/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.dc;
import java.awt.Shape;
import java.awt.BasicStroke;
import java.awt.geom.Path2D;
import java.awt.geom.PathIterator;
import java.awt.geom.AffineTransform;
import sun.awt.geom.PathConsumer2D;
import sun.java2d.pipe.Region;
import sun.java2d.pipe.AATileGenerator;
import sun.java2d.pipe.RenderingEngine;
import sun.dc.pr.Rasterizer;
import sun.dc.pr.PathStroker;
import sun.dc.pr.PathDasher;
import sun.dc.pr.PRException;
import sun.dc.path.PathConsumer;
import sun.dc.path.PathException;
import sun.dc.path.FastPathProducer;
public class DuctusRenderingEngine extends RenderingEngine {
static final float PenUnits = 0.01f;
static final int MinPenUnits = 100;
static final int MinPenUnitsAA = 20;
static final float MinPenSizeAA = PenUnits * MinPenUnitsAA;
static final float UPPER_BND = Float.MAX_VALUE / 2.0f;
static final float LOWER_BND = -UPPER_BND;
private static final int RasterizerCaps[] = {
Rasterizer.BUTT, Rasterizer.ROUND, Rasterizer.SQUARE
};
private static final int RasterizerCorners[] = {
Rasterizer.MITER, Rasterizer.ROUND, Rasterizer.BEVEL
};
static float[] getTransformMatrix(AffineTransform transform) {
float matrix[] = new float[4];
double dmatrix[] = new double[6];
transform.getMatrix(dmatrix);
for (int i = 0; i < 4; i++) {
matrix[i] = (float) dmatrix[i];
}
return matrix;
}
/**
* {@inheritDoc}
*/
@Override
public Shape createStrokedShape(Shape src,
float width,
int caps,
int join,
float miterlimit,
float dashes[],
float dashphase)
{
FillAdapter filler = new FillAdapter();
PathStroker stroker = new PathStroker(filler);
PathDasher dasher = null;
try {
PathConsumer consumer;
stroker.setPenDiameter(width);
stroker.setPenT4(null);
stroker.setCaps(RasterizerCaps[caps]);
stroker.setCorners(RasterizerCorners[join], miterlimit);
if (dashes != null) {
dasher = new PathDasher(stroker);
dasher.setDash(dashes, dashphase);
dasher.setDashT4(null);
consumer = dasher;
} else {
consumer = stroker;
}
feedConsumer(consumer, src.getPathIterator(null));
} finally {
stroker.dispose();
if (dasher != null) {
dasher.dispose();
}
}
return filler.getShape();
}
/**
* {@inheritDoc}
*/
@Override
public void strokeTo(Shape src,
AffineTransform transform,
BasicStroke bs,
boolean thin,
boolean normalize,
boolean antialias,
PathConsumer2D sr)
{
PathStroker stroker = new PathStroker(sr);
PathConsumer consumer = stroker;
float matrix[] = null;
if (!thin) {
stroker.setPenDiameter(bs.getLineWidth());
if (transform != null) {
matrix = getTransformMatrix(transform);
}
stroker.setPenT4(matrix);
stroker.setPenFitting(PenUnits, MinPenUnits);
}
stroker.setCaps(RasterizerCaps[bs.getEndCap()]);
stroker.setCorners(RasterizerCorners[bs.getLineJoin()],
bs.getMiterLimit());
float[] dashes = bs.getDashArray();
if (dashes != null) {
PathDasher dasher = new PathDasher(stroker);
dasher.setDash(dashes, bs.getDashPhase());
if (transform != null && matrix == null) {
matrix = getTransformMatrix(transform);
}
dasher.setDashT4(matrix);
consumer = dasher;
}
try {
PathIterator pi = src.getPathIterator(transform);
feedConsumer(pi, consumer, normalize, 0.25f);
} catch (PathException e) {
throw new InternalError("Unable to Stroke shape ("+
e.getMessage()+")");
} finally {
while (consumer != null && consumer != sr) {
PathConsumer next = consumer.getConsumer();
consumer.dispose();
consumer = next;
}
}
}
/*
* Feed a path from a PathIterator to a Ductus PathConsumer.
