
// Call Interpreter::remove_activation_early_entry() to get the address of the
// same-named entrypoint in the generated interpreter code
ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
// Jump to Interpreter::_remove_activation_early_entry
jmpl(O0, G0, G0);
delayed()->nop();
bind(L);
}
}
void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
mov(arg_1, O0);
mov(arg_2, O1);
MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
}
#endif /* CC_INTERP */
#ifndef CC_INTERP
void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
assert_not_delayed();
dispatch_Lbyte_code(state, table);
}
void InterpreterMacroAssembler::dispatch_normal(TosState state) {
dispatch_base(state, Interpreter::normal_table(state));
}
void InterpreterMacroAssembler::dispatch_only(TosState state) {
dispatch_base(state, Interpreter::dispatch_table(state));
}
// common code to dispatch and dispatch_only
// dispatch value in Lbyte_code and increment Lbcp
void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
verify_FPU(1, state);
// %%%%% maybe implement +VerifyActivationFrameSize here
//verify_thread(); //too slow; we will just verify on method entry & exit
if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
#ifdef FAST_DISPATCH
if (table == Interpreter::dispatch_table(state)) {
// use IdispatchTables
add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
// add offset to correct dispatch table
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
} else {
#endif
// dispatch table to use
AddressLiteral tbl(table);
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
set(tbl, G3_scratch); // compute addr of table
ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
#ifdef FAST_DISPATCH
}
#endif
jmp( G3_scratch, 0 );
if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
else delayed()->nop();
}
// Helpers for expression stack
// Longs and doubles are Category 2 computational types in the
// JVM specification (section 3.11.1) and take 2 expression stack or
// local slots.
// Aligning them on 32 bit with tagged stacks is hard because the code generated
// for the dup* bytecodes depends on what types are already on the stack.
// If the types are split into the two stack/local slots, that is much easier
// (and we can use 0 for non-reference tags).
// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
assert_not_delayed();
#ifdef _LP64
ldf(FloatRegisterImpl::D, r1, offset, d);
#else
ldf(FloatRegisterImpl::S, r1, offset, d);
ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
#endif
}
// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
assert_not_delayed();
#ifdef _LP64
stf(FloatRegisterImpl::D, d, r1, offset);
// store something more useful here
debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
#else
stf(FloatRegisterImpl::S, d, r1, offset);
stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
#endif
}
// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
assert_not_delayed();
#ifdef _LP64
ldx(r1, offset, rd);
#else
ld(r1, offset, rd);
ld(r1, offset + Interpreter::stackElementSize, rd->successor());
#endif
}
// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
assert_not_delayed();
#ifdef _LP64
stx(l, r1, offset);
// store something more useful here
debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
#else
st(l, r1, offset);
st(l->successor(), r1, offset + Interpreter::stackElementSize);
#endif
}
void InterpreterMacroAssembler::pop_i(Register r) {
assert_not_delayed();
ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
inc(Lesp, Interpreter::stackElementSize);
debug_only(verify_esp(Lesp));
}
void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
assert_not_delayed();
ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
inc(Lesp, Interpreter::stackElementSize);
debug_only(verify_esp(Lesp));
}
void InterpreterMacroAssembler::pop_l(Register r) {
assert_not_delayed();
load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
inc(Lesp, 2*Interpreter::stackElementSize);
debug_only(verify_esp(Lesp));
}
void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
assert_not_delayed();
ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
inc(Lesp, Interpreter::stackElementSize);
debug_only(verify_esp(Lesp));
}
void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
assert_not_delayed();
load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
inc(Lesp, 2*Interpreter::stackElementSize);
debug_only(verify_esp(Lesp));
}
void InterpreterMacroAssembler::push_i(Register r) {
assert_not_delayed();
debug_only(verify_esp(Lesp));
st(r, Lesp, 0);
dec(Lesp, Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_ptr(Register r) {
assert_not_delayed();
st_ptr(r, Lesp, 0);
dec(Lesp, Interpreter::stackElementSize);
}
// remember: our convention for longs in SPARC is:
// O0 (Otos_l1) has high-order part in first word,
// O1 (Otos_l2) has low-order part in second word
void InterpreterMacroAssembler::push_l(Register r) {
assert_not_delayed();
debug_only(verify_esp(Lesp));
// Longs are stored in memory-correct order, even if unaligned.
int offset = -Interpreter::stackElementSize;
store_unaligned_long(r, Lesp, offset);
dec(Lesp, 2 * Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_f(FloatRegister f) {
assert_not_delayed();
debug_only(verify_esp(Lesp));
stf(FloatRegisterImpl::S, f, Lesp, 0);
dec(Lesp, Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_d(FloatRegister d) {
assert_not_delayed();
debug_only(verify_esp(Lesp));
// Longs are stored in memory-correct order, even if unaligned.
int offset = -Interpreter::stackElementSize;
store_unaligned_double(d, Lesp, offset);
dec(Lesp, 2 * Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push(TosState state) {
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
switch (state) {
case atos: push_ptr(); break;
case btos: push_i(); break;
case ctos:
case stos: push_i(); break;
case itos: push_i(); break;
case ltos: push_l(); break;
case ftos: push_f(); break;
case dtos: push_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
}
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos: pop_ptr(); break;
case btos: pop_i(); break;
case ctos:
case stos: pop_i(); break;
case itos: pop_i(); break;
case ltos: pop_l(); break;
case ftos: pop_f(); break;
case dtos: pop_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
}
// Helpers for swap and dup
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
}
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
}
void InterpreterMacroAssembler::load_receiver(Register param_count,
Register recv) {
sll(param_count, Interpreter::logStackElementSize, param_count);
ld_ptr(Lesp, param_count, recv); // gets receiver oop
}
void InterpreterMacroAssembler::empty_expression_stack() {
// Reset Lesp.
sub( Lmonitors, wordSize, Lesp );
// Reset SP by subtracting more space from Lesp.
