6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_assembler_x86_32.cpp.incl"
// Implementation of AddressLiteral
AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
_is_lval = false;
_target = target;
switch (rtype) {
case relocInfo::oop_type:
// Oops are a special case. Normally they would be their own section
// but in cases like icBuffer they are literals in the code stream that
// we don't have a section for. We use none so that we get a literal address
// which is always patchable.
break;
case relocInfo::external_word_type:
_rspec = external_word_Relocation::spec(target);
break;
case relocInfo::internal_word_type:
_rspec = internal_word_Relocation::spec(target);
break;
case relocInfo::opt_virtual_call_type:
_rspec = opt_virtual_call_Relocation::spec();
break;
case relocInfo::static_call_type:
_rspec = static_call_Relocation::spec();
break;
case relocInfo::runtime_call_type:
_rspec = runtime_call_Relocation::spec();
break;
case relocInfo::poll_type:
case relocInfo::poll_return_type:
_rspec = Relocation::spec_simple(rtype);
break;
case relocInfo::none:
break;
default:
ShouldNotReachHere();
break;
}
}
// Implementation of Address
Address Address::make_array(ArrayAddress adr) {
#ifdef _LP64
// Not implementable on 64bit machines
// Should have been handled higher up the call chain.
ShouldNotReachHere();
#else
AddressLiteral base = adr.base();
Address index = adr.index();
assert(index._disp == 0, "must not have disp"); // maybe it can?
Address array(index._base, index._index, index._scale, (intptr_t) base.target());
array._rspec = base._rspec;
return array;
#endif // _LP64
}
#ifndef _LP64
// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
_base = noreg;
_index = noreg;
_scale = no_scale;
_disp = (intptr_t) loc;
_rspec = spec;
}
#endif // _LP64
// Convert the raw encoding form into the form expected by the constructor for
// Address. An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
Address Address::make_raw(int base, int index, int scale, int disp) {
bool valid_index = index != rsp->encoding();
if (valid_index) {
Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
return madr;
} else {
Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
return madr;
}
}
// Implementation of Assembler
int AbstractAssembler::code_fill_byte() {
return (u_char)'\xF4'; // hlt
}
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
if (rtype == relocInfo::none)
emit_long(data);
else emit_data(data, Relocation::spec_simple(rtype), format);
}
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
assert(imm32_operand == 0, "default format must be imm32 in this file");
assert(inst_mark() != NULL, "must be inside InstructionMark");
if (rspec.type() != relocInfo::none) {
#ifdef ASSERT
check_relocation(rspec, format);
#endif
// Do not use AbstractAssembler::relocate, which is not intended for
// embedded words. Instead, relocate to the enclosing instruction.
// hack. call32 is too wide for mask so use disp32
if (format == call32_operand)
code_section()->relocate(inst_mark(), rspec, disp32_operand);
else
code_section()->relocate(inst_mark(), rspec, format);
}
emit_long(data);
}
void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
assert(dst->has_byte_register(), "must have byte register");
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert(isByte(imm8), "not a byte");
assert((op1 & 0x01) == 0, "should be 8bit operation");
emit_byte(op1);
emit_byte(op2 | dst->encoding());
emit_byte(imm8);
}
void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
if (is8bit(imm32)) {
emit_byte(op1 | 0x02); // set sign bit
emit_byte(op2 | dst->encoding());
emit_byte(imm32 & 0xFF);
} else {
emit_byte(op1);
emit_byte(op2 | dst->encoding());
emit_long(imm32);
}
}
// immediate-to-memory forms
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int imm32) {
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
if (is8bit(imm32)) {
emit_byte(op1 | 0x02); // set sign bit
emit_operand(rm,adr);
emit_byte(imm32 & 0xFF);
} else {
emit_byte(op1);
emit_operand(rm,adr);
emit_long(imm32);
}
}
void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
assert((op1 & 0x01) == 1, "should be 32bit operation");
assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
InstructionMark im(this);
emit_byte(op1);
emit_byte(op2 | dst->encoding());
emit_data((int)obj, relocInfo::oop_type, 0);
}
void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
assert(isByte(op1) && isByte(op2), "wrong opcode");
emit_byte(op1);
emit_byte(op2 | dst->encoding() << 3 | src->encoding());
}
void Assembler::emit_operand(Register reg,
Register base,
Register index,
Address::ScaleFactor scale,
int disp,
RelocationHolder const& rspec) {
relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
if (base->is_valid()) {
if (index->is_valid()) {
assert(scale != Address::no_scale, "inconsistent address");
// [base + index*scale + disp]
if (disp == 0 && rtype == relocInfo::none && base != rbp) {
// [base + index*scale]
// [00 reg 100][ss index base]
assert(index != rsp, "illegal addressing mode");
emit_byte(0x04 | reg->encoding() << 3);
emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
} else if (is8bit(disp) && rtype == relocInfo::none) {
// [base + index*scale + imm8]
// [01 reg 100][ss index base] imm8
assert(index != rsp, "illegal addressing mode");
emit_byte(0x44 | reg->encoding() << 3);
emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
emit_byte(disp & 0xFF);
} else {
// [base + index*scale + imm32]
// [10 reg 100][ss index base] imm32
assert(index != rsp, "illegal addressing mode");
emit_byte(0x84 | reg->encoding() << 3);
emit_byte(scale << 6 | index->encoding() << 3 | base->encoding());
emit_data(disp, rspec, disp32_operand);
}
} else if (base == rsp) {
// [esp + disp]
if (disp == 0 && rtype == relocInfo::none) {
// [esp]
// [00 reg 100][00 100 100]
emit_byte(0x04 | reg->encoding() << 3);
emit_byte(0x24);
} else if (is8bit(disp) && rtype == relocInfo::none) {
// [esp + imm8]
// [01 reg 100][00 100 100] imm8
emit_byte(0x44 | reg->encoding() << 3);
emit_byte(0x24);
emit_byte(disp & 0xFF);
} else {
// [esp + imm32]
// [10 reg 100][00 100 100] imm32
emit_byte(0x84 | reg->encoding() << 3);
emit_byte(0x24);
emit_data(disp, rspec, disp32_operand);
}
} else {
// [base + disp]
assert(base != rsp, "illegal addressing mode");
if (disp == 0 && rtype == relocInfo::none && base != rbp) {
// [base]
// [00 reg base]
assert(base != rbp, "illegal addressing mode");
emit_byte(0x00 | reg->encoding() << 3 | base->encoding());
} else if (is8bit(disp) && rtype == relocInfo::none) {
// [base + imm8]
// [01 reg base] imm8
emit_byte(0x40 | reg->encoding() << 3 | base->encoding());
emit_byte(disp & 0xFF);
} else {
// [base + imm32]
// [10 reg base] imm32
emit_byte(0x80 | reg->encoding() << 3 | base->encoding());
emit_data(disp, rspec, disp32_operand);
}
}
} else {
if (index->is_valid()) {
assert(scale != Address::no_scale, "inconsistent address");
// [index*scale + disp]
// [00 reg 100][ss index 101] imm32
assert(index != rsp, "illegal addressing mode");
emit_byte(0x04 | reg->encoding() << 3);
emit_byte(scale << 6 | index->encoding() << 3 | 0x05);
emit_data(disp, rspec, disp32_operand);
} else {
// [disp]
// [00 reg 101] imm32
emit_byte(0x05 | reg->encoding() << 3);
emit_data(disp, rspec, disp32_operand);
}
}
}
// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)
address Assembler::locate_operand(address inst, WhichOperand which) {
// Decode the given instruction, and return the address of
// an embedded 32-bit operand word.
// If "which" is disp32_operand, selects the displacement portion
// of an effective address specifier.
// If "which" is imm32_operand, selects the trailing immediate constant.
// If "which" is call32_operand, selects the displacement of a call or jump.
// Caller is responsible for ensuring that there is such an operand,
// and that it is 32 bits wide.
// If "which" is end_pc_operand, find the end of the instruction.
address ip = inst;
debug_only(bool has_imm32 = false);
int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
again_after_prefix:
switch (0xFF & *ip++) {
// These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
case REP8((x)+8)
case CS_segment:
case SS_segment:
case DS_segment:
case ES_segment:
case FS_segment:
case GS_segment:
assert(ip == inst+1, "only one prefix allowed");
goto again_after_prefix;
case 0xFF: // pushl a; decl a; incl a; call a; jmp a
case 0x88: // movb a, r
case 0x89: // movl a, r
case 0x8A: // movb r, a
case 0x8B: // movl r, a
case 0x8F: // popl a
break;
case 0x68: // pushl #32(oop?)
if (which == end_pc_operand) return ip + 4;
assert(which == imm32_operand, "pushl has no disp32");
return ip; // not produced by emit_operand
case 0x66: // movw ... (size prefix)
switch (0xFF & *ip++) {
case 0x8B: // movw r, a
case 0x89: // movw a, r
break;
case 0xC7: // movw a, #16
tail_size = 2; // the imm16
break;
case 0x0F: // several SSE/SSE2 variants
ip--; // reparse the 0x0F
goto again_after_prefix;
default:
ShouldNotReachHere();
}
break;
case REP8(0xB8): // movl r, #32(oop?)
if (which == end_pc_operand) return ip + 4;
assert(which == imm32_operand || which == disp32_operand, "");
return ip;
case 0x69: // imul r, a, #32
case 0xC7: // movl a, #32(oop?)
tail_size = 4;
debug_only(has_imm32 = true); // has both kinds of operands!
break;
case 0x0F: // movx..., etc.
switch (0xFF & *ip++) {
case 0x12: // movlps
case 0x28: // movaps
case 0x2E: // ucomiss
case 0x2F: // comiss
case 0x54: // andps
case 0x55: // andnps
case 0x56: // orps
case 0x57: // xorps
case 0x6E: // movd
case 0x7E: // movd
case 0xAE: // ldmxcsr a
// amd side says it these have both operands but that doesn't
// appear to be true.