*/
public static void feedConsumer(PathIterator pi, PathConsumer consumer,
boolean normalize, float norm)
throws PathException
{
consumer.beginPath();
boolean pathClosed = false;
boolean skip = false;
boolean subpathStarted = false;
float mx = 0.0f;
float my = 0.0f;
float point[] = new float[6];
float rnd = (0.5f - norm);
float ax = 0.0f;
float ay = 0.0f;
while (!pi.isDone()) {
int type = pi.currentSegment(point);
if (pathClosed == true) {
pathClosed = false;
if (type != PathIterator.SEG_MOVETO) {
// Force current point back to last moveto point
consumer.beginSubpath(mx, my);
subpathStarted = true;
}
}
if (normalize) {
int index;
switch (type) {
case PathIterator.SEG_CUBICTO:
index = 4;
break;
case PathIterator.SEG_QUADTO:
index = 2;
break;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
index = 0;
break;
case PathIterator.SEG_CLOSE:
default:
index = -1;
break;
}
if (index >= 0) {
float ox = point[index];
float oy = point[index+1];
float newax = (float) Math.floor(ox + rnd) + norm;
float neway = (float) Math.floor(oy + rnd) + norm;
point[index] = newax;
point[index+1] = neway;
newax -= ox;
neway -= oy;
switch (type) {
case PathIterator.SEG_CUBICTO:
point[0] += ax;
point[1] += ay;
point[2] += newax;
point[3] += neway;
break;
case PathIterator.SEG_QUADTO:
point[0] += (newax + ax) / 2;
point[1] += (neway + ay) / 2;
break;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
case PathIterator.SEG_CLOSE:
break;
}
ax = newax;
ay = neway;
}
}
switch (type) {
case PathIterator.SEG_MOVETO:
/* Checking SEG_MOVETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Skipping next path segment in case of
* invalid data.
*/
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND)
{
mx = point[0];
my = point[1];
consumer.beginSubpath(mx, my);
subpathStarted = true;
skip = false;
} else {
skip = true;
}
break;
case PathIterator.SEG_LINETO:
/* Checking SEG_LINETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Ignoring current path segment in case
* of invalid data. If segment is skipped its endpoint
* (if valid) is used to begin new subpath.
*/
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND)
{
if (skip) {
consumer.beginSubpath(point[0], point[1]);
subpathStarted = true;
skip = false;
} else {
consumer.appendLine(point[0], point[1]);
}
}
break;
case PathIterator.SEG_QUADTO:
// Quadratic curves take two points
/* Checking SEG_QUADTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Ignoring current path segment in case
* of invalid endpoints's data. Equivalent to the SEG_LINETO
* if endpoint coordinates are valid but there are invalid data
* amoung other coordinates
*/
if (point[2] < UPPER_BND && point[2] > LOWER_BND &&
point[3] < UPPER_BND && point[3] > LOWER_BND)
{
if (skip) {
consumer.beginSubpath(point[2], point[3]);
subpathStarted = true;
skip = false;
} else {
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND)
{
consumer.appendQuadratic(point[0], point[1],
point[2], point[3]);
} else {
consumer.appendLine(point[2], point[3]);
}
}
}
break;
case PathIterator.SEG_CUBICTO:
// Cubic curves take three points
/* Checking SEG_CUBICTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Ignoring current path segment in case
* of invalid endpoints's data. Equivalent to the SEG_LINETO
* if endpoint coordinates are valid but there are invalid data
* amoung other coordinates
*/
if (point[4] < UPPER_BND && point[4] > LOWER_BND &&
point[5] < UPPER_BND && point[5] > LOWER_BND)
{
if (skip) {
consumer.beginSubpath(point[4], point[5]);
subpathStarted = true;
skip = false;
} else {
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND &&
point[2] < UPPER_BND && point[2] > LOWER_BND &&