Label done;
assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
// A native does not need to do this, since its callee does not change SP.
ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags.
btst(JVM_ACC_NATIVE, Gframe_size);
br(Assembler::notZero, false, Assembler::pt, done);
delayed()->nop();
// Compute max expression stack+register save area
ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size); // Load max stack.
add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
//
// now set up a stack frame with the size computed above
//
//round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
sll( Gframe_size, LogBytesPerWord, Gframe_size );
sub( Lesp, Gframe_size, Gframe_size );
and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
debug_only(verify_sp(Gframe_size, G4_scratch));
#ifdef _LP64
sub(Gframe_size, STACK_BIAS, Gframe_size );
#endif
mov(Gframe_size, SP);
bind(done);
}
#ifdef ASSERT
void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
Label Bad, OK;
// Saved SP must be aligned.
#ifdef _LP64
btst(2*BytesPerWord-1, Rsp);
#else
btst(LongAlignmentMask, Rsp);
#endif
br(Assembler::notZero, false, Assembler::pn, Bad);
delayed()->nop();
// Saved SP, plus register window size, must not be above FP.
add(Rsp, frame::register_save_words * wordSize, Rtemp);
#ifdef _LP64
sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
#endif
cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
// Saved SP must not be ridiculously below current SP.
size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
set(maxstack, Rtemp);
sub(SP, Rtemp, Rtemp);
#ifdef _LP64
add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
#endif
cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
ba_short(OK);
bind(Bad);
stop("on return to interpreted call, restored SP is corrupted");
bind(OK);
}
void InterpreterMacroAssembler::verify_esp(Register Resp) {
// about to read or write Resp[0]
// make sure it is not in the monitors or the register save area
Label OK1, OK2;
cmp(Resp, Lmonitors);
brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
stop("too many pops: Lesp points into monitor area");
bind(OK1);
#ifdef _LP64
sub(Resp, STACK_BIAS, Resp);
#endif
cmp(Resp, SP);
brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
stop("too many pushes: Lesp points into register window");
bind(OK2);
}
#endif // ASSERT
// Load compiled (i2c) or interpreter entry when calling from interpreted and
// do the call. Centralized so that all interpreter calls will do the same actions.
// If jvmti single stepping is on for a thread we must not call compiled code.
void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
// Assume we want to go compiled if available
ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
if (JvmtiExport::can_post_interpreter_events()) {
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
verify_thread();
Label skip_compiled_code;
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
ld(interp_only, scratch);
cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
bind(skip_compiled_code);
}
// the i2c_adapters need Method* in G5_method (right? %%%)
// do the call
#ifdef ASSERT
{
Label ok;
br_notnull_short(target, Assembler::pt, ok);
stop("null entry point");
bind(ok);
}
#endif // ASSERT
// Adjust Rret first so Llast_SP can be same as Rret
add(Rret, -frame::pc_return_offset, O7);
add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
// Record SP so we can remove any stack space allocated by adapter transition
jmp(target, 0);
delayed()->mov(SP, Llast_SP);
}
void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
assert_not_delayed();
Label not_taken;
if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
else br (cc, false, Assembler::pn, not_taken);
delayed()->nop();
TemplateTable::branch(false,false);
bind(not_taken);
profile_not_taken_branch(G3_scratch);
}
void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
int bcp_offset,
Register Rtmp,
Register Rdst,
signedOrNot is_signed,
setCCOrNot should_set_CC ) {
assert(Rtmp != Rdst, "need separate temp register");
assert_not_delayed();
switch (is_signed) {
default: ShouldNotReachHere();
case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
}
ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
sll( Rdst, BitsPerByte, Rdst);
switch (should_set_CC ) {
default: ShouldNotReachHere();
case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
}
}
void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
int bcp_offset,
Register Rtmp,
Register Rdst,
setCCOrNot should_set_CC ) {
assert(Rtmp != Rdst, "need separate temp register");
assert_not_delayed();
add( Lbcp, bcp_offset, Rtmp);
andcc( Rtmp, 3, G0);
Label aligned;
switch (should_set_CC ) {
default: ShouldNotReachHere();
case set_CC: break;
case dont_set_CC: break;
}
br(Assembler::zero, true, Assembler::pn, aligned);
#ifdef _LP64
delayed()->ldsw(Rtmp, 0, Rdst);
#else
delayed()->ld(Rtmp, 0, Rdst);
#endif
ldub(Lbcp, bcp_offset + 3, Rdst);
ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
#ifdef _LP64
ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
#else
// Unsigned load is faster than signed on some implementations
ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
#endif
or3(Rtmp, Rdst, Rdst );
bind(aligned);
if (should_set_CC == set_CC) tst(Rdst);
}
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
int bcp_offset, size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
if (index_size == sizeof(u2)) {
get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
} else if (index_size == sizeof(u4)) {
assert(EnableInvokeDynamic, "giant index used only for JSR 292");
get_4_byte_integer_at_bcp(bcp_offset, temp, index);
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
xor3(index, -1, index); // convert to plain index
} else if (index_size == sizeof(u1)) {
ldub(Lbcp, bcp_offset, index);
} else {
ShouldNotReachHere();
}
}
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
int bcp_offset, size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
assert_different_registers(cache, tmp);
assert_not_delayed();
get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
// convert from field index to ConstantPoolCacheEntry index and from
// word index to byte offset
sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
add(LcpoolCache, tmp, cache);
}
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
Register temp,
Register bytecode,
int byte_no,
int bcp_offset,
size_t index_size) {
get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
const int shift_count = (1 + byte_no) * BitsPerByte;
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
"correct shift count");