// debug_only(has_imm32 = true); // has both kinds of operands!
break;
case 0xAD: // shrd r, a, %cl
case 0xAF: // imul r, a
case 0xBE: // movsxb r, a
case 0xBF: // movsxw r, a
case 0xB6: // movzxb r, a
case 0xB7: // movzxw r, a
case REP16(0x40): // cmovl cc, r, a
case 0xB0: // cmpxchgb
case 0xB1: // cmpxchg
case 0xC1: // xaddl
case 0xC7: // cmpxchg8
case REP16(0x90): // setcc a
// fall out of the switch to decode the address
break;
case 0xAC: // shrd r, a, #8
tail_size = 1; // the imm8
break;
case REP16(0x80): // jcc rdisp32
if (which == end_pc_operand) return ip + 4;
assert(which == call32_operand, "jcc has no disp32 or imm32");
return ip;
default:
ShouldNotReachHere();
}
break;
case 0x81: // addl a, #32; addl r, #32
// also: orl, adcl, sbbl, andl, subl, xorl, cmpl
// in the case of cmpl, the imm32 might be an oop
tail_size = 4;
debug_only(has_imm32 = true); // has both kinds of operands!
break;
case 0x85: // test r/m, r
break;
case 0x83: // addl a, #8; addl r, #8
// also: orl, adcl, sbbl, andl, subl, xorl, cmpl
tail_size = 1;
break;
case 0x9B:
switch (0xFF & *ip++) {
case 0xD9: // fnstcw a
break;
default:
ShouldNotReachHere();
}
break;
case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
case REP4(0x10): // adc...
case REP4(0x20): // and...
case REP4(0x30): // xor...
case REP4(0x08): // or...
case REP4(0x18): // sbb...
case REP4(0x28): // sub...
case REP4(0x38): // cmp...
case 0xF7: // mull a
case 0x8D: // leal r, a
case 0x87: // xchg r, a
break;
case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
case 0xC6: // movb a, #8
case 0x80: // cmpb a, #8
case 0x6B: // imul r, a, #8
tail_size = 1; // the imm8
break;
case 0xE8: // call rdisp32
case 0xE9: // jmp rdisp32
if (which == end_pc_operand) return ip + 4;
assert(which == call32_operand, "call has no disp32 or imm32");
return ip;
case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
case 0xDD: // fld_d a; fst_d a; fstp_d a
case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
case 0xDF: // fild_d a; fistp_d a
case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
break;
case 0xF3: // For SSE
case 0xF2: // For SSE2
ip++; ip++;
break;
default:
ShouldNotReachHere();
#undef REP8
#undef REP16
}
assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
assert(which != imm32_operand || has_imm32, "instruction has no imm32 field");
// parse the output of emit_operand
int op2 = 0xFF & *ip++;
int base = op2 & 0x07;
int op3 = -1;
const int b100 = 4;
const int b101 = 5;
if (base == b100 && (op2 >> 6) != 3) {
op3 = 0xFF & *ip++;
base = op3 & 0x07; // refetch the base
}
// now ip points at the disp (if any)
switch (op2 >> 6) {
case 0:
// [00 reg 100][ss index base]
// [00 reg 100][00 100 rsp]
// [00 reg base]
// [00 reg 100][ss index 101][disp32]
// [00 reg 101] [disp32]
if (base == b101) {
if (which == disp32_operand)
return ip; // caller wants the disp32
ip += 4; // skip the disp32
}
break;
case 1:
// [01 reg 100][ss index base][disp8]
// [01 reg 100][00 100 rsp][disp8]
// [01 reg base] [disp8]
ip += 1; // skip the disp8
break;
case 2:
// [10 reg 100][ss index base][disp32]
// [10 reg 100][00 100 rsp][disp32]
// [10 reg base] [disp32]
if (which == disp32_operand)
return ip; // caller wants the disp32
ip += 4; // skip the disp32
break;
case 3:
// [11 reg base] (not a memory addressing mode)
break;
}
if (which == end_pc_operand) {
return ip + tail_size;
}
assert(which == imm32_operand, "instruction has only an imm32 field");
return ip;
}
address Assembler::locate_next_instruction(address inst) {
// Secretly share code with locate_operand:
return locate_operand(inst, end_pc_operand);
}
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
address inst = inst_mark();
assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
address opnd;
Relocation* r = rspec.reloc();
if (r->type() == relocInfo::none) {
return;
} else if (r->is_call() || format == call32_operand) {
// assert(format == imm32_operand, "cannot specify a nonzero format");
opnd = locate_operand(inst, call32_operand);
} else if (r->is_data()) {
assert(format == imm32_operand || format == disp32_operand, "format ok");
opnd = locate_operand(inst, (WhichOperand)format);
} else {
assert(format == imm32_operand, "cannot specify a format");
return;
}
assert(opnd == pc(), "must put operand where relocs can find it");
}
#endif
void Assembler::emit_operand(Register reg, Address adr) {
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
void Assembler::emit_farith(int b1, int b2, int i) {
assert(isByte(b1) && isByte(b2), "wrong opcode");
assert(0 <= i && i < 8, "illegal stack offset");
emit_byte(b1);
emit_byte(b2 + i);
}
void Assembler::pushad() {
emit_byte(0x60);
}
void Assembler::popad() {
emit_byte(0x61);
}
void Assembler::pushfd() {
emit_byte(0x9C);
}
void Assembler::popfd() {
emit_byte(0x9D);
}
void Assembler::pushl(int imm32) {
emit_byte(0x68);
emit_long(imm32);
}
#ifndef _LP64
void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0x68);
emit_data(imm32, rspec, 0);
}
#endif // _LP64
void Assembler::pushl(Register src) {
emit_byte(0x50 | src->encoding());
}
void Assembler::pushl(Address src) {
InstructionMark im(this);
emit_byte(0xFF);
emit_operand(rsi, src);
}
void Assembler::popl(Register dst) {
emit_byte(0x58 | dst->encoding());
}
void Assembler::popl(Address dst) {
InstructionMark im(this);
emit_byte(0x8F);
emit_operand(rax, dst);
}
void Assembler::prefix(Prefix p) {
a_byte(p);
}
void Assembler::movb(Register dst, Address src) {
assert(dst->has_byte_register(), "must have byte register");
InstructionMark im(this);
emit_byte(0x8A);
emit_operand(dst, src);
}
void Assembler::movb(Address dst, int imm8) {
InstructionMark im(this);
emit_byte(0xC6);
emit_operand(rax, dst);
emit_byte(imm8);
}
void Assembler::movb(Address dst, Register src) {
assert(src->has_byte_register(), "must have byte register");
InstructionMark im(this);
emit_byte(0x88);
emit_operand(src, dst);
}
void Assembler::movw(Address dst, int imm16) {
InstructionMark im(this);
emit_byte(0x66); // switch to 16-bit mode
emit_byte(0xC7);
emit_operand(rax, dst);
emit_word(imm16);
}
void Assembler::movw(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x8B);
emit_operand(dst, src);
}
void Assembler::movw(Address dst, Register src) {
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x89);
emit_operand(src, dst);
}
void Assembler::movl(Register dst, int imm32) {
emit_byte(0xB8 | dst->encoding());
emit_long(imm32);
}
#ifndef _LP64
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0xB8 | dst->encoding());
emit_data((int)imm32, rspec, 0);
}
#endif // _LP64
void Assembler::movl(Register dst, Register src) {
emit_byte(0x8B);
emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
}
void Assembler::movl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x8B);
emit_operand(dst, src);
}
void Assembler::movl(Address dst, int imm32) {
InstructionMark im(this);
emit_byte(0xC7);
emit_operand(rax, dst);
emit_long(imm32);
}
#ifndef _LP64
void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0xC7);
emit_operand(rax, dst);
emit_data((int)imm32, rspec, 0);
}
#endif // _LP64
void Assembler::movl(Address dst, Register src) {
InstructionMark im(this);
emit_byte(0x89);
emit_operand(src, dst);
}
void Assembler::movsxb(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xBE);
emit_operand(dst, src);
}
void Assembler::movsxb(Register dst, Register src) {
assert(src->has_byte_register(), "must have byte register");
emit_byte(0x0F);
emit_byte(0xBE);
emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
}
void Assembler::movsxw(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xBF);
emit_operand(dst, src);
}
void Assembler::movsxw(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xBF);
emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
}
void Assembler::movzxb(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xB6);
emit_operand(dst, src);
}
void Assembler::movzxb(Register dst, Register src) {
assert(src->has_byte_register(), "must have byte register");
emit_byte(0x0F);
emit_byte(0xB6);
emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
}
void Assembler::movzxw(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xB7);
emit_operand(dst, src);
}
void Assembler::movzxw(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xB7);
emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
}
void Assembler::cmovl(Condition cc, Register dst, Register src) {
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_byte(0x0F);
emit_byte(0x40 | cc);
emit_byte(0xC0 | (dst->encoding() << 3) | src->encoding());
}
void Assembler::cmovl(Condition cc, Register dst, Address src) {
guarantee(VM_Version::supports_cmov(), "illegal instruction");
// The code below seems to be wrong - however the manual is inconclusive
// do not use for now (remember to enable all callers when fixing this)
Unimplemented();
// wrong bytes?
