/*
* Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// no precompiled headers
#include "jvm.h"
#include "asm/macroAssembler.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_x86.hpp"
#include "os_share_windows.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/osThread.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/timer.hpp"
#include "symbolengine.hpp"
#include "unwind_windows_x86.hpp"
#include "utilities/events.hpp"
#include "utilities/vmError.hpp"
#include "windbghelp.hpp"
#undef REG_SP
#undef REG_FP
#undef REG_PC
#ifdef AMD64
#define REG_SP Rsp
#define REG_FP Rbp
#define REG_PC Rip
#else
#define REG_SP Esp
#define REG_FP Ebp
#define REG_PC Eip
#endif // AMD64
extern LONG WINAPI topLevelExceptionFilter(_EXCEPTION_POINTERS* );
// Install a win32 structured exception handler around thread.
void os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method, JavaCallArguments* args, Thread* thread) {
__try {
#ifndef AMD64
// We store the current thread in this wrapperthread location
// and determine how far away this address is from the structured
// execption pointer that FS:[0] points to. This get_thread
// code can then get the thread pointer via FS.
//
// Warning: This routine must NEVER be inlined since we'd end up with
// multiple offsets.
//
volatile Thread* wrapperthread = thread;
if (os::win32::get_thread_ptr_offset() == 0) {
int thread_ptr_offset;
__asm {
lea eax, dword ptr wrapperthread;
sub eax, dword ptr FS:[0H];
mov thread_ptr_offset, eax
};
os::win32::set_thread_ptr_offset(thread_ptr_offset);
}
#ifdef ASSERT
// Verify that the offset hasn't changed since we initally captured
// it. This might happen if we accidentally ended up with an
// inlined version of this routine.
else {
int test_thread_ptr_offset;
__asm {
lea eax, dword ptr wrapperthread;
sub eax, dword ptr FS:[0H];
mov test_thread_ptr_offset, eax
};
assert(test_thread_ptr_offset == os::win32::get_thread_ptr_offset(),
"thread pointer offset from SEH changed");
}
#endif // ASSERT
#endif // !AMD64
f(value, method, args, thread);
} __except(topLevelExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) {
// Nothing to do.
}
}
#ifdef AMD64
// This is the language specific handler for exceptions
// originating from dynamically generated code.
// We call the standard structured exception handler
// We only expect Continued Execution since we cannot unwind
// from generated code.
LONG HandleExceptionFromCodeCache(
IN PEXCEPTION_RECORD ExceptionRecord,
IN ULONG64 EstablisherFrame,
IN OUT PCONTEXT ContextRecord,
IN OUT PDISPATCHER_CONTEXT DispatcherContext) {
EXCEPTION_POINTERS ep;
LONG result;
ep.ExceptionRecord = ExceptionRecord;
ep.ContextRecord = ContextRecord;
result = topLevelExceptionFilter(&ep);
// We better only get a CONTINUE_EXECUTION from our handler
// since we don't have unwind information registered.
guarantee( result == EXCEPTION_CONTINUE_EXECUTION,
"Unexpected result from topLevelExceptionFilter");
return(ExceptionContinueExecution);
}
// Structure containing the Windows Data Structures required
// to register our Code Cache exception handler.
// We put these in the CodeCache since the API requires
// all addresses in these structures are relative to the Code
// area registered with RtlAddFunctionTable.
typedef struct {
char ExceptionHandlerInstr[16]; // jmp HandleExceptionFromCodeCache
RUNTIME_FUNCTION rt;
UNWIND_INFO_EH_ONLY unw;
} DynamicCodeData, *pDynamicCodeData;
#endif // AMD64
//
// Register our CodeCache area with the OS so it will dispatch exceptions
// to our topLevelExceptionFilter when we take an exception in our
// dynamically generated code.