srl(bytecode, shift_count, bytecode);
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
}
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
int bcp_offset, size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
assert_different_registers(cache, tmp);
assert_not_delayed();
if (index_size == sizeof(u2)) {
get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
} else {
ShouldNotReachHere(); // other sizes not supported here
}
// convert from field index to ConstantPoolCacheEntry index
// and from word index to byte offset
sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
// skip past the header
add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
// construct pointer to cache entry
add(LcpoolCache, tmp, cache);
}
// Load object from cpool->resolved_references(index)
void InterpreterMacroAssembler::load_resolved_reference_at_index(
Register result, Register index) {
assert_different_registers(result, index);
assert_not_delayed();
// convert from field index to resolved_references() index and from
// word index to byte offset. Since this is a java object, it can be compressed
Register tmp = index; // reuse
sll(index, LogBytesPerHeapOop, tmp);
get_constant_pool(result);
// load pointer for resolved_references[] objArray
ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
// JNIHandles::resolve(result)
ld_ptr(result, 0, result);
// Add in the index
add(result, tmp, result);
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
}
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
// a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
Register Rsuper_klass,
Register Rtmp1,
Register Rtmp2,
Register Rtmp3,
Label &ok_is_subtype ) {
Label not_subtype;
// Profile the not-null value's klass.
profile_typecheck(Rsub_klass, Rtmp1);
check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
Rtmp1, Rtmp2,
&ok_is_subtype, ¬_subtype, NULL);
check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
&ok_is_subtype, NULL);
bind(not_subtype);
profile_typecheck_failed(Rtmp1);
}
// Separate these two to allow for delay slot in middle
// These are used to do a test and full jump to exception-throwing code.
// %%%%% Could possibly reoptimize this by testing to see if could use
// a single conditional branch (i.e. if span is small enough.
// If you go that route, than get rid of the split and give up
// on the delay-slot hack.
void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
Label& ok ) {
assert_not_delayed();
br(ok_condition, true, pt, ok);
// DELAY SLOT
}
void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
Label& ok ) {
assert_not_delayed();
bp( ok_condition, true, Assembler::xcc, pt, ok);
// DELAY SLOT
}
void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
Label& ok ) {
assert_not_delayed();
brx(ok_condition, true, pt, ok);
// DELAY SLOT
}
void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
Register Rscratch,
Label& ok ) {
assert(throw_entry_point != NULL, "entry point must be generated by now");
AddressLiteral dest(throw_entry_point);
jump_to(dest, Rscratch);
delayed()->nop();
bind(ok);
}
// And if you cannot use the delay slot, here is a shorthand:
void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
address throw_entry_point,
Register Rscratch ) {
Label ok;
if (ok_condition != never) {
throw_if_not_1_icc( ok_condition, ok);
delayed()->nop();
}
throw_if_not_2( throw_entry_point, Rscratch, ok);
}
void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
address throw_entry_point,
Register Rscratch ) {
Label ok;
if (ok_condition != never) {
throw_if_not_1_xcc( ok_condition, ok);
delayed()->nop();
}
throw_if_not_2( throw_entry_point, Rscratch, ok);
}
void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
address throw_entry_point,
Register Rscratch ) {
Label ok;
if (ok_condition != never) {
throw_if_not_1_x( ok_condition, ok);
delayed()->nop();
}
throw_if_not_2( throw_entry_point, Rscratch, ok);
}
// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
// Note: res is still shy of address by array offset into object.
void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
assert_not_delayed();
verify_oop(array);
#ifdef _LP64
// sign extend since tos (index) can be a 32bit value
sra(index, G0, index);
#endif // _LP64
// check array
Label ptr_ok;
tst(array);
throw_if_not_1_x( notZero, ptr_ok );
delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
Label index_ok;
cmp(index, tmp);
throw_if_not_1_icc( lessUnsigned, index_ok );
if (index_shift > 0) delayed()->sll(index, index_shift, index);
else delayed()->add(array, index, res); // addr - const offset in index
// convention: move aberrant index into G3_scratch for exception message
mov(index, G3_scratch);
throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
// add offset if didn't do it in delay slot
if (index_shift > 0) add(array, index, res); // addr - const offset in index
}
void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
assert_not_delayed();
// pop array
pop_ptr(array);
// check array
index_check_without_pop(array, index, index_shift, tmp, res);
}
void InterpreterMacroAssembler::get_const(Register Rdst) {
ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
}
void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
get_const(Rdst);
ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
}
void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
get_constant_pool(Rdst);
ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
}
void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
get_constant_pool(Rcpool);
ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
}
// unlock if synchronized method
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
bool throw_monitor_exception,
bool install_monitor_exception) {
Label unlocked, unlock, no_unlock;
// get the value of _do_not_unlock_if_synchronized into G1_scratch
const Address do_not_unlock_if_synchronized(G2_thread,
JavaThread::do_not_unlock_if_synchronized_offset());
ldbool(do_not_unlock_if_synchronized, G1_scratch);
stbool(G0, do_not_unlock_if_synchronized); // reset the flag
// check if synchronized method
const Address access_flags(Lmethod, Method::access_flags_offset());
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
push(state); // save tos
ld(access_flags, G3_scratch); // Load access flags.
btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
br(zero, false, pt, unlocked);
delayed()->nop();
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
// is set.
cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
delayed()->nop();
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
//Intel: if (throw_monitor_exception) ... else ...