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x40 | cc);
emit_operand(dst, src);
}
void Assembler::prefetcht0(Address src) {
assert(VM_Version::supports_sse(), "must support");
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x18);
emit_operand(rcx, src); // 1, src
}
void Assembler::prefetcht1(Address src) {
assert(VM_Version::supports_sse(), "must support");
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x18);
emit_operand(rdx, src); // 2, src
}
void Assembler::prefetcht2(Address src) {
assert(VM_Version::supports_sse(), "must support");
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x18);
emit_operand(rbx, src); // 3, src
}
void Assembler::prefetchnta(Address src) {
assert(VM_Version::supports_sse2(), "must support");
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x18);
emit_operand(rax, src); // 0, src
}
void Assembler::prefetchw(Address src) {
assert(VM_Version::supports_3dnow(), "must support");
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x0D);
emit_operand(rcx, src); // 1, src
}
void Assembler::prefetchr(Address src) {
assert(VM_Version::supports_3dnow(), "must support");
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0x0D);
emit_operand(rax, src); // 0, src
}
void Assembler::adcl(Register dst, int imm32) {
emit_arith(0x81, 0xD0, dst, imm32);
}
void Assembler::adcl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x13);
emit_operand(dst, src);
}
void Assembler::adcl(Register dst, Register src) {
emit_arith(0x13, 0xC0, dst, src);
}
void Assembler::addl(Address dst, int imm32) {
InstructionMark im(this);
emit_arith_operand(0x81,rax,dst,imm32);
}
void Assembler::addl(Address dst, Register src) {
InstructionMark im(this);
emit_byte(0x01);
emit_operand(src, dst);
}
void Assembler::addl(Register dst, int imm32) {
emit_arith(0x81, 0xC0, dst, imm32);
}
void Assembler::addl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x03);
emit_operand(dst, src);
}
void Assembler::addl(Register dst, Register src) {
emit_arith(0x03, 0xC0, dst, src);
}
void Assembler::andl(Register dst, int imm32) {
emit_arith(0x81, 0xE0, dst, imm32);
}
void Assembler::andl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x23);
emit_operand(dst, src);
}
void Assembler::andl(Register dst, Register src) {
emit_arith(0x23, 0xC0, dst, src);
}
void Assembler::cmpb(Address dst, int imm8) {
InstructionMark im(this);
emit_byte(0x80);
emit_operand(rdi, dst);
emit_byte(imm8);
}
void Assembler::cmpw(Address dst, int imm16) {
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x81);
emit_operand(rdi, dst);
emit_word(imm16);
}
void Assembler::cmpl(Address dst, int imm32) {
InstructionMark im(this);
emit_byte(0x81);
emit_operand(rdi, dst);
emit_long(imm32);
}
#ifndef _LP64
void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0x81);
emit_byte(0xF8 | src1->encoding());
emit_data(imm32, rspec, 0);
}
void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0x81);
emit_operand(rdi, src1);
emit_data(imm32, rspec, 0);
}
#endif // _LP64
void Assembler::cmpl(Register dst, int imm32) {
emit_arith(0x81, 0xF8, dst, imm32);
}
void Assembler::cmpl(Register dst, Register src) {
emit_arith(0x3B, 0xC0, dst, src);
}
void Assembler::cmpl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x3B);
emit_operand(dst, src);
}
void Assembler::decl(Register dst) {
// Don't use it directly. Use MacroAssembler::decrement() instead.
emit_byte(0x48 | dst->encoding());
}
void Assembler::decl(Address dst) {
// Don't use it directly. Use MacroAssembler::decrement() instead.
InstructionMark im(this);
emit_byte(0xFF);
emit_operand(rcx, dst);
}
void Assembler::idivl(Register src) {
emit_byte(0xF7);
emit_byte(0xF8 | src->encoding());
}
void Assembler::cdql() {
emit_byte(0x99);
}
void Assembler::imull(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xAF);
emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
}
void Assembler::imull(Register dst, Register src, int value) {
if (is8bit(value)) {
emit_byte(0x6B);
emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
emit_byte(value);
} else {
emit_byte(0x69);
emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
emit_long(value);
}
}
void Assembler::incl(Register dst) {
// Don't use it directly. Use MacroAssembler::increment() instead.
emit_byte(0x40 | dst->encoding());
}
void Assembler::incl(Address dst) {
// Don't use it directly. Use MacroAssembler::increment() instead.
InstructionMark im(this);
emit_byte(0xFF);
emit_operand(rax, dst);
}
void Assembler::leal(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x8D);
emit_operand(dst, src);
}
void Assembler::mull(Address src) {
InstructionMark im(this);
emit_byte(0xF7);
emit_operand(rsp, src);
}
void Assembler::mull(Register src) {
emit_byte(0xF7);
emit_byte(0xE0 | src->encoding());
}
void Assembler::negl(Register dst) {
emit_byte(0xF7);
emit_byte(0xD8 | dst->encoding());
}
void Assembler::notl(Register dst) {
emit_byte(0xF7);
emit_byte(0xD0 | dst->encoding());
}
void Assembler::orl(Address dst, int imm32) {
InstructionMark im(this);
emit_byte(0x81);
emit_operand(rcx, dst);
emit_long(imm32);
}
void Assembler::orl(Register dst, int imm32) {
emit_arith(0x81, 0xC8, dst, imm32);
}
void Assembler::orl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x0B);
emit_operand(dst, src);
}
void Assembler::orl(Register dst, Register src) {
emit_arith(0x0B, 0xC0, dst, src);
}
void Assembler::rcll(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xD0 | dst->encoding());
} else {
emit_byte(0xC1);
emit_byte(0xD0 | dst->encoding());
emit_byte(imm8);
}
}
void Assembler::sarl(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
if (imm8 == 1) {
emit_byte(0xD1);
emit_byte(0xF8 | dst->encoding());
} else {
emit_byte(0xC1);
emit_byte(0xF8 | dst->encoding());
emit_byte(imm8);
}
}
void Assembler::sarl(Register dst) {
emit_byte(0xD3);
emit_byte(0xF8 | dst->encoding());
}
void Assembler::sbbl(Address dst, int imm32) {
InstructionMark im(this);
emit_arith_operand(0x81,rbx,dst,imm32);
}
void Assembler::sbbl(Register dst, int imm32) {
emit_arith(0x81, 0xD8, dst, imm32);
}
void Assembler::sbbl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x1B);
emit_operand(dst, src);
}
void Assembler::sbbl(Register dst, Register src) {
emit_arith(0x1B, 0xC0, dst, src);
}
void Assembler::shldl(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xA5);
emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}
void Assembler::shll(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
if (imm8 == 1 ) {
emit_byte(0xD1);
emit_byte(0xE0 | dst->encoding());
} else {
emit_byte(0xC1);
emit_byte(0xE0 | dst->encoding());
emit_byte(imm8);
}
}
void Assembler::shll(Register dst) {
emit_byte(0xD3);
emit_byte(0xE0 | dst->encoding());
}
void Assembler::shrdl(Register dst, Register src) {
emit_byte(0x0F);
emit_byte(0xAD);
emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}
void Assembler::shrl(Register dst, int imm8) {
assert(isShiftCount(imm8), "illegal shift count");
emit_byte(0xC1);
emit_byte(0xE8 | dst->encoding());
emit_byte(imm8);
}
void Assembler::shrl(Register dst) {
emit_byte(0xD3);
emit_byte(0xE8 | dst->encoding());
}
void Assembler::subl(Address dst, int imm32) {
if (is8bit(imm32)) {
InstructionMark im(this);
emit_byte(0x83);
emit_operand(rbp, dst);
emit_byte(imm32 & 0xFF);
} else {
InstructionMark im(this);
emit_byte(0x81);
emit_operand(rbp, dst);
emit_long(imm32);
}
}
void Assembler::subl(Register dst, int imm32) {
emit_arith(0x81, 0xE8, dst, imm32);
}
void Assembler::subl(Address dst, Register src) {
InstructionMark im(this);
emit_byte(0x29);
emit_operand(src, dst);
}
void Assembler::subl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x2B);
emit_operand(dst, src);
}
void Assembler::subl(Register dst, Register src) {
emit_arith(0x2B, 0xC0, dst, src);
}
void Assembler::testb(Register dst, int imm8) {
assert(dst->has_byte_register(), "must have byte register");
emit_arith_b(0xF6, 0xC0, dst, imm8);
}
void Assembler::testl(Register dst, int imm32) {
// not using emit_arith because test
// doesn't support sign-extension of
// 8bit operands
if (dst->encoding() == 0) {
emit_byte(0xA9);
} else {
emit_byte(0xF7);
emit_byte(0xC0 | dst->encoding());
}
emit_long(imm32);
}
void Assembler::testl(Register dst, Register src) {
emit_arith(0x85, 0xC0, dst, src);
}
void Assembler::testl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x85);
emit_operand(dst, src);
}
void Assembler::xaddl(Address dst, Register src) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xC1);
emit_operand(src, dst);
}
void Assembler::xorl(Register dst, int imm32) {
emit_arith(0x81, 0xF0, dst, imm32);
}
void Assembler::xorl(Register dst, Address src) {
InstructionMark im(this);
emit_byte(0x33);
emit_operand(dst, src);
}
void Assembler::xorl(Register dst, Register src) {
emit_arith(0x33, 0xC0, dst, src);
}
void Assembler::bswap(Register reg) {
emit_byte(0x0F);
emit_byte(0xC8 | reg->encoding());
}
void Assembler::lock() {
if (Atomics & 1) {
// Emit either nothing, a NOP, or a NOP: prefix
emit_byte(0x90) ;
} else {
emit_byte(0xF0);
}
}
void Assembler::xchg(Register reg, Address adr) {
InstructionMark im(this);
emit_byte(0x87);
emit_operand(reg, adr);
}
void Assembler::xchgl(Register dst, Register src) {
emit_byte(0x87);
emit_byte(0xc0 | dst->encoding() << 3 | src->encoding());
}
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg(Register reg, Address adr) {
if (Atomics & 2) {
// caveat: no instructionmark, so this isn't relocatable.
// Emit a synthetic, non-atomic, CAS equivalent.
// Beware. The synthetic form sets all ICCs, not just ZF.
// cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
cmpl (rax, adr) ;
movl (rax, adr) ;
if (reg != rax) {
Label L ;
jcc (Assembler::notEqual, L) ;
movl (adr, reg) ;
bind (L) ;
}
} else {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xB1);
emit_operand(reg, adr);
}
}
// The 64-bit cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax. The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xc7);
emit_operand(rcx, adr);
}
void Assembler::hlt() {
emit_byte(0xF4);
}
void Assembler::addr_nop_4() {
// 4 bytes: NOP DWORD PTR [EAX+0]
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
emit_byte(0); // 8-bits offset (1 byte)
}
void Assembler::addr_nop_5() {
// 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
emit_byte(0); // 8-bits offset (1 byte)
}
void Assembler::addr_nop_7() {
// 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
emit_long(0); // 32-bits offset (4 bytes)
}
void Assembler::addr_nop_8() {
// 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
emit_byte(0x0F);
emit_byte(0x1F);
emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
emit_long(0); // 32-bits offset (4 bytes)
}
void Assembler::nop(int i) {
assert(i > 0, " ");
if (UseAddressNop && VM_Version::is_intel()) {
//
// Using multi-bytes nops "0x0F 0x1F [address]" for Intel
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
// 4: 0x0F 0x1F 0x40 0x00
// 5: 0x0F 0x1F 0x44 0x00 0x00
// 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
// 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// The rest coding is Intel specific - don't use consecutive address nops
// 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
// 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
while(i >= 15) {
// For Intel don't generate consecutive addess nops (mix with regular nops)
i -= 15;
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
addr_nop_8();
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x90); // nop
}
switch (i) {
case 14:
emit_byte(0x66); // size prefix
case 13:
emit_byte(0x66); // size prefix
case 12:
addr_nop_8();
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x90); // nop
break;
case 11:
emit_byte(0x66); // size prefix
case 10:
emit_byte(0x66); // size prefix
case 9:
emit_byte(0x66); // size prefix
case 8:
addr_nop_8();
break;
case 7:
addr_nop_7();
break;
case 6:
emit_byte(0x66); // size prefix
case 5:
addr_nop_5();
break;
case 4:
addr_nop_4();
break;
case 3:
// Don't use "0x0F 0x1F 0x00" - need patching safe padding
emit_byte(0x66); // size prefix
case 2:
emit_byte(0x66); // size prefix
case 1:
emit_byte(0x90); // nop
break;
default:
assert(i == 0, " ");
}
return;
}
if (UseAddressNop && VM_Version::is_amd()) {
//
// Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
// 4: 0x0F 0x1F 0x40 0x00
// 5: 0x0F 0x1F 0x44 0x00 0x00
// 6: 0x66 0x0F 0x1F 0x44 0x00 0x00
// 7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// The rest coding is AMD specific - use consecutive address nops
// 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
// 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
// 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
// 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
// Size prefixes (0x66) are added for larger sizes
while(i >= 22) {
i -= 11;
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
emit_byte(0x66); // size prefix
addr_nop_8();
}
// Generate first nop for size between 21-12
switch (i) {
case 21:
i -= 1;
emit_byte(0x66); // size prefix
case 20:
case 19:
i -= 1;
emit_byte(0x66); // size prefix
case 18:
case 17:
i -= 1;
emit_byte(0x66); // size prefix
case 16:
case 15:
i -= 8;
addr_nop_8();
break;
case 14:
case 13:
i -= 7;
addr_nop_7();
break;
case 12:
i -= 6;
emit_byte(0x66); // size prefix
addr_nop_5();
break;
default:
assert(i < 12, " ");
}
// Generate second nop for size between 11-1
switch (i) {
case 11:
emit_byte(0x66); // size prefix
case 10:
emit_byte(0x66); // size prefix
case 9:
emit_byte(0x66); // size prefix
case 8:
addr_nop_8();
break;
case 7:
addr_nop_7();
break;
case 6:
emit_byte(0x66); // size prefix
case 5:
addr_nop_5();
break;
case 4:
addr_nop_4();
break;
case 3:
// Don't use "0x0F 0x1F 0x00" - need patching safe padding
emit_byte(0x66); // size prefix
case 2:
emit_byte(0x66); // size prefix
case 1:
emit_byte(0x90); // nop
break;
default:
assert(i == 0, " ");
}
return;
}
// Using nops with size prefixes "0x66 0x90".
// From AMD Optimization Guide:
// 1: 0x90
// 2: 0x66 0x90
// 3: 0x66 0x66 0x90
// 4: 0x66 0x66 0x66 0x90
// 5: 0x66 0x66 0x90 0x66 0x90
// 6: 0x66 0x66 0x90 0x66 0x66 0x90
// 7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
// 8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
// 9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
// 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
//
while(i > 12) {
i -= 4;
emit_byte(0x66); // size prefix
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90); // nop
}
// 1 - 12 nops
if(i > 8) {
if(i > 9) {
i -= 1;
emit_byte(0x66);
}
i -= 3;
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90);
}
// 1 - 8 nops
if(i > 4) {
if(i > 6) {
i -= 1;
emit_byte(0x66);
}
i -= 3;
emit_byte(0x66);
emit_byte(0x66);
emit_byte(0x90);
}
switch (i) {
case 4:
emit_byte(0x66);
case 3:
emit_byte(0x66);
case 2:
emit_byte(0x66);
case 1:
emit_byte(0x90);
break;
default:
assert(i == 0, " ");
}
}
void Assembler::ret(int imm16) {
if (imm16 == 0) {
emit_byte(0xC3);
} else {
emit_byte(0xC2);
emit_word(imm16);
}
}
void Assembler::set_byte_if_not_zero(Register dst) {
emit_byte(0x0F);
emit_byte(0x95);
emit_byte(0xE0 | dst->encoding());
}
// copies a single word from [esi] to [edi]
void Assembler::smovl() {
emit_byte(0xA5);
}
// copies data from [esi] to [edi] using rcx double words (m32)
void Assembler::rep_movl() {
emit_byte(0xF3);
emit_byte(0xA5);
}
// sets rcx double words (m32) with rax, value at [edi]
void Assembler::rep_set() {
emit_byte(0xF3);
emit_byte(0xAB);
}
// scans rcx double words (m32) at [edi] for occurance of rax,
void Assembler::repne_scan() {
emit_byte(0xF2);
emit_byte(0xAF);
}
void Assembler::setb(Condition cc, Register dst) {
assert(0 <= cc && cc < 16, "illegal cc");
emit_byte(0x0F);
emit_byte(0x90 | cc);
emit_byte(0xC0 | dst->encoding());
}
void Assembler::cld() {
emit_byte(0xfc);
}
void Assembler::std() {
emit_byte(0xfd);
}
void Assembler::emit_raw (unsigned char b) {
emit_byte (b) ;
}
// Serializes memory.
void Assembler::membar() {
// Memory barriers are only needed on multiprocessors
if (os::is_MP()) {
if( VM_Version::supports_sse2() ) {
emit_byte( 0x0F ); // MFENCE; faster blows no regs
emit_byte( 0xAE );
emit_byte( 0xF0 );
} else {
// All usable chips support "locked" instructions which suffice
// as barriers, and are much faster than the alternative of
// using cpuid instruction. We use here a locked add [esp],0.
// This is conveniently otherwise a no-op except for blowing
// flags (which we save and restore.)
pushfd(); // Save eflags register
lock();
addl(Address(rsp, 0), 0);// Assert the lock# signal here
popfd(); // Restore eflags register
}
}
}
// Identify processor type and features
void Assembler::cpuid() {
// Note: we can't assert VM_Version::supports_cpuid() here
// because this instruction is used in the processor
// identification code.
emit_byte( 0x0F );
emit_byte( 0xA2 );
}
void Assembler::call(Label& L, relocInfo::relocType rtype) {
if (L.is_bound()) {
const int long_size = 5;
int offs = target(L) - pc();
assert(offs <= 0, "assembler error");
InstructionMark im(this);
// 1110 1000 #32-bit disp
emit_byte(0xE8);
emit_data(offs - long_size, rtype, 0);
} else {
InstructionMark im(this);
// 1110 1000 #32-bit disp
L.add_patch_at(code(), locator());
emit_byte(0xE8);
emit_data(int(0), rtype, 0);
}
}
void Assembler::call(Register dst) {
emit_byte(0xFF);
emit_byte(0xD0 | dst->encoding());
}
void Assembler::call(Address adr) {
InstructionMark im(this);
relocInfo::relocType rtype = adr.reloc();
if (rtype != relocInfo::runtime_call_type) {
emit_byte(0xFF);
emit_operand(rdx, adr);
} else {
assert(false, "ack");
}
}
void Assembler::call_literal(address dest, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0xE8);
intptr_t disp = dest - (_code_pos + sizeof(int32_t));
assert(dest != NULL, "must have a target");
emit_data(disp, rspec, call32_operand);
}
void Assembler::jmp(Register entry) {
emit_byte(0xFF);
emit_byte(0xE0 | entry->encoding());
}
void Assembler::jmp(Address adr) {
InstructionMark im(this);
emit_byte(0xFF);
emit_operand(rsp, adr);
}
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
InstructionMark im(this);
emit_byte(0xE9);
assert(dest != NULL, "must have a target");
intptr_t disp = dest - (_code_pos + sizeof(int32_t));
emit_data(disp, rspec.reloc(), call32_operand);
}
void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
if (L.is_bound()) {
address entry = target(L);
assert(entry != NULL, "jmp most probably wrong");
InstructionMark im(this);
const int short_size = 2;
const int long_size = 5;
intptr_t offs = entry - _code_pos;
if (rtype == relocInfo::none && is8bit(offs - short_size)) {
emit_byte(0xEB);
emit_byte((offs - short_size) & 0xFF);
} else {
emit_byte(0xE9);
emit_long(offs - long_size);
}
} else {
// By default, forward jumps are always 32-bit displacements, since
// we can't yet know where the label will be bound. If you're sure that
// the forward jump will not run beyond 256 bytes, use jmpb to
// force an 8-bit displacement.
InstructionMark im(this);
relocate(rtype);
L.add_patch_at(code(), locator());
emit_byte(0xE9);
emit_long(0);
}
}
void Assembler::jmpb(Label& L) {
if (L.is_bound()) {
const int short_size = 2;
address entry = target(L);
assert(is8bit((entry - _code_pos) + short_size),
"Dispacement too large for a short jmp");
assert(entry != NULL, "jmp most probably wrong");
intptr_t offs = entry - _code_pos;
emit_byte(0xEB);
emit_byte((offs - short_size) & 0xFF);
} else {
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_byte(0xEB);
emit_byte(0);
}
}
void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
InstructionMark im(this);
relocate(rtype);
assert((0 <= cc) && (cc < 16), "illegal cc");
if (L.is_bound()) {
address dst = target(L);
assert(dst != NULL, "jcc most probably wrong");
const int short_size = 2;
const int long_size = 6;
int offs = (int)dst - ((int)_code_pos);
if (rtype == relocInfo::none && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_byte(0x70 | cc);
emit_byte((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
emit_byte(0x0F);
emit_byte(0x80 | cc);
emit_long(offs - long_size);
}
} else {
// Note: could eliminate cond. jumps to this jump if condition
// is the same however, seems to be rather unlikely case.