point[3] < UPPER_BND && point[3] > LOWER_BND)
{
consumer.appendCubic(point[0], point[1],
point[2], point[3],
point[4], point[5]);
} else {
consumer.appendLine(point[4], point[5]);
}
}
}
break;
case PathIterator.SEG_CLOSE:
if (subpathStarted) {
consumer.closedSubpath();
subpathStarted = false;
pathClosed = true;
}
break;
}
pi.next();
}
consumer.endPath();
}
private static Rasterizer theRasterizer;
public synchronized static Rasterizer getRasterizer() {
Rasterizer r = theRasterizer;
if (r == null) {
r = new Rasterizer();
} else {
theRasterizer = null;
}
return r;
}
public synchronized static void dropRasterizer(Rasterizer r) {
r.reset();
theRasterizer = r;
}
/**
* {@inheritDoc}
*/
@Override
public float getMinimumAAPenSize() {
return MinPenSizeAA;
}
/**
* {@inheritDoc}
*/
@Override
public AATileGenerator getAATileGenerator(Shape s,
AffineTransform at,
Region clip,
BasicStroke bs,
boolean thin,
boolean normalize,
int bbox[])
{
Rasterizer r = getRasterizer();
PathIterator pi = s.getPathIterator(at);
if (bs != null) {
float matrix[] = null;
r.setUsage(Rasterizer.STROKE);
if (thin) {
r.setPenDiameter(MinPenSizeAA);
} else {
r.setPenDiameter(bs.getLineWidth());
if (at != null) {
matrix = getTransformMatrix(at);
r.setPenT4(matrix);
}
r.setPenFitting(PenUnits, MinPenUnitsAA);
}
r.setCaps(RasterizerCaps[bs.getEndCap()]);
r.setCorners(RasterizerCorners[bs.getLineJoin()],
bs.getMiterLimit());
float[] dashes = bs.getDashArray();
if (dashes != null) {
r.setDash(dashes, bs.getDashPhase());
if (at != null && matrix == null) {
matrix = getTransformMatrix(at);
}
r.setDashT4(matrix);
}
} else {
r.setUsage(pi.getWindingRule() == PathIterator.WIND_EVEN_ODD
? Rasterizer.EOFILL
: Rasterizer.NZFILL);
}
r.beginPath();
{
boolean pathClosed = false;
boolean skip = false;
boolean subpathStarted = false;
float mx = 0.0f;
float my = 0.0f;
float point[] = new float[6];
float ax = 0.0f;
float ay = 0.0f;
while (!pi.isDone()) {
int type = pi.currentSegment(point);
if (pathClosed == true) {
pathClosed = false;
if (type != PathIterator.SEG_MOVETO) {
// Force current point back to last moveto point
r.beginSubpath(mx, my);
subpathStarted = true;
}
}
if (normalize) {
int index;
switch (type) {
case PathIterator.SEG_CUBICTO:
index = 4;
break;
case PathIterator.SEG_QUADTO:
index = 2;
break;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
index = 0;
break;
case PathIterator.SEG_CLOSE:
default:
index = -1;
break;
}
if (index >= 0) {
float ox = point[index];
float oy = point[index+1];
float newax = (float) Math.floor(ox) + 0.5f;
float neway = (float) Math.floor(oy) + 0.5f;
point[index] = newax;
point[index+1] = neway;
newax -= ox;
neway -= oy;
switch (type) {
case PathIterator.SEG_CUBICTO:
point[0] += ax;
point[1] += ay;
point[2] += newax;
point[3] += neway;
break;
case PathIterator.SEG_QUADTO:
point[0] += (newax + ax) / 2;
point[1] += (neway + ay) / 2;
break;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
case PathIterator.SEG_CLOSE:
break;
}
ax = newax;
ay = neway;
}
}
switch (type) {
case PathIterator.SEG_MOVETO:
/* Checking SEG_MOVETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles NaN
* and Infinity values. Skipping next path segment in case
* of invalid data.
*/
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND)
{
mx = point[0];
my = point[1];
r.beginSubpath(mx, my);
subpathStarted = true;
skip = false;
} else {
skip = true;
}
break;
case PathIterator.SEG_LINETO:
/* Checking SEG_LINETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles
* NaN and Infinity values. Ignoring current path segment
* in case of invalid data. If segment is skipped its
* endpoint (if valid) is used to begin new subpath.
