6903354: deadlock involving Component.show & SunToolkit.getImageFromHash
Reviewed-by: art, bae
/*
* Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_stubs.cpp.incl"
// Implementation of StubQueue
//
// Standard wrap-around queue implementation; the queue dimensions
// are specified by the _queue_begin & _queue_end indices. The queue
// can be in two states (transparent to the outside):
//
// a) contiguous state: all queue entries in one block (or empty)
//
// Queue: |...|XXXXXXX|...............|
// ^0 ^begin ^end ^size = limit
// |_______|
// one block
//
// b) non-contiguous state: queue entries in two blocks
//
// Queue: |XXX|.......|XXXXXXX|.......|
// ^0 ^end ^begin ^limit ^size
// |___| |_______|
// 1st block 2nd block
//
// In the non-contiguous state, the wrap-around point is
// indicated via the _buffer_limit index since the last
// queue entry may not fill up the queue completely in
// which case we need to know where the 2nd block's end
// is to do the proper wrap-around. When removing the
// last entry of the 2nd block, _buffer_limit is reset
// to _buffer_size.
//
// CAUTION: DO NOT MESS WITH THIS CODE IF YOU CANNOT PROVE
// ITS CORRECTNESS! THIS CODE IS MORE SUBTLE THAN IT LOOKS!
StubQueue::StubQueue(StubInterface* stub_interface, int buffer_size,
Mutex* lock, const char* name) : _mutex(lock) {
intptr_t size = round_to(buffer_size, 2*BytesPerWord);
BufferBlob* blob = BufferBlob::create(name, size);
if( blob == NULL ) vm_exit_out_of_memory1(size, "CodeCache: no room for %s", name);
_stub_interface = stub_interface;
_buffer_size = blob->instructions_size();
_buffer_limit = blob->instructions_size();
_stub_buffer = blob->instructions_begin();
_queue_begin = 0;
_queue_end = 0;
_number_of_stubs = 0;
register_queue(this);
}
StubQueue::~StubQueue() {
// Note: Currently StubQueues are never destroyed so nothing needs to be done here.
// If we want to implement the destructor, we need to release the BufferBlob
// allocated in the constructor (i.e., we need to keep it around or look it
// up via CodeCache::find_blob(...).
Unimplemented();
}
Stub* StubQueue::stub_containing(address pc) const {
if (contains(pc)) {
for (Stub* s = first(); s != NULL; s = next(s)) {
if (stub_contains(s, pc)) return s;
}
}
return NULL;
}
Stub* StubQueue::request_committed(int code_size) {
Stub* s = request(code_size);
if (s != NULL) commit(code_size);
return s;
}
Stub* StubQueue::request(int requested_code_size) {
assert(requested_code_size > 0, "requested_code_size must be > 0");
if (_mutex != NULL) _mutex->lock();
Stub* s = current_stub();
int requested_size = round_to(stub_code_size_to_size(requested_code_size), CodeEntryAlignment);
if (requested_size <= available_space()) {
if (is_contiguous()) {
// Queue: |...|XXXXXXX|.............|
// ^0 ^begin ^end ^size = limit
assert(_buffer_limit == _buffer_size, "buffer must be fully usable");
if (_queue_end + requested_size <= _buffer_size) {
// code fits in at the end => nothing to do
stub_initialize(s, requested_size);
return s;
} else {
// stub doesn't fit in at the queue end
// => reduce buffer limit & wrap around
assert(!is_empty(), "just checkin'");
_buffer_limit = _queue_end;
_queue_end = 0;
}
}
}
if (requested_size <= available_space()) {
assert(!is_contiguous(), "just checkin'");
assert(_buffer_limit <= _buffer_size, "queue invariant broken");
// Queue: |XXX|.......|XXXXXXX|.......|
// ^0 ^end ^begin ^limit ^size