// Note: use jccb() if label to be bound is very close to get
// an 8-bit displacement
L.add_patch_at(code(), locator());
emit_byte(0x0F);
emit_byte(0x80 | cc);
emit_long(0);
}
}
void Assembler::jccb(Condition cc, Label& L) {
if (L.is_bound()) {
const int short_size = 2;
address entry = target(L);
assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
"Dispacement too large for a short jmp");
intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
// 0111 tttn #8-bit disp
emit_byte(0x70 | cc);
emit_byte((offs - short_size) & 0xFF);
jcc(cc, L);
} else {
InstructionMark im(this);
L.add_patch_at(code(), locator());
emit_byte(0x70 | cc);
emit_byte(0);
}
}
// FPU instructions
void Assembler::fld1() {
emit_byte(0xD9);
emit_byte(0xE8);
}
void Assembler::fldz() {
emit_byte(0xD9);
emit_byte(0xEE);
}
void Assembler::fld_s(Address adr) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand(rax, adr);
}
void Assembler::fld_s (int index) {
emit_farith(0xD9, 0xC0, index);
}
void Assembler::fld_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand(rax, adr);
}
void Assembler::fld_x(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand(rbp, adr);
}
void Assembler::fst_s(Address adr) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand(rdx, adr);
}
void Assembler::fst_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand(rdx, adr);
}
void Assembler::fstp_s(Address adr) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand(rbx, adr);
}
void Assembler::fstp_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand(rbx, adr);
}
void Assembler::fstp_x(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand(rdi, adr);
}
void Assembler::fstp_d(int index) {
emit_farith(0xDD, 0xD8, index);
}
void Assembler::fild_s(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand(rax, adr);
}
void Assembler::fild_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDF);
emit_operand(rbp, adr);
}
void Assembler::fistp_s(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand(rbx, adr);
}
void Assembler::fistp_d(Address adr) {
InstructionMark im(this);
emit_byte(0xDF);
emit_operand(rdi, adr);
}
void Assembler::fist_s(Address adr) {
InstructionMark im(this);
emit_byte(0xDB);
emit_operand(rdx, adr);
}
void Assembler::fabs() {
emit_byte(0xD9);
emit_byte(0xE1);
}
void Assembler::fldln2() {
emit_byte(0xD9);
emit_byte(0xED);
}
void Assembler::fyl2x() {
emit_byte(0xD9);
emit_byte(0xF1);
}
void Assembler::fldlg2() {
emit_byte(0xD9);
emit_byte(0xEC);
}
void Assembler::flog() {
fldln2();
fxch();
fyl2x();
}
void Assembler::flog10() {
fldlg2();
fxch();
fyl2x();
}
void Assembler::fsin() {
emit_byte(0xD9);
emit_byte(0xFE);
}
void Assembler::fcos() {
emit_byte(0xD9);
emit_byte(0xFF);
}
void Assembler::ftan() {
emit_byte(0xD9);
emit_byte(0xF2);
emit_byte(0xDD);
emit_byte(0xD8);
}
void Assembler::fsqrt() {
emit_byte(0xD9);
emit_byte(0xFA);
}
void Assembler::fchs() {
emit_byte(0xD9);
emit_byte(0xE0);
}
void Assembler::fadd_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rax, src);
}
void Assembler::fadd_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rax, src);
}
void Assembler::fadd(int i) {
emit_farith(0xD8, 0xC0, i);
}
void Assembler::fadda(int i) {
emit_farith(0xDC, 0xC0, i);
}
void Assembler::fsub_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rsp, src);
}
void Assembler::fsub_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rsp, src);
}
void Assembler::fsubr_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rbp, src);
}
void Assembler::fsubr_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rbp, src);
}
void Assembler::fmul_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rcx, src);
}
void Assembler::fmul_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rcx, src);
}
void Assembler::fmul(int i) {
emit_farith(0xD8, 0xC8, i);
}
void Assembler::fmula(int i) {
emit_farith(0xDC, 0xC8, i);
}
void Assembler::fdiv_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rsi, src);
}
void Assembler::fdiv_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rsi, src);
}
void Assembler::fdivr_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rdi, src);
}
void Assembler::fdivr_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rdi, src);
}
void Assembler::fsub(int i) {
emit_farith(0xD8, 0xE0, i);
}
void Assembler::fsuba(int i) {
emit_farith(0xDC, 0xE8, i);
}
void Assembler::fsubr(int i) {
emit_farith(0xD8, 0xE8, i);
}
void Assembler::fsubra(int i) {
emit_farith(0xDC, 0xE0, i);
}
void Assembler::fdiv(int i) {
emit_farith(0xD8, 0xF0, i);
}
void Assembler::fdiva(int i) {
emit_farith(0xDC, 0xF8, i);
}
void Assembler::fdivr(int i) {
emit_farith(0xD8, 0xF8, i);
}
void Assembler::fdivra(int i) {
emit_farith(0xDC, 0xF0, i);
}
// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
// is erroneous for some of the floating-point instructions below.
void Assembler::fdivp(int i) {
emit_farith(0xDE, 0xF8, i); // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}
void Assembler::fdivrp(int i) {
emit_farith(0xDE, 0xF0, i); // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}
void Assembler::fsubp(int i) {
emit_farith(0xDE, 0xE8, i); // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}
void Assembler::fsubrp(int i) {
emit_farith(0xDE, 0xE0, i); // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}
void Assembler::faddp(int i) {
emit_farith(0xDE, 0xC0, i);
}
void Assembler::fmulp(int i) {
emit_farith(0xDE, 0xC8, i);
}
void Assembler::fprem() {
emit_byte(0xD9);
emit_byte(0xF8);
}
void Assembler::fprem1() {
emit_byte(0xD9);
emit_byte(0xF5);
}
void Assembler::fxch(int i) {
emit_farith(0xD9, 0xC8, i);
}
void Assembler::fincstp() {
emit_byte(0xD9);
emit_byte(0xF7);
}
void Assembler::fdecstp() {
emit_byte(0xD9);
emit_byte(0xF6);
}
void Assembler::ffree(int i) {
emit_farith(0xDD, 0xC0, i);
}
void Assembler::fcomp_s(Address src) {
InstructionMark im(this);
emit_byte(0xD8);
emit_operand(rbx, src);
}
void Assembler::fcomp_d(Address src) {
InstructionMark im(this);
emit_byte(0xDC);
emit_operand(rbx, src);
}
void Assembler::fcom(int i) {
emit_farith(0xD8, 0xD0, i);
}
void Assembler::fcomp(int i) {
emit_farith(0xD8, 0xD8, i);
}
void Assembler::fcompp() {
emit_byte(0xDE);
emit_byte(0xD9);
}
void Assembler::fucomi(int i) {
// make sure the instruction is supported (introduced for P6, together with cmov)
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_farith(0xDB, 0xE8, i);
}
void Assembler::fucomip(int i) {
// make sure the instruction is supported (introduced for P6, together with cmov)
guarantee(VM_Version::supports_cmov(), "illegal instruction");
emit_farith(0xDF, 0xE8, i);
}
void Assembler::ftst() {
emit_byte(0xD9);
emit_byte(0xE4);
}
void Assembler::fnstsw_ax() {
emit_byte(0xdF);
emit_byte(0xE0);
}
void Assembler::fwait() {
emit_byte(0x9B);
}
void Assembler::finit() {
emit_byte(0x9B);
emit_byte(0xDB);
emit_byte(0xE3);
}
void Assembler::fldcw(Address src) {
InstructionMark im(this);
emit_byte(0xd9);
emit_operand(rbp, src);
}
void Assembler::fnstcw(Address src) {
InstructionMark im(this);
emit_byte(0x9B);
emit_byte(0xD9);
emit_operand(rdi, src);
}
void Assembler::fnsave(Address dst) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand(rsi, dst);
}
void Assembler::frstor(Address src) {
InstructionMark im(this);
emit_byte(0xDD);
emit_operand(rsp, src);
}
void Assembler::fldenv(Address src) {
InstructionMark im(this);
emit_byte(0xD9);
emit_operand(rsp, src);
}
void Assembler::sahf() {
emit_byte(0x9E);
}
// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
void Assembler::movq( MMXRegister dst, Address src ) {
assert( VM_Version::supports_mmx(), "" );
emit_byte(0x0F);
emit_byte(0x6F);
emit_operand(dst,src);
}
void Assembler::movq( Address dst, MMXRegister src ) {
assert( VM_Version::supports_mmx(), "" );
emit_byte(0x0F);
emit_byte(0x7F);
emit_operand(src,dst);
}
void Assembler::emms() {
emit_byte(0x0F);
emit_byte(0x77);
}
// SSE and SSE2 instructions
inline void Assembler::emit_sse_operand(XMMRegister reg, Address adr) {
assert(((Register)reg)->encoding() == reg->encoding(), "otherwise typecast is invalid");
emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
inline void Assembler::emit_sse_operand(Register reg, Address adr) {
emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}
inline void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
}
inline void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
}
inline void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
emit_byte(0xC0 | dst->encoding() << 3 | src->encoding());
}
// Macro for creation of SSE2 instructions
// The SSE2 instricution set is highly regular, so this macro saves
// a lot of cut&paste
// Each macro expansion creates two methods (same name with different
// parameter list)
//
// Macro parameters:
// * name: name of the created methods
// * sse_version: either sse or sse2 for the assertion if instruction supported by processor
// * prefix: first opcode byte of the instruction (or 0 if no prefix byte)
// * opcode: last opcode byte of the instruction
// * conversion instruction have parameters of type Register instead of XMMRegister,
// so this can also configured with macro parameters
#define emit_sse_instruction(name, sse_version, prefix, opcode, dst_register_type, src_register_type) \
\
void Assembler:: name (dst_register_type dst, Address src) { \
assert(VM_Version::supports_##sse_version(), ""); \
\
InstructionMark im(this); \
if (prefix != 0) emit_byte(prefix); \
emit_byte(0x0F); \
emit_byte(opcode); \
emit_sse_operand(dst, src); \
} \
\
void Assembler:: name (dst_register_type dst, src_register_type src) { \
assert(VM_Version::supports_##sse_version(), ""); \
\
if (prefix != 0) emit_byte(prefix); \
emit_byte(0x0F); \
emit_byte(opcode); \
emit_sse_operand(dst, src); \
} \
emit_sse_instruction(addss, sse, 0xF3, 0x58, XMMRegister, XMMRegister);
emit_sse_instruction(addsd, sse2, 0xF2, 0x58, XMMRegister, XMMRegister)
emit_sse_instruction(subss, sse, 0xF3, 0x5C, XMMRegister, XMMRegister)
emit_sse_instruction(subsd, sse2, 0xF2, 0x5C, XMMRegister, XMMRegister)
emit_sse_instruction(mulss, sse, 0xF3, 0x59, XMMRegister, XMMRegister)
emit_sse_instruction(mulsd, sse2, 0xF2, 0x59, XMMRegister, XMMRegister)
emit_sse_instruction(divss, sse, 0xF3, 0x5E, XMMRegister, XMMRegister)
emit_sse_instruction(divsd, sse2, 0xF2, 0x5E, XMMRegister, XMMRegister)
emit_sse_instruction(sqrtss, sse, 0xF3, 0x51, XMMRegister, XMMRegister)
emit_sse_instruction(sqrtsd, sse2, 0xF2, 0x51, XMMRegister, XMMRegister)
emit_sse_instruction(pxor, sse2, 0x66, 0xEF, XMMRegister, XMMRegister)
emit_sse_instruction(comiss, sse, 0, 0x2F, XMMRegister, XMMRegister)
emit_sse_instruction(comisd, sse2, 0x66, 0x2F, XMMRegister, XMMRegister)
emit_sse_instruction(ucomiss, sse, 0, 0x2E, XMMRegister, XMMRegister)
emit_sse_instruction(ucomisd, sse2, 0x66, 0x2E, XMMRegister, XMMRegister)
emit_sse_instruction(cvtss2sd, sse2, 0xF3, 0x5A, XMMRegister, XMMRegister);
emit_sse_instruction(cvtsd2ss, sse2, 0xF2, 0x5A, XMMRegister, XMMRegister)
emit_sse_instruction(cvtsi2ss, sse, 0xF3, 0x2A, XMMRegister, Register);
emit_sse_instruction(cvtsi2sd, sse2, 0xF2, 0x2A, XMMRegister, Register)
emit_sse_instruction(cvtss2si, sse, 0xF3, 0x2D, Register, XMMRegister);
emit_sse_instruction(cvtsd2si, sse2, 0xF2, 0x2D, Register, XMMRegister)