//
// Arguments: low and high are the address of the full reserved
// codeCache area
//
bool os::register_code_area(char *low, char *high) {
#ifdef AMD64
ResourceMark rm;
pDynamicCodeData pDCD;
PRUNTIME_FUNCTION prt;
PUNWIND_INFO_EH_ONLY punwind;
BufferBlob* blob = BufferBlob::create("CodeCache Exception Handler", sizeof(DynamicCodeData));
CodeBuffer cb(blob);
MacroAssembler* masm = new MacroAssembler(&cb);
pDCD = (pDynamicCodeData) masm->pc();
masm->jump(ExternalAddress((address)&HandleExceptionFromCodeCache));
masm->flush();
// Create an Unwind Structure specifying no unwind info
// other than an Exception Handler
punwind = &pDCD->unw;
punwind->Version = 1;
punwind->Flags = UNW_FLAG_EHANDLER;
punwind->SizeOfProlog = 0;
punwind->CountOfCodes = 0;
punwind->FrameRegister = 0;
punwind->FrameOffset = 0;
punwind->ExceptionHandler = (char *)(&(pDCD->ExceptionHandlerInstr[0])) -
(char*)low;
punwind->ExceptionData[0] = 0;
// This structure describes the covered dynamic code area.
// Addresses are relative to the beginning on the code cache area
prt = &pDCD->rt;
prt->BeginAddress = 0;
prt->EndAddress = (ULONG)(high - low);
prt->UnwindData = ((char *)punwind - low);
guarantee(RtlAddFunctionTable(prt, 1, (ULONGLONG)low),
"Failed to register Dynamic Code Exception Handler with RtlAddFunctionTable");
#endif // AMD64
return true;
}
// Atomics and Stub Functions
typedef int32_t xchg_func_t (int32_t, volatile int32_t*);
typedef int64_t xchg_long_func_t (int64_t, volatile int64_t*);
typedef int32_t cmpxchg_func_t (int32_t, volatile int32_t*, int32_t);
typedef int8_t cmpxchg_byte_func_t (int8_t, volatile int8_t*, int8_t);
typedef int64_t cmpxchg_long_func_t (int64_t, volatile int64_t*, int64_t);
typedef int32_t add_func_t (int32_t, volatile int32_t*);
typedef int64_t add_long_func_t (int64_t, volatile int64_t*);
#ifdef AMD64
int32_t os::atomic_xchg_bootstrap(int32_t exchange_value, volatile int32_t* dest) {
// try to use the stub:
xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
if (func != NULL) {
os::atomic_xchg_func = func;
return (*func)(exchange_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int32_t old_value = *dest;
*dest = exchange_value;
return old_value;
}
int64_t os::atomic_xchg_long_bootstrap(int64_t exchange_value, volatile int64_t* dest) {
// try to use the stub:
xchg_long_func_t* func = CAST_TO_FN_PTR(xchg_long_func_t*, StubRoutines::atomic_xchg_long_entry());
if (func != NULL) {
os::atomic_xchg_long_func = func;
return (*func)(exchange_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int64_t old_value = *dest;
*dest = exchange_value;
return old_value;
}
int32_t os::atomic_cmpxchg_bootstrap(int32_t exchange_value, volatile int32_t* dest, int32_t compare_value) {
// try to use the stub:
cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
if (func != NULL) {
os::atomic_cmpxchg_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int32_t old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
int8_t os::atomic_cmpxchg_byte_bootstrap(int8_t exchange_value, volatile int8_t* dest, int8_t compare_value) {
// try to use the stub:
cmpxchg_byte_func_t* func = CAST_TO_FN_PTR(cmpxchg_byte_func_t*, StubRoutines::atomic_cmpxchg_byte_entry());
if (func != NULL) {
os::atomic_cmpxchg_byte_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int8_t old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
#endif // AMD64
int64_t os::atomic_cmpxchg_long_bootstrap(int64_t exchange_value, volatile int64_t* dest, int64_t compare_value) {
// try to use the stub:
cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
if (func != NULL) {
os::atomic_cmpxchg_long_func = func;
return (*func)(exchange_value, dest, compare_value);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
int64_t old_value = *dest;
if (old_value == compare_value)
*dest = exchange_value;
return old_value;
}
#ifdef AMD64
int32_t os::atomic_add_bootstrap(int32_t add_value, volatile int32_t* dest) {
// try to use the stub:
add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
if (func != NULL) {
os::atomic_add_func = func;
return (*func)(add_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
return (*dest) += add_value;
}
int64_t os::atomic_add_long_bootstrap(int64_t add_value, volatile int64_t* dest) {
// try to use the stub:
add_long_func_t* func = CAST_TO_FN_PTR(add_long_func_t*, StubRoutines::atomic_add_long_entry());
if (func != NULL) {
os::atomic_add_long_func = func;
return (*func)(add_value, dest);
}
assert(Threads::number_of_threads() == 0, "for bootstrap only");
return (*dest) += add_value;
}
xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap;
xchg_long_func_t* os::atomic_xchg_long_func = os::atomic_xchg_long_bootstrap;
cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap;
cmpxchg_byte_func_t* os::atomic_cmpxchg_byte_func = os::atomic_cmpxchg_byte_bootstrap;
add_func_t* os::atomic_add_func = os::atomic_add_bootstrap;
add_long_func_t* os::atomic_add_long_func = os::atomic_add_long_bootstrap;
#endif // AMD64
cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
#ifdef AMD64
/*
* Windows/x64 does not use stack frames the way expected by Java:
* [1] in most cases, there is no frame pointer. All locals are addressed via RSP
* [2] in rare cases, when alloca() is used, a frame pointer is used, but this may
* not be RBP.