*/
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND)
{
if (skip) {
r.beginSubpath(point[0], point[1]);
subpathStarted = true;
skip = false;
} else {
r.appendLine(point[0], point[1]);
}
}
break;
case PathIterator.SEG_QUADTO:
// Quadratic curves take two points
/* Checking SEG_QUADTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles
* NaN and Infinity values. Ignoring current path segment
* in case of invalid endpoints's data. Equivalent to the
* SEG_LINETO if endpoint coordinates are valid but there
* are invalid data amoung other coordinates
*/
if (point[2] < UPPER_BND && point[2] > LOWER_BND &&
point[3] < UPPER_BND && point[3] > LOWER_BND)
{
if (skip) {
r.beginSubpath(point[2], point[3]);
subpathStarted = true;
skip = false;
} else {
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND)
{
r.appendQuadratic(point[0], point[1],
point[2], point[3]);
} else {
r.appendLine(point[2], point[3]);
}
}
}
break;
case PathIterator.SEG_CUBICTO:
// Cubic curves take three points
/* Checking SEG_CUBICTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles
* NaN and Infinity values. Ignoring current path segment
* in case of invalid endpoints's data. Equivalent to the
* SEG_LINETO if endpoint coordinates are valid but there
* are invalid data amoung other coordinates
*/
if (point[4] < UPPER_BND && point[4] > LOWER_BND &&
point[5] < UPPER_BND && point[5] > LOWER_BND)
{
if (skip) {
r.beginSubpath(point[4], point[5]);
subpathStarted = true;
skip = false;
} else {
if (point[0] < UPPER_BND && point[0] > LOWER_BND &&
point[1] < UPPER_BND && point[1] > LOWER_BND &&
point[2] < UPPER_BND && point[2] > LOWER_BND &&
point[3] < UPPER_BND && point[3] > LOWER_BND)
{
r.appendCubic(point[0], point[1],
point[2], point[3],
point[4], point[5]);
} else {
r.appendLine(point[4], point[5]);
}
}
}
break;
case PathIterator.SEG_CLOSE:
if (subpathStarted) {
r.closedSubpath();
subpathStarted = false;
pathClosed = true;
}
break;
}
pi.next();
}
}
try {
r.endPath();
r.getAlphaBox(bbox);
clip.clipBoxToBounds(bbox);
if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
dropRasterizer(r);
return null;
}
r.setOutputArea(bbox[0], bbox[1],
bbox[2] - bbox[0],
bbox[3] - bbox[1]);
} catch (PRException e) {
/*
* This exeption is thrown from the native part of the Ductus
* (only in case of a debug build) to indicate that some
* segments of the path have very large coordinates.
* See 4485298 for more info.
*/
System.err.println("DuctusRenderingEngine.getAATileGenerator: "+e);
}
return r;
}
private void feedConsumer(PathConsumer consumer, PathIterator pi) {
try {
consumer.beginPath();
boolean pathClosed = false;
float mx = 0.0f;
float my = 0.0f;
float point[] = new float[6];
while (!pi.isDone()) {
int type = pi.currentSegment(point);
if (pathClosed == true) {
pathClosed = false;
if (type != PathIterator.SEG_MOVETO) {
// Force current point back to last moveto point
consumer.beginSubpath(mx, my);
}
}
switch (type) {
case PathIterator.SEG_MOVETO:
mx = point[0];
my = point[1];
consumer.beginSubpath(point[0], point[1]);
break;
case PathIterator.SEG_LINETO:
consumer.appendLine(point[0], point[1]);
break;
case PathIterator.SEG_QUADTO:
consumer.appendQuadratic(point[0], point[1],
point[2], point[3]);
break;
case PathIterator.SEG_CUBICTO:
consumer.appendCubic(point[0], point[1],
point[2], point[3],
point[4], point[5]);
break;
case PathIterator.SEG_CLOSE:
consumer.closedSubpath();
pathClosed = true;
break;
}
pi.next();
}
consumer.endPath();
} catch (PathException e) {
throw new InternalError("Unable to Stroke shape ("+
e.getMessage()+")");
}
}
private class FillAdapter implements PathConsumer {
boolean closed;
Path2D.Float path;
public FillAdapter() {
// Ductus only supplies float coordinates so
// Path2D.Double is not necessary here.
path = new Path2D.Float(Path2D.WIND_NON_ZERO);
}
public Shape getShape() {
return path;
}
public void dispose() {
}
public PathConsumer getConsumer() {
return null;
}
public void beginPath() {}
public void beginSubpath(float x0, float y0) {
if (closed) {
path.closePath();
closed = false;
}
path.moveTo(x0, y0);
}
public void appendLine(float x1, float y1) {
path.lineTo(x1, y1);
}
public void appendQuadratic(float xm, float ym, float x1, float y1) {
path.quadTo(xm, ym, x1, y1);
}
public void appendCubic(float xm, float ym,
float xn, float yn,
float x1, float y1) {
path.curveTo(xm, ym, xn, yn, x1, y1);
}
public void closedSubpath() {
closed = true;
}
public void endPath() {
if (closed) {
path.closePath();
closed = false;
}
}
public void useProxy(FastPathProducer proxy)
throws PathException
{
proxy.sendTo(this);
}
public long getCPathConsumer() {
return 0;
}
}
}