emit_sse_instruction(cvttss2si, sse, 0xF3, 0x2C, Register, XMMRegister);
emit_sse_instruction(cvttsd2si, sse2, 0xF2, 0x2C, Register, XMMRegister)
emit_sse_instruction(movss, sse, 0xF3, 0x10, XMMRegister, XMMRegister)
emit_sse_instruction(movsd, sse2, 0xF2, 0x10, XMMRegister, XMMRegister)
emit_sse_instruction(movq, sse2, 0xF3, 0x7E, XMMRegister, XMMRegister);
emit_sse_instruction(movd, sse2, 0x66, 0x6E, XMMRegister, Register);
emit_sse_instruction(movdqa, sse2, 0x66, 0x6F, XMMRegister, XMMRegister);
emit_sse_instruction(punpcklbw, sse2, 0x66, 0x60, XMMRegister, XMMRegister);
// Instruction not covered by macro
void Assembler::movq(Address dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0xD6);
emit_sse_operand(src, dst);
}
void Assembler::movd(Address dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::movd(Register dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x7E);
emit_sse_operand(src, dst);
}
void Assembler::movdqa(Address dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x7F);
emit_sse_operand(src, dst);
}
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
assert(isByte(mode), "invalid value");
assert(VM_Version::supports_sse2(), "");
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x70);
emit_sse_operand(dst, src);
emit_byte(mode & 0xFF);
}
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
assert(isByte(mode), "invalid value");
assert(VM_Version::supports_sse2(), "");
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x70);
emit_sse_operand(dst, src);
emit_byte(mode & 0xFF);
}
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
assert(isByte(mode), "invalid value");
assert(VM_Version::supports_sse2(), "");
emit_byte(0xF2);
emit_byte(0x0F);
emit_byte(0x70);
emit_sse_operand(dst, src);
emit_byte(mode & 0xFF);
}
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
assert(isByte(mode), "invalid value");
assert(VM_Version::supports_sse2(), "");
InstructionMark im(this);
emit_byte(0xF2);
emit_byte(0x0F);
emit_byte(0x70);
emit_sse_operand(dst, src);
emit_byte(mode & 0xFF);
}
void Assembler::psrlq(XMMRegister dst, int shift) {
assert(VM_Version::supports_sse2(), "");
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x73);
emit_sse_operand(xmm2, dst);
emit_byte(shift);
}
void Assembler::movss( Address dst, XMMRegister src ) {
assert(VM_Version::supports_sse(), "");
InstructionMark im(this);
emit_byte(0xF3); // single
emit_byte(0x0F);
emit_byte(0x11); // store
emit_sse_operand(src, dst);
}
void Assembler::movsd( Address dst, XMMRegister src ) {
assert(VM_Version::supports_sse2(), "");
InstructionMark im(this);
emit_byte(0xF2); // double
emit_byte(0x0F);
emit_byte(0x11); // store
emit_sse_operand(src,dst);
}
// New cpus require to use movaps and movapd to avoid partial register stall
// when moving between registers.
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse(), "");
emit_byte(0x0F);
emit_byte(0x28);
emit_sse_operand(dst, src);
}
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x28);
emit_sse_operand(dst, src);
}
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
assert(VM_Version::supports_sse(), "");
InstructionMark im(this);
emit_byte(0x66);
emit_byte(0x0F);
emit_byte(0x12);
emit_sse_operand(dst, src);
}
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
emit_byte(0xF3);
emit_byte(0x0F);
emit_byte(0xE6);
emit_sse_operand(dst, src);
}
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
assert(VM_Version::supports_sse2(), "");
emit_byte(0x0F);
emit_byte(0x5B);
emit_sse_operand(dst, src);
}
emit_sse_instruction(andps, sse, 0, 0x54, XMMRegister, XMMRegister);
emit_sse_instruction(andpd, sse2, 0x66, 0x54, XMMRegister, XMMRegister);
emit_sse_instruction(andnps, sse, 0, 0x55, XMMRegister, XMMRegister);
emit_sse_instruction(andnpd, sse2, 0x66, 0x55, XMMRegister, XMMRegister);
emit_sse_instruction(orps, sse, 0, 0x56, XMMRegister, XMMRegister);
emit_sse_instruction(orpd, sse2, 0x66, 0x56, XMMRegister, XMMRegister);
emit_sse_instruction(xorps, sse, 0, 0x57, XMMRegister, XMMRegister);
emit_sse_instruction(xorpd, sse2, 0x66, 0x57, XMMRegister, XMMRegister);
void Assembler::ldmxcsr( Address src) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(rdx /* 2 */, src);
}
void Assembler::stmxcsr( Address dst) {
InstructionMark im(this);
emit_byte(0x0F);
emit_byte(0xAE);
emit_operand(rbx /* 3 */, dst);
}
// Implementation of MacroAssembler
Address MacroAssembler::as_Address(AddressLiteral adr) {
// amd64 always does this as a pc-rel
// we can be absolute or disp based on the instruction type
// jmp/call are displacements others are absolute
assert(!adr.is_lval(), "must be rval");
return Address(adr.target(), adr.rspec());
}
Address MacroAssembler::as_Address(ArrayAddress adr) {
return Address::make_array(adr);
}
void MacroAssembler::fat_nop() {
// A 5 byte nop that is safe for patching (see patch_verified_entry)
emit_byte(0x26); // es:
emit_byte(0x2e); // cs:
emit_byte(0x64); // fs:
emit_byte(0x65); // gs:
emit_byte(0x90);
}
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
jmp(as_Address(entry));
}
void MacroAssembler::jump(AddressLiteral dst) {
jmp_literal(dst.target(), dst.rspec());
}
void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
assert((0 <= cc) && (cc < 16), "illegal cc");
InstructionMark im(this);
relocInfo::relocType rtype = dst.reloc();
relocate(rtype);
const int short_size = 2;
const int long_size = 6;
int offs = (int)dst.target() - ((int)_code_pos);
if (rtype == relocInfo::none && is8bit(offs - short_size)) {
// 0111 tttn #8-bit disp
emit_byte(0x70 | cc);
emit_byte((offs - short_size) & 0xFF);
} else {
// 0000 1111 1000 tttn #32-bit disp
emit_byte(0x0F);
emit_byte(0x80 | cc);
emit_long(offs - long_size);
}
}
// Calls
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
Assembler::call(L, rtype);
}
void MacroAssembler::call(Register entry) {
Assembler::call(entry);
}
void MacroAssembler::call(AddressLiteral entry) {
Assembler::call_literal(entry.target(), entry.rspec());
}
void MacroAssembler::cmp8(AddressLiteral src1, int8_t imm) {
Assembler::cmpb(as_Address(src1), imm);
}
void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
Assembler::cmpl(as_Address(src1), imm);
}
void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
if (src2.is_lval()) {
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
} else {
Assembler::cmpl(src1, as_Address(src2));
}
}
void MacroAssembler::cmp32(Register src1, int32_t imm) {
Assembler::cmpl(src1, imm);
}
void MacroAssembler::cmp32(Register src1, Address src2) {
Assembler::cmpl(src1, src2);
}
void MacroAssembler::cmpoop(Address src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpoop(Register src1, jobject obj) {
cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
if (src2.is_lval()) {
// compare the effect address of src2 to src1
cmp_literal32(src1, (int32_t)src2.target(), src2.rspec());
} else {
Assembler::cmpl(src1, as_Address(src2));
}
}
void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
assert(src2.is_lval(), "not a mem-mem compare");
cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
}
void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
cmpxchg(reg, as_Address(adr));
}
void MacroAssembler::increment(AddressLiteral dst) {
increment(as_Address(dst));
}
void MacroAssembler::increment(ArrayAddress dst) {
increment(as_Address(dst));
}
void MacroAssembler::lea(Register dst, AddressLiteral adr) {
// leal(dst, as_Address(adr));
// see note in movl as to why we musr use a move
mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
}
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
// leal(dst, as_Address(adr));
// see note in movl as to why we musr use a move
mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
}
void MacroAssembler::mov32(AddressLiteral dst, Register src) {
Assembler::movl(as_Address(dst), src);
}
void MacroAssembler::mov32(Register dst, AddressLiteral src) {
Assembler::movl(dst, as_Address(src));
}
void MacroAssembler::movbyte(ArrayAddress dst, int src) {
movb(as_Address(dst), src);
}
void MacroAssembler::movoop(Address dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movoop(Register dst, jobject obj) {
mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
if (src.is_lval()) {
// essentially an lea
mov_literal32(dst, (int32_t) src.target(), src.rspec());
} else {
// mov 32bits from an absolute address
movl(dst, as_Address(src));
}
}
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
movl(as_Address(dst), src);
}
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
movl(dst, as_Address(src));
}
void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
movss(dst, as_Address(src));
}
void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
if (UseXmmLoadAndClearUpper) { movsd (dst, as_Address(src)); return; }
else { movlpd(dst, as_Address(src)); return; }
}
void Assembler::pushoop(jobject obj) {
push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
}
void MacroAssembler::pushptr(AddressLiteral src) {
if (src.is_lval()) {
push_literal32((int32_t)src.target(), src.rspec());
} else {
pushl(as_Address(src));
}
}
void MacroAssembler::test32(Register src1, AddressLiteral src2) {
// src2 must be rval
testl(src1, as_Address(src2));
}
// FPU
void MacroAssembler::fld_x(AddressLiteral src) {
Assembler::fld_x(as_Address(src));
}
void MacroAssembler::fld_d(AddressLiteral src) {
fld_d(as_Address(src));
}
void MacroAssembler::fld_s(AddressLiteral src) {
fld_s(as_Address(src));
}
void MacroAssembler::fldcw(AddressLiteral src) {
Assembler::fldcw(as_Address(src));
}
void MacroAssembler::ldmxcsr(AddressLiteral src) {
Assembler::ldmxcsr(as_Address(src));
}
// SSE
void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
andpd(dst, as_Address(src));
}
void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
comisd(dst, as_Address(src));
}
void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
comiss(dst, as_Address(src));
}
void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
movsd(dst, as_Address(src));
}
void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
movss(dst, as_Address(src));
}
void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
xorpd(dst, as_Address(src));
}
void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
xorps(dst, as_Address(src));
}
void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
ucomisd(dst, as_Address(src));
}
void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
ucomiss(dst, as_Address(src));
}
void MacroAssembler::null_check(Register reg, int offset) {
if (needs_explicit_null_check(offset)) {
// provoke OS NULL exception if reg = NULL by
// accessing M[reg] w/o changing any (non-CC) registers
cmpl(rax, Address(reg, 0));
// Note: should probably use testl(rax, Address(reg, 0));
// may be shorter code (however, this version of
// testl needs to be implemented first)
} else {
// nothing to do, (later) access of M[reg + offset]
// will provoke OS NULL exception if reg = NULL
}
}
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzxb(dst, src);
} else {
xorl(dst, dst);
off = offset();
movb(dst, src);
}
return off;
}
int MacroAssembler::load_unsigned_word(Register dst, Address src) {
// According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
// and "3.9 Partial Register Penalties", p. 22).