* See http://msdn.microsoft.com/en-us/library/ew5tede7.aspx
*
* So it's not possible to print the native stack using the
* while (...) {... fr = os::get_sender_for_C_frame(&fr); }
* loop in vmError.cpp. We need to roll our own loop.
*/
bool os::platform_print_native_stack(outputStream* st, const void* context,
char *buf, int buf_size)
{
CONTEXT ctx;
if (context != NULL) {
memcpy(&ctx, context, sizeof(ctx));
} else {
RtlCaptureContext(&ctx);
}
st->print_cr("Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)");
STACKFRAME stk;
memset(&stk, 0, sizeof(stk));
stk.AddrStack.Offset = ctx.Rsp;
stk.AddrStack.Mode = AddrModeFlat;
stk.AddrFrame.Offset = ctx.Rbp;
stk.AddrFrame.Mode = AddrModeFlat;
stk.AddrPC.Offset = ctx.Rip;
stk.AddrPC.Mode = AddrModeFlat;
int count = 0;
address lastpc = 0;
while (count++ < StackPrintLimit) {
intptr_t* sp = (intptr_t*)stk.AddrStack.Offset;
intptr_t* fp = (intptr_t*)stk.AddrFrame.Offset; // NOT necessarily the same as ctx.Rbp!
address pc = (address)stk.AddrPC.Offset;
if (pc != NULL) {
if (count == 2 && lastpc == pc) {
// Skip it -- StackWalk64() may return the same PC
// (but different SP) on the first try.
} else {
// Don't try to create a frame(sp, fp, pc) -- on WinX64, stk.AddrFrame
// may not contain what Java expects, and may cause the frame() constructor
// to crash. Let's just print out the symbolic address.
frame::print_C_frame(st, buf, buf_size, pc);
// print source file and line, if available
char buf[128];
int line_no;
if (SymbolEngine::get_source_info(pc, buf, sizeof(buf), &line_no)) {
st->print(" (%s:%d)", buf, line_no);
}
st->cr();
}
lastpc = pc;
}
PVOID p = WindowsDbgHelp::symFunctionTableAccess64(GetCurrentProcess(), stk.AddrPC.Offset);
if (!p) {
// StackWalk64() can't handle this PC. Calling StackWalk64 again may cause crash.
break;
}
BOOL result = WindowsDbgHelp::stackWalk64(
IMAGE_FILE_MACHINE_AMD64, // __in DWORD MachineType,
GetCurrentProcess(), // __in HANDLE hProcess,
GetCurrentThread(), // __in HANDLE hThread,
&stk, // __inout LP STACKFRAME64 StackFrame,
&ctx); // __inout PVOID ContextRecord,
if (!result) {
break;
}
}
if (count > StackPrintLimit) {
st->print_cr("...<more frames>...");
}
st->cr();
return true;
}
#endif // AMD64
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_fp) {
ExtendedPC epc;
CONTEXT* uc = (CONTEXT*)ucVoid;
if (uc != NULL) {
epc = ExtendedPC((address)uc->REG_PC);
if (ret_sp) *ret_sp = (intptr_t*)uc->REG_SP;
if (ret_fp) *ret_fp = (intptr_t*)uc->REG_FP;
} else {
// construct empty ExtendedPC for return value checking
epc = ExtendedPC(NULL);
if (ret_sp) *ret_sp = (intptr_t *)NULL;
if (ret_fp) *ret_fp = (intptr_t *)NULL;
}
return epc;
}
frame os::fetch_frame_from_context(const void* ucVoid) {
intptr_t* sp;
intptr_t* fp;
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
return frame(sp, fp, epc.pc());
}
// VC++ does not save frame pointer on stack in optimized build. It
// can be turned off by /Oy-. If we really want to walk C frames,
// we can use the StackWalk() API.