// Entry already unlocked, need to throw exception
//...
// pass top-most monitor elem
add( top_most_monitor(), O1 );
ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
br_notnull_short(G3_scratch, pt, unlock);
if (throw_monitor_exception) {
// Entry already unlocked need to throw an exception
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Monitor already unlocked during a stack unroll.
// If requested, install an illegal_monitor_state_exception.
// Continue with stack unrolling.
if (install_monitor_exception) {
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
}
ba_short(unlocked);
}
bind(unlock);
unlock_object(O1);
bind(unlocked);
// I0, I1: Might contain return value
// Check that all monitors are unlocked
{ Label loop, exception, entry, restart;
Register Rmptr = O0;
Register Rtemp = O1;
Register Rlimit = Lmonitors;
const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
assert( (delta & LongAlignmentMask) == 0,
"sizeof BasicObjectLock must be even number of doublewords");
#ifdef ASSERT
add(top_most_monitor(), Rmptr, delta);
{ Label L;
// ensure that Rmptr starts out above (or at) Rlimit
cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
stop("monitor stack has negative size");
bind(L);
}
#endif
bind(restart);
ba(entry);
delayed()->
add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
// Entry is still locked, need to throw exception
bind(exception);
if (throw_monitor_exception) {
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
// Unlock does not block, so don't have to worry about the frame
unlock_object(Rmptr);
if (install_monitor_exception) {
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
}
ba_short(restart);
}
bind(loop);
cmp(Rtemp, G0); // check if current entry is used
brx(Assembler::notEqual, false, pn, exception);
delayed()->
dec(Rmptr, delta); // otherwise advance to next entry
#ifdef ASSERT
{ Label L;
// ensure that Rmptr has not somehow stepped below Rlimit
cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
stop("ran off the end of the monitor stack");
bind(L);
}
#endif
bind(entry);
cmp(Rmptr, Rlimit); // check if bottom reached
brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
delayed()->
ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
}
bind(no_unlock);
pop(state);
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
}
// remove activation
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(TosState state,
bool throw_monitor_exception,
bool install_monitor_exception) {
unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
// save result (push state before jvmti call and pop it afterwards) and notify jvmti
notify_method_exit(false, state, NotifyJVMTI);
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
verify_thread();
// return tos
assert(Otos_l1 == Otos_i, "adjust code below");
switch (state) {
#ifdef _LP64
case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
#else
case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
#endif
case btos: // fall through
case ctos:
case stos: // fall through
case atos: // fall through
case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
case ftos: // fall through
case dtos: // fall through
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
#if defined(COMPILER2) && !defined(_LP64)
if (state == ltos) {
// C2 expects long results in G1 we can't tell if we're returning to interpreted
// or compiled so just be safe use G1 and O0/O1
// Shift bits into high (msb) of G1
sllx(Otos_l1->after_save(), 32, G1);
// Zero extend low bits
srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
or3 (Otos_l2->after_save(), G1, G1);
}
#endif /* COMPILER2 */
}
#endif /* CC_INTERP */
// Lock object
//
// Argument - lock_reg points to the BasicObjectLock to be used for locking,
// it must be initialized with the object to lock
void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
}
else {
Register obj_reg = Object;
Register mark_reg = G4_scratch;
Register temp_reg = G1_scratch;
Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
Label done;
Label slow_case;
assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
// load markOop from object into mark_reg
ld_ptr(mark_addr, mark_reg);
if (UseBiasedLocking) {
biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
}
// get the address of basicLock on stack that will be stored in the object
// we need a temporary register here as we do not want to clobber lock_reg
// (cas clobbers the destination register)
mov(lock_reg, temp_reg);
// set mark reg to be (markOop of object | UNLOCK_VALUE)
or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
// initialize the box (Must happen before we update the object mark!)
st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
// compare and exchange object_addr, markOop | 1, stack address of basicLock
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
(address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
// if the compare and exchange succeeded we are done (we saw an unlocked object)
cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
// We did not see an unlocked object so try the fast recursive case
// Check if owner is self by comparing the value in the markOop of object
// with the stack pointer
sub(temp_reg, SP, temp_reg);
#ifdef _LP64
sub(temp_reg, STACK_BIAS, temp_reg);
#endif
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
// Composite "andcc" test:
// (a) %sp -vs- markword proximity check, and,
// (b) verify mark word LSBs == 0 (Stack-locked).