int off;
if (VM_Version::is_P6() || src.uses(dst)) {
off = offset();
movzxw(dst, src);
} else {
xorl(dst, dst);
off = offset();
movw(dst, src);
}
return off;
}
int MacroAssembler::load_signed_byte(Register dst, Address src) {
int off;
if (VM_Version::is_P6()) {
off = offset();
movsxb(dst, src);
} else {
off = load_unsigned_byte(dst, src);
shll(dst, 24);
sarl(dst, 24);
}
return off;
}
int MacroAssembler::load_signed_word(Register dst, Address src) {
int off;
if (VM_Version::is_P6()) {
off = offset();
movsxw(dst, src);
} else {
off = load_unsigned_word(dst, src);
shll(dst, 16);
sarl(dst, 16);
}
return off;
}
void MacroAssembler::extend_sign(Register hi, Register lo) {
// According to Intel Doc. AP-526, "Integer Divide", p.18.
if (VM_Version::is_P6() && hi == rdx && lo == rax) {
cdql();
} else {
movl(hi, lo);
sarl(hi, 31);
}
}
void MacroAssembler::increment(Register reg, int value) {
if (value == min_jint) {addl(reg, value); return; }
if (value < 0) { decrement(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(reg); return; }
/* else */ { addl(reg, value) ; return; }
}
void MacroAssembler::increment(Address dst, int value) {
if (value == min_jint) {addl(dst, value); return; }
if (value < 0) { decrement(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { incl(dst); return; }
/* else */ { addl(dst, value) ; return; }
}
void MacroAssembler::decrement(Register reg, int value) {
if (value == min_jint) {subl(reg, value); return; }
if (value < 0) { increment(reg, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(reg); return; }
/* else */ { subl(reg, value) ; return; }
}
void MacroAssembler::decrement(Address dst, int value) {
if (value == min_jint) {subl(dst, value); return; }
if (value < 0) { increment(dst, -value); return; }
if (value == 0) { ; return; }
if (value == 1 && UseIncDec) { decl(dst); return; }
/* else */ { subl(dst, value) ; return; }
}
void MacroAssembler::align(int modulus) {
if (offset() % modulus != 0) nop(modulus - (offset() % modulus));
}
void MacroAssembler::enter() {
pushl(rbp);
movl(rbp, rsp);
}
void MacroAssembler::leave() {
movl(rsp, rbp);
popl(rbp);
}
void MacroAssembler::set_last_Java_frame(Register java_thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// last_java_fp is optional
if (last_java_fp->is_valid()) {
movl(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
}
// last_java_pc is optional
if (last_java_pc != NULL) {
lea(Address(java_thread,
JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
InternalAddress(last_java_pc));
}
movl(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}
void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// we must set sp to zero to clear frame
movl(Address(java_thread, JavaThread::last_Java_sp_offset()), 0);
if (clear_fp) {
movl(Address(java_thread, JavaThread::last_Java_fp_offset()), 0);
}
if (clear_pc)
movl(Address(java_thread, JavaThread::last_Java_pc_offset()), 0);
}
// Implementation of call_VM versions
void MacroAssembler::call_VM_leaf_base(
address entry_point,
int number_of_arguments
) {
call(RuntimeAddress(entry_point));
increment(rsp, number_of_arguments * wordSize);
}
void MacroAssembler::call_VM_base(
Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions
) {
// determine java_thread register
if (!java_thread->is_valid()) {
java_thread = rdi;
get_thread(java_thread);
}
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = rsp;
}
// debugging support
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
// push java thread (becomes first argument of C function)
pushl(java_thread);
// set last Java frame before call
assert(last_java_sp != rbp, "this code doesn't work for last_java_sp == rbp, which currently can't portably work anyway since C2 doesn't save rbp,");
// Only interpreter should have to set fp
set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
// do the call
call(RuntimeAddress(entry_point));
// restore the thread (cannot use the pushed argument since arguments
// may be overwritten by C code generated by an optimizing compiler);
// however can use the register value directly if it is callee saved.
if (java_thread == rdi || java_thread == rsi) {
// rdi & rsi are callee saved -> nothing to do
#ifdef ASSERT
guarantee(java_thread != rax, "change this code");
pushl(rax);
{ Label L;
get_thread(rax);
cmpl(java_thread, rax);
jcc(Assembler::equal, L);
stop("MacroAssembler::call_VM_base: rdi not callee saved?");
bind(L);
}
popl(rax);
#endif
} else {
get_thread(java_thread);
}
// reset last Java frame
// Only interpreter should have to clear fp
reset_last_Java_frame(java_thread, true, false);
// discard thread and arguments
addl(rsp, (1 + number_of_arguments)*wordSize);
#ifndef CC_INTERP
// C++ interp handles this in the interpreter
check_and_handle_popframe(java_thread);
check_and_handle_earlyret(java_thread);
#endif /* CC_INTERP */
if (check_exceptions) {
// check for pending exceptions (java_thread is set upon return)
cmpl(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD);
jump_cc(Assembler::notEqual,
RuntimeAddress(StubRoutines::forward_exception_entry()));
}
// get oop result if there is one and reset the value in the thread
if (oop_result->is_valid()) {
movl(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
movl(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
verify_oop(oop_result);
}
}
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
leal(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
call_VM_helper(oop_result, entry_point, 0, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
pushl(arg_1);
call_VM_helper(oop_result, entry_point, 1, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
pushl(arg_2);
pushl(arg_1);
call_VM_helper(oop_result, entry_point, 2, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
Label C, E;
call(C, relocInfo::none);
jmp(E);
bind(C);
pushl(arg_3);
pushl(arg_2);
pushl(arg_1);
call_VM_helper(oop_result, entry_point, 3, check_exceptions);
ret(0);
bind(E);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
pushl(arg_1);
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
pushl(arg_2);
pushl(arg_1);
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
pushl(arg_3);
pushl(arg_2);
pushl(arg_1);
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
call_VM_leaf_base(entry_point, number_of_arguments);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
pushl(arg_1);
call_VM_leaf(entry_point, 1);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
pushl(arg_2);
pushl(arg_1);
call_VM_leaf(entry_point, 2);
}
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
pushl(arg_3);
pushl(arg_2);
pushl(arg_1);
call_VM_leaf(entry_point, 3);
}
// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::store_check(Register obj) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
store_check_part_1(obj);
store_check_part_2(obj);
}
void MacroAssembler::store_check(Register obj, Address dst) {
store_check(obj);
}
// split the store check operation so that other instructions can be scheduled inbetween
void MacroAssembler::store_check_part_1(Register obj) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
shrl(obj, CardTableModRefBS::card_shift);
}
void MacroAssembler::store_check_part_2(Register obj) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
// The calculation for byte_map_base is as follows:
// byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
// So this essentially converts an address to a displacement and
// it will never need to be relocated. On 64bit however the value may be too
// large for a 32bit displacement
intptr_t disp = (intptr_t) ct->byte_map_base;
Address cardtable(noreg, obj, Address::times_1, disp);
movb(cardtable, 0);
}
void MacroAssembler::c2bool(Register x) {
// implements x == 0 ? 0 : 1
// note: must only look at least-significant byte of x
// since C-style booleans are stored in one byte
// only! (was bug)
andl(x, 0xFF);
setb(Assembler::notZero, x);
}
int MacroAssembler::corrected_idivl(Register reg) {
// Full implementation of Java idiv and irem; checks for
// special case as described in JVM spec., p.243 & p.271.