frame os::get_sender_for_C_frame(frame* fr) {
return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
}
#ifndef AMD64
// Ignore "C4172: returning address of local variable or temporary" on 32bit
PRAGMA_DIAG_PUSH
PRAGMA_DISABLE_MSVC_WARNING(4172)
// Returns an estimate of the current stack pointer. Result must be guaranteed
// to point into the calling threads stack, and be no lower than the current
// stack pointer.
address os::current_stack_pointer() {
int dummy;
address sp = (address)&dummy;
return sp;
}
PRAGMA_DIAG_POP
#else
// Returns the current stack pointer. Accurate value needed for
// os::verify_stack_alignment().
address os::current_stack_pointer() {
typedef address get_sp_func();
get_sp_func* func = CAST_TO_FN_PTR(get_sp_func*,
StubRoutines::x86::get_previous_sp_entry());
return (*func)();
}
#endif
#ifndef AMD64
intptr_t* _get_previous_fp() {
intptr_t **frameptr;
__asm {
mov frameptr, ebp
};
// ebp (frameptr) is for this frame (_get_previous_fp). We want the ebp for the
// caller of os::current_frame*(), so go up two frames. However, for
// optimized builds, _get_previous_fp() will be inlined, so only go
// up 1 frame in that case.
#ifdef _NMT_NOINLINE_
return **(intptr_t***)frameptr;
#else
return *frameptr;
#endif
}
#endif // !AMD64
frame os::current_frame() {
#ifdef AMD64
// apparently _asm not supported on windows amd64
typedef intptr_t* get_fp_func ();
get_fp_func* func = CAST_TO_FN_PTR(get_fp_func*,
StubRoutines::x86::get_previous_fp_entry());
if (func == NULL) return frame();
intptr_t* fp = (*func)();
if (fp == NULL) {
return frame();
}
#else
intptr_t* fp = _get_previous_fp();
#endif // AMD64
frame myframe((intptr_t*)os::current_stack_pointer(),
(intptr_t*)fp,
CAST_FROM_FN_PTR(address, os::current_frame));
if (os::is_first_C_frame(&myframe)) {
// stack is not walkable
return frame();
} else {
return os::get_sender_for_C_frame(&myframe);
}
}
void os::print_context(outputStream *st, const void *context) {
if (context == NULL) return;
const CONTEXT* uc = (const CONTEXT*)context;
st->print_cr("Registers:");
#ifdef AMD64
st->print( "RAX=" INTPTR_FORMAT, uc->Rax);
st->print(", RBX=" INTPTR_FORMAT, uc->Rbx);
st->print(", RCX=" INTPTR_FORMAT, uc->Rcx);
st->print(", RDX=" INTPTR_FORMAT, uc->Rdx);
st->cr();
st->print( "RSP=" INTPTR_FORMAT, uc->Rsp);
st->print(", RBP=" INTPTR_FORMAT, uc->Rbp);
st->print(", RSI=" INTPTR_FORMAT, uc->Rsi);
st->print(", RDI=" INTPTR_FORMAT, uc->Rdi);
st->cr();
st->print( "R8 =" INTPTR_FORMAT, uc->R8);
st->print(", R9 =" INTPTR_FORMAT, uc->R9);
st->print(", R10=" INTPTR_FORMAT, uc->R10);
st->print(", R11=" INTPTR_FORMAT, uc->R11);
st->cr();
st->print( "R12=" INTPTR_FORMAT, uc->R12);
st->print(", R13=" INTPTR_FORMAT, uc->R13);
st->print(", R14=" INTPTR_FORMAT, uc->R14);
st->print(", R15=" INTPTR_FORMAT, uc->R15);
st->cr();
st->print( "RIP=" INTPTR_FORMAT, uc->Rip);
st->print(", EFLAGS=" INTPTR_FORMAT, uc->EFlags);
#else
st->print( "EAX=" INTPTR_FORMAT, uc->Eax);
st->print(", EBX=" INTPTR_FORMAT, uc->Ebx);
st->print(", ECX=" INTPTR_FORMAT, uc->Ecx);
st->print(", EDX=" INTPTR_FORMAT, uc->Edx);
st->cr();