//
// FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
// Note that the page size used for %sp proximity testing is arbitrary and is
// unrelated to the actual MMU page size. We use a 'logical' page size of
// 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
// field of the andcc instruction.
andcc (temp_reg, 0xFFFFF003, G0) ;
// if condition is true we are done and hence we can store 0 in the displaced
// header indicating it is a recursive lock and be done
brx(Assembler::zero, true, Assembler::pt, done);
delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
// none of the above fast optimizations worked so we have to get into the
// slow case of monitor enter
bind(slow_case);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
bind(done);
}
}
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
//
// Argument - lock_reg points to the BasicObjectLock for lock
// Throw IllegalMonitorException if object is not locked by current thread
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
} else {
Register obj_reg = G3_scratch;
Register mark_reg = G4_scratch;
Register displaced_header_reg = G1_scratch;
Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
Label done;
if (UseBiasedLocking) {
// load the object out of the BasicObjectLock
ld_ptr(lockobj_addr, obj_reg);
biased_locking_exit(mark_addr, mark_reg, done, true);
st_ptr(G0, lockobj_addr); // free entry
}
// Test first if we are in the fast recursive case
Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
ld_ptr(lock_addr, displaced_header_reg);
br_null(displaced_header_reg, true, Assembler::pn, done);
delayed()->st_ptr(G0, lockobj_addr); // free entry
// See if it is still a light weight lock, if so we just unlock
// the object and we are done
if (!UseBiasedLocking) {
// load the object out of the BasicObjectLock
ld_ptr(lockobj_addr, obj_reg);
}
// we have the displaced header in displaced_header_reg
// we expect to see the stack address of the basicLock in case the
// lock is still a light weight lock (lock_reg)
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
(address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
cmp(lock_reg, displaced_header_reg);
brx(Assembler::equal, true, Assembler::pn, done);
delayed()->st_ptr(G0, lockobj_addr); // free entry
// The lock has been converted into a heavy lock and hence
// we need to get into the slow case
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
bind(done);
}
}
#ifndef CC_INTERP
// Get the method data pointer from the Method* and set the
// specified register to its value.
void InterpreterMacroAssembler::set_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label get_continue;
ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
test_method_data_pointer(get_continue);
add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
bind(get_continue);
}
// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label zero_continue;
// Test MDO to avoid the call if it is NULL.
ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
test_method_data_pointer(zero_continue);
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
add(ImethodDataPtr, O0, ImethodDataPtr);
bind(zero_continue);
}
// Test ImethodDataPtr. If it is null, continue at the specified label
void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
Label verify_continue;
test_method_data_pointer(verify_continue);
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
ld_ptr(Lmethod, Method::const_offset(), O5);
add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
add(G3_scratch, O5, G3_scratch);
cmp(Lbcp, G3_scratch);
brx(Assembler::equal, false, Assembler::pt, verify_continue);
Register temp_reg = O5;
delayed()->mov(ImethodDataPtr, temp_reg);
// %%% should use call_VM_leaf here?
//call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
stf(FloatRegisterImpl::D, Ftos_d, d_save);
mov(temp_reg->after_save(), O2);
save_thread(L7_thread_cache);
call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
delayed()->nop();
restore_thread(L7_thread_cache);
ldf(FloatRegisterImpl::D, d_save, Ftos_d);
restore();
bind(verify_continue);
#endif // ASSERT
}
void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
Register Rtmp,
Label &profile_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Control will flow to "profile_continue" if the counter is less than the
// limit or if we call profile_method()
Label done;
// if no method data exists, and the counter is high enough, make one
br_notnull_short(ImethodDataPtr, Assembler::pn, done);
// Test to see if we should create a method data oop
AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
sethi(profile_limit, Rtmp);
ld(Rtmp, profile_limit.low10(), Rtmp);
cmp(invocation_count, Rtmp);
// Use long branches because call_VM() code and following code generated by
// test_backedge_count_for_osr() is large in debug VM.
br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
delayed()->nop();
// Build it now.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
set_method_data_pointer_for_bcp();
ba(profile_continue);
delayed()->nop();
bind(done);
}
// Store a value at some constant offset from the method data pointer.
void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
st_ptr(value, ImethodDataPtr, constant);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
Register bumped_count,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Load the counter.
ld_ptr(counter, bumped_count);
if (decrement) {
// Decrement the register. Set condition codes.
subcc(bumped_count, DataLayout::counter_increment, bumped_count);
// If the decrement causes the counter to overflow, stay negative
Label L;
brx(Assembler::negative, true, Assembler::pn, L);
// Store the decremented counter, if it is still negative.
delayed()->st_ptr(bumped_count, counter);
bind(L);
} else {
// Increment the register. Set carry flag.
addcc(bumped_count, DataLayout::counter_increment, bumped_count);
// If the increment causes the counter to overflow, pull back by 1.
assert(DataLayout::counter_increment == 1, "subc works");
subc(bumped_count, G0, bumped_count);
// Store the incremented counter.
st_ptr(bumped_count, counter);
}
}
// Increment the value at some constant offset from the method data pointer.
void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
Register bumped_count,
bool decrement) {
// Locate the counter at a fixed offset from the mdp:
Address counter(ImethodDataPtr, constant);
increment_mdp_data_at(counter, bumped_count, decrement);
}
// Increment the value at some non-fixed (reg + constant) offset from
// the method data pointer.
void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
int constant,
Register bumped_count,
Register scratch2,
bool decrement) {
// Add the constant to reg to get the offset.
add(ImethodDataPtr, reg, scratch2);
Address counter(scratch2, constant);
increment_mdp_data_at(counter, bumped_count, decrement);
}
// Set a flag value at the current method data pointer position.
// Updates a single byte of the header, to avoid races with other header bits.
void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Load the data header
ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
// Set the flag
or3(scratch, flag_constant, scratch);
// Store the modified header.
stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
}
// Test the location at some offset from the method data pointer.
// If it is not equal to value, branch to the not_equal_continue Label.