s = current_stub();
stub_initialize(s, requested_size);
return s;
}
// Not enough space left
if (_mutex != NULL) _mutex->unlock();
return NULL;
}
void StubQueue::commit(int committed_code_size) {
assert(committed_code_size > 0, "committed_code_size must be > 0");
int committed_size = round_to(stub_code_size_to_size(committed_code_size), CodeEntryAlignment);
Stub* s = current_stub();
assert(committed_size <= stub_size(s), "committed size must not exceed requested size");
stub_initialize(s, committed_size);
_queue_end += committed_size;
_number_of_stubs++;
if (_mutex != NULL) _mutex->unlock();
debug_only(stub_verify(s);)
}
void StubQueue::remove_first() {
if (number_of_stubs() == 0) return;
Stub* s = first();
debug_only(stub_verify(s);)
stub_finalize(s);
_queue_begin += stub_size(s);
assert(_queue_begin <= _buffer_limit, "sanity check");
if (_queue_begin == _queue_end) {
// buffer empty
// => reset queue indices
_queue_begin = 0;
_queue_end = 0;
_buffer_limit = _buffer_size;
} else if (_queue_begin == _buffer_limit) {
// buffer limit reached
// => reset buffer limit & wrap around
_buffer_limit = _buffer_size;
_queue_begin = 0;
}
_number_of_stubs--;
}
void StubQueue::remove_first(int n) {
int i = MIN2(n, number_of_stubs());
while (i-- > 0) remove_first();
}
void StubQueue::remove_all(){
debug_only(verify();)
remove_first(number_of_stubs());
assert(number_of_stubs() == 0, "sanity check");
}
enum { StubQueueLimit = 10 }; // there are only a few in the world
static StubQueue* registered_stub_queues[StubQueueLimit];
void StubQueue::register_queue(StubQueue* sq) {
for (int i = 0; i < StubQueueLimit; i++) {
if (registered_stub_queues[i] == NULL) {
registered_stub_queues[i] = sq;
return;
}
}
ShouldNotReachHere();
}
void StubQueue::queues_do(void f(StubQueue* sq)) {
for (int i = 0; i < StubQueueLimit; i++) {
if (registered_stub_queues[i] != NULL) {
f(registered_stub_queues[i]);
}
}
}
void StubQueue::stubs_do(void f(Stub* s)) {
debug_only(verify();)
MutexLockerEx lock(_mutex);
for (Stub* s = first(); s != NULL; s = next(s)) f(s);
}
void StubQueue::verify() {
// verify only if initialized
if (_stub_buffer == NULL) return;
MutexLockerEx lock(_mutex);
// verify index boundaries
guarantee(0 <= _buffer_size, "buffer size must be positive");
guarantee(0 <= _buffer_limit && _buffer_limit <= _buffer_size , "_buffer_limit out of bounds");
guarantee(0 <= _queue_begin && _queue_begin < _buffer_limit, "_queue_begin out of bounds");
guarantee(0 <= _queue_end && _queue_end <= _buffer_limit, "_queue_end out of bounds");
// verify alignment
guarantee(_buffer_size % CodeEntryAlignment == 0, "_buffer_size not aligned");
guarantee(_buffer_limit % CodeEntryAlignment == 0, "_buffer_limit not aligned");
guarantee(_queue_begin % CodeEntryAlignment == 0, "_queue_begin not aligned");
guarantee(_queue_end % CodeEntryAlignment == 0, "_queue_end not aligned");
// verify buffer limit/size relationship
if (is_contiguous()) {
guarantee(_buffer_limit == _buffer_size, "_buffer_limit must equal _buffer_size");
}
// verify contents
int n = 0;
for (Stub* s = first(); s != NULL; s = next(s)) {
stub_verify(s);
n++;
}
guarantee(n == number_of_stubs(), "number of stubs inconsistent");
guarantee(_queue_begin != _queue_end || n == 0, "buffer indices must be the same");
}
void StubQueue::print() {
MutexLockerEx lock(_mutex);
for (Stub* s = first(); s != NULL; s = next(s)) {
stub_print(s);
}
}