st->print( "ESP=" INTPTR_FORMAT, uc->Esp);
st->print(", EBP=" INTPTR_FORMAT, uc->Ebp);
st->print(", ESI=" INTPTR_FORMAT, uc->Esi);
st->print(", EDI=" INTPTR_FORMAT, uc->Edi);
st->cr();
st->print( "EIP=" INTPTR_FORMAT, uc->Eip);
st->print(", EFLAGS=" INTPTR_FORMAT, uc->EFlags);
#endif // AMD64
st->cr();
st->cr();
intptr_t *sp = (intptr_t *)uc->REG_SP;
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
print_hex_dump(st, (address)sp, (address)(sp + 32), sizeof(intptr_t));
st->cr();
// Note: it may be unsafe to inspect memory near pc. For example, pc may
// point to garbage if entry point in an nmethod is corrupted. Leave
// this at the end, and hope for the best.
address pc = (address)uc->REG_PC;
print_instructions(st, pc, sizeof(char));
st->cr();
}
void os::print_register_info(outputStream *st, const void *context) {
if (context == NULL) return;
const CONTEXT* uc = (const CONTEXT*)context;
st->print_cr("Register to memory mapping:");
st->cr();
// this is only for the "general purpose" registers
#ifdef AMD64
st->print("RIP="); print_location(st, uc->Rip);
st->print("RAX="); print_location(st, uc->Rax);
st->print("RBX="); print_location(st, uc->Rbx);
st->print("RCX="); print_location(st, uc->Rcx);
st->print("RDX="); print_location(st, uc->Rdx);
st->print("RSP="); print_location(st, uc->Rsp);
st->print("RBP="); print_location(st, uc->Rbp);
st->print("RSI="); print_location(st, uc->Rsi);
st->print("RDI="); print_location(st, uc->Rdi);
st->print("R8 ="); print_location(st, uc->R8);
st->print("R9 ="); print_location(st, uc->R9);
st->print("R10="); print_location(st, uc->R10);
st->print("R11="); print_location(st, uc->R11);
st->print("R12="); print_location(st, uc->R12);
st->print("R13="); print_location(st, uc->R13);
st->print("R14="); print_location(st, uc->R14);
st->print("R15="); print_location(st, uc->R15);
#else
st->print("EIP="); print_location(st, uc->Eip);
st->print("EAX="); print_location(st, uc->Eax);
st->print("EBX="); print_location(st, uc->Ebx);
st->print("ECX="); print_location(st, uc->Ecx);
st->print("EDX="); print_location(st, uc->Edx);
st->print("ESP="); print_location(st, uc->Esp);
st->print("EBP="); print_location(st, uc->Ebp);
st->print("ESI="); print_location(st, uc->Esi);
st->print("EDI="); print_location(st, uc->Edi);
#endif
st->cr();
}
extern "C" int SpinPause () {
#ifdef AMD64
return 0 ;
#else
// pause == rep:nop
// On systems that don't support pause a rep:nop
// is executed as a nop. The rep: prefix is ignored.
_asm {
pause ;
};
return 1 ;
#endif // AMD64
}
void os::setup_fpu() {
#ifndef AMD64
int fpu_cntrl_word = StubRoutines::fpu_cntrl_wrd_std();
__asm fldcw fpu_cntrl_word;
#endif // !AMD64
}
#ifndef PRODUCT
void os::verify_stack_alignment() {
#ifdef AMD64
// The current_stack_pointer() calls generated get_previous_sp stub routine.
// Only enable the assert after the routine becomes available.
if (StubRoutines::code1() != NULL) {
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
}
#endif
}
#endif
int os::extra_bang_size_in_bytes() {
// JDK-8050147 requires the full cache line bang for x86.
return VM_Version::L1_line_size();
}