// Set condition codes to match the nullness of the loaded value.
void InterpreterMacroAssembler::test_mdp_data_at(int offset,
Register value,
Label& not_equal_continue,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
ld_ptr(ImethodDataPtr, offset, scratch);
cmp(value, scratch);
brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
delayed()->tst(scratch);
}
// Update the method data pointer by the displacement located at some fixed
// offset from the method data pointer.
void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
add(ImethodDataPtr, scratch, ImethodDataPtr);
}
// Update the method data pointer by the displacement located at the
// offset (reg + offset_of_disp).
void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
int offset_of_disp,
Register scratch) {
assert(ProfileInterpreter, "must be profiling interpreter");
add(reg, offset_of_disp, scratch);
ld_ptr(ImethodDataPtr, scratch, scratch);
add(ImethodDataPtr, scratch, ImethodDataPtr);
}
// Update the method data pointer by a simple constant displacement.
void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
add(ImethodDataPtr, constant, ImethodDataPtr);
}
// Update the method data pointer for a _ret bytecode whose target
// was not among our cached targets.
void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
push(state);
st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
ld_ptr(l_tmp, return_bci);
pop(state);
}
// Count a taken branch in the bytecodes.
void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are taking a branch. Increment the taken count.
increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
bind (profile_continue);
}
}
// Count a not-taken branch in the bytecodes.
void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
// The method data pointer needs to be updated to correspond to the
// next bytecode.
update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
bind (profile_continue);
}
}
// Count a non-virtual call in the bytecodes.
void InterpreterMacroAssembler::profile_call(Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
bind (profile_continue);
}
}
// Count a final call in the bytecodes.
void InterpreterMacroAssembler::profile_final_call(Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
bind (profile_continue);
}
}
// Count a virtual call in the bytecodes.
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
Register scratch,
bool receiver_can_be_null) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
Label skip_receiver_profile;
if (receiver_can_be_null) {
Label not_null;
br_notnull_short(receiver, Assembler::pt, not_null);
// We are making a call. Increment the count for null receiver.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
ba_short(skip_receiver_profile);
bind(not_null);
}
// Record the receiver type.
record_klass_in_profile(receiver, scratch, true);
bind(skip_receiver_profile);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
bind (profile_continue);
}
}
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register scratch,
int start_row, Label& done, bool is_virtual_call) {
if (TypeProfileWidth == 0) {
if (is_virtual_call) {
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
}
return;
}
int last_row = VirtualCallData::row_limit() - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the receiver and for null.
// Take any of three different outcomes:
// 1. found receiver => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
Label next_test;
bool test_for_null_also = (row == start_row);
// See if the receiver is receiver[n].
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
// delayed()->tst(scratch);
// The receiver is receiver[n]. Increment count[n].
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
increment_mdp_data_at(count_offset, scratch);
ba_short(done);
bind(next_test);
if (test_for_null_also) {
Label found_null;
// Failed the equality check on receiver[n]... Test for null.
if (start_row == last_row) {
// The only thing left to do is handle the null case.
if (is_virtual_call) {
brx(Assembler::zero, false, Assembler::pn, found_null);
delayed()->nop();
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
ba_short(done);
bind(found_null);
} else {
brx(Assembler::notZero, false, Assembler::pt, done);
delayed()->nop();
}
break;
}
// Since null is rare, make it be the branch-taken case.
brx(Assembler::zero, false, Assembler::pn, found_null);
delayed()->nop();
// Put all the "Case 3" tests here.
record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
// Found a null. Keep searching for a matching receiver,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching receiver, but we
// observed the receiver[start_row] is NULL.
// Fill in the receiver field and increment the count.
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
set_mdp_data_at(recvr_offset, receiver);
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
mov(DataLayout::counter_increment, scratch);
set_mdp_data_at(count_offset, scratch);
if (start_row > 0) {
ba_short(done);
}
}
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
Register scratch, bool is_virtual_call) {
assert(ProfileInterpreter, "must be profiling");
Label done;
record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
bind (done);
}
// Count a ret in the bytecodes.
void InterpreterMacroAssembler::profile_ret(TosState state,
Register return_bci,
Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
uint row;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// Update the total ret count.
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
for (row = 0; row < RetData::row_limit(); row++) {
Label next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
return_bci, next_test, scratch);
// return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
ba_short(profile_continue);
bind(next_test);
}
update_mdp_for_ret(state, return_bci);
bind (profile_continue);
}
}
// Profile an unexpected null in the bytecodes.
void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp_delta);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck(Register klass,
Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(klass, scratch, false);
}
// The method data pointer needs to be updated.
update_mdp_by_constant(mdp_delta);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(count_offset, scratch, true);
bind (profile_continue);
}
}
// Count the default case of a switch construct.
void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// Update the default case count
increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
scratch);
// The method data pointer needs to be updated.
update_mdp_by_offset(
in_bytes(MultiBranchData::default_displacement_offset()),
scratch);
bind (profile_continue);
}
}
// Count the index'th case of a switch construct.
void InterpreterMacroAssembler::profile_switch_case(Register index,
Register scratch,
Register scratch2,
Register scratch3) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(profile_continue);
// Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
set(in_bytes(MultiBranchData::per_case_size()), scratch);
smul(index, scratch, scratch);
add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
// Update the case count
increment_mdp_data_at(scratch,
in_bytes(MultiBranchData::relative_count_offset()),
scratch2,
scratch3);
// The method data pointer needs to be updated.
update_mdp_by_offset(scratch,
in_bytes(MultiBranchData::relative_displacement_offset()),
scratch2);
bind (profile_continue);
}
}
// add a InterpMonitorElem to stack (see frame_sparc.hpp)
void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
Register Rtemp,
Register Rtemp2 ) {
Register Rlimit = Lmonitors;
const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
assert( (delta & LongAlignmentMask) == 0,
"sizeof BasicObjectLock must be even number of doublewords");
sub( SP, delta, SP);
sub( Lesp, delta, Lesp);
sub( Lmonitors, delta, Lmonitors);
if (!stack_is_empty) {
// must copy stack contents down
Label start_copying, next;
// untested("monitor stack expansion");
compute_stack_base(Rtemp);
ba(start_copying);
delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
// note: must copy from low memory upwards
// On entry to loop,
// Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
// Loop mutates Rtemp
bind( next);
st_ptr(Rtemp2, Rtemp, 0);
inc(Rtemp, wordSize);
cmp(Rtemp, Rlimit); // are we done? (duplicated above)
bind( start_copying );
brx( notEqual, true, pn, next );
delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
// done copying stack
}
}
// Locals
void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
ld_ptr(index, 0, dst);
// Note: index must hold the effective address--the iinc template uses it
}
// Just like access_local_ptr but the tag is a returnAddress
void InterpreterMacroAssembler::access_local_returnAddress(Register index,
Register dst ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
ld_ptr(index, 0, dst);
}
void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
ld(index, 0, dst);
// Note: index must hold the effective address--the iinc template uses it
}
void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
// First half stored at index n+1 (which grows down from Llocals[n])
load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
}
void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
ldf(FloatRegisterImpl::S, index, 0, dst);
}
void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
}
#ifdef ASSERT
void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
Label L;
assert(Rindex != Rscratch, "Registers cannot be same");
assert(Rindex != Rscratch1, "Registers cannot be same");
assert(Rlimit != Rscratch, "Registers cannot be same");
assert(Rlimit != Rscratch1, "Registers cannot be same");
assert(Rscratch1 != Rscratch, "Registers cannot be same");
// untested("reg area corruption");
add(Rindex, offset, Rscratch);
add(Rlimit, 64 + STACK_BIAS, Rscratch1);
cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
stop("regsave area is being clobbered");
bind(L);
}
#endif // ASSERT
void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
st(src, index, 0);
}
void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
#ifdef ASSERT
check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
#endif
st_ptr(src, index, 0);
}
void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
}
void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
#ifdef ASSERT
check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
#endif
store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
}
void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
#ifdef ASSERT
check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
#endif
stf(FloatRegisterImpl::S, src, index, 0);
}
void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
assert_not_delayed();
sll(index, Interpreter::logStackElementSize, index);
sub(Llocals, index, index);
#ifdef ASSERT
check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
#endif
store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
}
int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
}
Address InterpreterMacroAssembler::top_most_monitor() {
return Address(FP, top_most_monitor_byte_offset());
}
void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
add( Lesp, wordSize, Rdest );
}
#endif /* CC_INTERP */
void InterpreterMacroAssembler::get_method_counters(Register method,
Register Rcounters,
Label& skip) {
Label has_counters;
Address method_counters(method, in_bytes(Method::method_counters_offset()));
ld_ptr(method_counters, Rcounters);
br_notnull_short(Rcounters, Assembler::pt, has_counters);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::build_method_counters), method);
ld_ptr(method_counters, Rcounters);
br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
delayed()->nop();
bind(has_counters);
}
void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
assert(UseCompiler, "incrementing must be useful");
assert_different_registers(Rcounters, Rtmp, Rtmp2);
Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset());
int delta = InvocationCounter::count_increment;
// Load each counter in a register
ld( inv_counter, Rtmp );
ld( be_counter, Rtmp2 );
assert( is_simm13( delta ), " delta too large.");
// Add the delta to the invocation counter and store the result
add( Rtmp, delta, Rtmp );
// Mask the backedge counter
and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
// Store value
st( Rtmp, inv_counter);
// Add invocation counter + backedge counter
add( Rtmp, Rtmp2, Rtmp);
// Note that this macro must leave the backedge_count + invocation_count in Rtmp!
}
void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
assert(UseCompiler, "incrementing must be useful");
assert_different_registers(Rcounters, Rtmp, Rtmp2);
Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset());
Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
int delta = InvocationCounter::count_increment;
// Load each counter in a register
ld( be_counter, Rtmp );
ld( inv_counter, Rtmp2 );
// Add the delta to the backedge counter
add( Rtmp, delta, Rtmp );
// Mask the invocation counter, add to backedge counter
and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
// and store the result to memory
st( Rtmp, be_counter );
// Add backedge + invocation counter
add( Rtmp, Rtmp2, Rtmp );
// Note that this macro must leave backedge_count + invocation_count in Rtmp!
}
#ifndef CC_INTERP
void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
Register branch_bcp,
Register Rtmp ) {
Label did_not_overflow;
Label overflow_with_error;
assert_different_registers(backedge_count, Rtmp, branch_bcp);
assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
load_contents(limit, Rtmp);
cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
// When ProfileInterpreter is on, the backedge_count comes from the
// MethodData*, which value does not get reset on the call to
// frequency_counter_overflow(). To avoid excessive calls to the overflow
// routine while the method is being compiled, add a second test to make sure
// the overflow function is called only once every overflow_frequency.
if (ProfileInterpreter) {
const int overflow_frequency = 1024;
andcc(backedge_count, overflow_frequency-1, Rtmp);
brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
delayed()->nop();
}
// overflow in loop, pass branch bytecode
set(6,Rtmp);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
// Was an OSR adapter generated?
// O0 = osr nmethod
br_null_short(O0, Assembler::pn, overflow_with_error);
// Has the nmethod been invalidated already?
ld(O0, nmethod::entry_bci_offset(), O2);
cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
// migrate the interpreter frame off of the stack
mov(G2_thread, L7);
// save nmethod
mov(O0, L6);
set_last_Java_frame(SP, noreg);
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
reset_last_Java_frame();
mov(L7, G2_thread);
// move OSR nmethod to I1
mov(L6, I1);
// OSR buffer to I0
mov(O0, I0);
// remove the interpreter frame
restore(I5_savedSP, 0, SP);
// Jump to the osr code.
ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
jmp(O2, G0);
delayed()->nop();
bind(overflow_with_error);
bind(did_not_overflow);
}
void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
}
// local helper function for the verify_oop_or_return_address macro
static bool verify_return_address(Method* m, int bci) {
#ifndef PRODUCT
address pc = (address)(m->constMethod())
+ in_bytes(ConstMethod::codes_offset()) + bci;
// assume it is a valid return address if it is inside m and is preceded by a jsr
if (!m->contains(pc)) return false;
address jsr_pc;
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
#endif // PRODUCT
return false;
}
void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
if (!VerifyOops) return;
// the VM documentation for the astore[_wide] bytecode allows
// the TOS to be not only an oop but also a return address
Label test;
Label skip;
// See if it is an address (in the current method):
mov(reg, Rtmp);
const int log2_bytecode_size_limit = 16;
srl(Rtmp, log2_bytecode_size_limit, Rtmp);
br_notnull_short( Rtmp, pt, test );
// %%% should use call_VM_leaf here?
save_frame_and_mov(0, Lmethod, O0, reg, O1);
save_thread(L7_thread_cache);
call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
delayed()->nop();
restore_thread(L7_thread_cache);
br_notnull( O0, false, pt, skip );
delayed()->restore();
// Perform a more elaborate out-of-line call
// Not an address; verify it:
bind(test);
verify_oop(reg);
bind(skip);
}
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
}
#endif /* CC_INTERP */
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// InterpreterRuntime::post_method_entry();
// }
// if (DTraceMethodProbes) {
// SharedRuntime::dtrace_method_entry(method, receiver);
// }
// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
// SharedRuntime::rc_trace_method_entry(method, receiver);
// }
void InterpreterMacroAssembler::notify_method_entry() {
// C++ interpreter only uses this for native methods.
// Whenever JVMTI puts a thread in interp_only_mode, method
// entry/exit events are sent for that thread to track stack
// depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (JvmtiExport::can_post_interpreter_events()) {
Label L;
Register temp_reg = O5;
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
ld(interp_only, temp_reg);
cmp_and_br_short(temp_reg, 0, equal, pt, L);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
bind(L);
}
{
Register temp_reg = O5;
SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
call_VM_leaf(noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
G2_thread, Lmethod);
}
// RedefineClasses() tracing support for obsolete method entry
if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
call_VM_leaf(noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
G2_thread, Lmethod);
}
}
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// // save result
// InterpreterRuntime::post_method_exit();
// // restore result
// }
// if (DTraceMethodProbes) {
// SharedRuntime::dtrace_method_exit(thread, method);
// }
//
// Native methods have their result stored in d_tmp and l_tmp
// Java methods have their result stored in the expression stack
void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
TosState state,
NotifyMethodExitMode mode) {
// C++ interpreter only uses this for native methods.
// Whenever JVMTI puts a thread in interp_only_mode, method
// entry/exit events are sent for that thread to track stack
// depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
Label L;
Register temp_reg = O5;
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
ld(interp_only, temp_reg);
cmp_and_br_short(temp_reg, 0, equal, pt, L);
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. For
// native methods it assumes the result registers are saved to
// l_scratch and d_scratch. If this changes then the interpreter_frame_result
// implementation will need to be updated too.
save_return_value(state, is_native_method);
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
restore_return_value(state, is_native_method);
bind(L);
}
{
Register temp_reg = O5;
// Dtrace notification
SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
save_return_value(state, is_native_method);
call_VM_leaf(
noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
G2_thread, Lmethod);
restore_return_value(state, is_native_method);
}
}
void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
#ifdef CC_INTERP
// result potentially in O0/O1: save it across calls
stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
#ifdef _LP64
stx(O0, STATE(_native_lresult));
#else
std(O0, STATE(_native_lresult));
#endif
#else // CC_INTERP
if (is_native_call) {
stf(FloatRegisterImpl::D, F0, d_tmp);
#ifdef _LP64
stx(O0, l_tmp);
#else
std(O0, l_tmp);
#endif
} else {
push(state);
}
#endif // CC_INTERP
}
void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
#ifdef CC_INTERP
ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
#ifdef _LP64
ldx(STATE(_native_lresult), O0);
#else
ldd(STATE(_native_lresult), O0);
#endif
#else // CC_INTERP
if (is_native_call) {
ldf(FloatRegisterImpl::D, d_tmp, F0);
#ifdef _LP64
ldx(l_tmp, O0);
#else
ldd(l_tmp, O0);
#endif
} else {
pop(state);
}
#endif // CC_INTERP
}
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
int increment, int mask,
Register scratch1, Register scratch2,
Condition cond, Label *where) {
ld(counter_addr, scratch1);
add(scratch1, increment, scratch1);
if (is_simm13(mask)) {
andcc(scratch1, mask, G0);
} else {
set(mask, scratch2);
andcc(scratch1, scratch2, G0);
}
br(cond, false, Assembler::pn, *where);
delayed()->st(scratch1, counter_addr);
}