// The function returns the (pc) offset of the idivl
// instruction - may be needed for implicit exceptions.
//
// normal case special case
//
// input : rax,: dividend min_int
// reg: divisor (may not be rax,/rdx) -1
//
// output: rax,: quotient (= rax, idiv reg) min_int
// rdx: remainder (= rax, irem reg) 0
assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
const int min_int = 0x80000000;
Label normal_case, special_case;
// check for special case
cmpl(rax, min_int);
jcc(Assembler::notEqual, normal_case);
xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
cmpl(reg, -1);
jcc(Assembler::equal, special_case);
// handle normal case
bind(normal_case);
cdql();
int idivl_offset = offset();
idivl(reg);
// normal and special case exit
bind(special_case);
return idivl_offset;
}
void MacroAssembler::lneg(Register hi, Register lo) {
negl(lo);
adcl(hi, 0);
negl(hi);
}
void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
// Multiplication of two Java long values stored on the stack
// as illustrated below. Result is in rdx:rax.
//
// rsp ---> [ ?? ] \ \
// .... | y_rsp_offset |
// [ y_lo ] / (in bytes) | x_rsp_offset
// [ y_hi ] | (in bytes)
// .... |
// [ x_lo ] /
// [ x_hi ]
// ....
//
// Basic idea: lo(result) = lo(x_lo * y_lo)
// hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
Label quick;
// load x_hi, y_hi and check if quick
// multiplication is possible
movl(rbx, x_hi);
movl(rcx, y_hi);
movl(rax, rbx);
orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0
jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply
// do full multiplication
// 1st step
mull(y_lo); // x_hi * y_lo
movl(rbx, rax); // save lo(x_hi * y_lo) in rbx,
// 2nd step
movl(rax, x_lo);
mull(rcx); // x_lo * y_hi
addl(rbx, rax); // add lo(x_lo * y_hi) to rbx,
// 3rd step
bind(quick); // note: rbx, = 0 if quick multiply!
movl(rax, x_lo);
mull(y_lo); // x_lo * y_lo
addl(rdx, rbx); // correct hi(x_lo * y_lo)
}
void MacroAssembler::lshl(Register hi, Register lo) {
// Java shift left long support (semantics as described in JVM spec., p.305)
// (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
// shift value is in rcx !
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(hi, lo); // x := x << n
xorl(lo, lo);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shldl(hi, lo); // x := x << s
shll(lo);
}
void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
// Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
// (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
assert(hi != rcx, "must not use rcx");
assert(lo != rcx, "must not use rcx");
const Register s = rcx; // shift count
const int n = BitsPerWord;
Label L;
andl(s, 0x3f); // s := s & 0x3f (s < 0x40)
cmpl(s, n); // if (s < n)
jcc(Assembler::less, L); // else (s >= n)
movl(lo, hi); // x := x >> n
if (sign_extension) sarl(hi, 31);
else xorl(hi, hi);
// Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
bind(L); // s (mod n) < n
shrdl(lo, hi); // x := x >> s
if (sign_extension) sarl(hi);
else shrl(hi);
}
// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
// Long compare for Java (semantics as described in JVM spec.)
Label high, low, done;
cmpl(x_hi, y_hi);
jcc(Assembler::less, low);
jcc(Assembler::greater, high);
// x_hi is the return register
xorl(x_hi, x_hi);
cmpl(x_lo, y_lo);
jcc(Assembler::below, low);
jcc(Assembler::equal, done);
bind(high);
xorl(x_hi, x_hi);
increment(x_hi);
jmp(done);
bind(low);
xorl(x_hi, x_hi);
decrement(x_hi);
bind(done);
}
void MacroAssembler::save_rax(Register tmp) {
if (tmp == noreg) pushl(rax);
else if (tmp != rax) movl(tmp, rax);
}
void MacroAssembler::restore_rax(Register tmp) {
if (tmp == noreg) popl(rax);
else if (tmp != rax) movl(rax, tmp);
}
void MacroAssembler::fremr(Register tmp) {
save_rax(tmp);
{ Label L;
bind(L);
fprem();
fwait(); fnstsw_ax();
sahf();
jcc(Assembler::parity, L);
}
restore_rax(tmp);
// Result is in ST0.
// Note: fxch & fpop to get rid of ST1
// (otherwise FPU stack could overflow eventually)
fxch(1);
fpop();
}
static const double pi_4 = 0.7853981633974483;
void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
// A hand-coded argument reduction for values in fabs(pi/4, pi/2)
// was attempted in this code; unfortunately it appears that the
// switch to 80-bit precision and back causes this to be
// unprofitable compared with simply performing a runtime call if
// the argument is out of the (-pi/4, pi/4) range.
Register tmp = noreg;
if (!VM_Version::supports_cmov()) {
// fcmp needs a temporary so preserve rbx,
tmp = rbx;
pushl(tmp);
}
Label slow_case, done;
// x ?<= pi/4
fld_d(ExternalAddress((address)&pi_4));
fld_s(1); // Stack: X PI/4 X
fabs(); // Stack: |X| PI/4 X
fcmp(tmp);
jcc(Assembler::above, slow_case);
// fastest case: -pi/4 <= x <= pi/4
switch(trig) {
case 's':
fsin();
break;
case 'c':
fcos();
break;
case 't':
ftan();
break;
default:
assert(false, "bad intrinsic");
break;
}
jmp(done);
// slow case: runtime call
bind(slow_case);
// Preserve registers across runtime call
pushad();
int incoming_argument_and_return_value_offset = -1;
if (num_fpu_regs_in_use > 1) {
// Must preserve all other FPU regs (could alternatively convert
// SharedRuntime::dsin and dcos into assembly routines known not to trash
// FPU state, but can not trust C compiler)
NEEDS_CLEANUP;
// NOTE that in this case we also push the incoming argument to
// the stack and restore it later; we also use this stack slot to
// hold the return value from dsin or dcos.
for (int i = 0; i < num_fpu_regs_in_use; i++) {
subl(rsp, wordSize*2);
fstp_d(Address(rsp, 0));
}
incoming_argument_and_return_value_offset = 2*wordSize*(num_fpu_regs_in_use-1);
fld_d(Address(rsp, incoming_argument_and_return_value_offset));
}
subl(rsp, wordSize*2);
fstp_d(Address(rsp, 0));
// NOTE: we must not use call_VM_leaf here because that requires a
// complete interpreter frame in debug mode -- same bug as 4387334
NEEDS_CLEANUP;
// Need to add stack banging before this runtime call if it needs to
// be taken; however, there is no generic stack banging routine at
// the MacroAssembler level
switch(trig) {
case 's':
{
call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dsin)));
}
break;
case 'c':
{
call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dcos)));
}
break;
case 't':
{
call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtan)));
}
break;
default:
assert(false, "bad intrinsic");
break;
}
addl(rsp, wordSize * 2);
if (num_fpu_regs_in_use > 1) {
// Must save return value to stack and then restore entire FPU stack
fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
for (int i = 0; i < num_fpu_regs_in_use; i++) {
fld_d(Address(rsp, 0));
addl(rsp, wordSize*2);
}
}
popad();
// Come here with result in F-TOS
bind(done);
if (tmp != noreg) {
popl(tmp);
}
}
void MacroAssembler::jC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::parity, L);
}
void MacroAssembler::jnC2(Register tmp, Label& L) {
// set parity bit if FPU flag C2 is set (via rax)
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
// branch
jcc(Assembler::noParity, L);
}
void MacroAssembler::fcmp(Register tmp) {
fcmp(tmp, 1, true, true);
}
void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
assert(!pop_right || pop_left, "usage error");
if (VM_Version::supports_cmov()) {
assert(tmp == noreg, "unneeded temp");
if (pop_left) {
fucomip(index);
} else {
fucomi(index);
}
if (pop_right) {
fpop();
}
} else {
assert(tmp != noreg, "need temp");
if (pop_left) {
if (pop_right) {
fcompp();
} else {
fcomp(index);
}
} else {
fcom(index);
}
// convert FPU condition into eflags condition via rax,
save_rax(tmp);
fwait(); fnstsw_ax();
sahf();
restore_rax(tmp);
}
// condition codes set as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
fcmp2int(dst, unordered_is_less, 1, true, true);
}
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrement(dst);
}
bind(L);
}
void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomiss(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrement(dst);
}
bind(L);
}
void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
ucomisd(opr1, opr2);
Label L;
if (unordered_is_less) {
movl(dst, -1);
jcc(Assembler::parity, L);
jcc(Assembler::below , L);
movl(dst, 0);
jcc(Assembler::equal , L);
increment(dst);
} else { // unordered is greater
movl(dst, 1);
jcc(Assembler::parity, L);
jcc(Assembler::above , L);
movl(dst, 0);
jcc(Assembler::equal , L);
decrement(dst);
}
bind(L);
}
void MacroAssembler::fpop() {
ffree();
fincstp();
}
void MacroAssembler::sign_extend_short(Register reg) {
if (VM_Version::is_P6()) {
movsxw(reg, reg);
} else {
shll(reg, 16);
sarl(reg, 16);
}
}
void MacroAssembler::sign_extend_byte(Register reg) {
if (VM_Version::is_P6() && reg->has_byte_register()) {
movsxb(reg, reg);
} else {
shll(reg, 24);
sarl(reg, 24);
}
}
void MacroAssembler::division_with_shift (Register reg, int shift_value) {
assert (shift_value > 0, "illegal shift value");
Label _is_positive;
testl (reg, reg);
jcc (Assembler::positive, _is_positive);
int offset = (1 << shift_value) - 1 ;
increment(reg, offset);
bind (_is_positive);
sarl(reg, shift_value);
}
void MacroAssembler::round_to(Register reg, int modulus) {
addl(reg, modulus - 1);
andl(reg, -modulus);
}
// C++ bool manipulation
void MacroAssembler::movbool(Register dst, Address src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, bool boolconst) {
if(sizeof(bool) == 1)
movb(dst, (int) boolconst);
else if(sizeof(bool) == 2)
movw(dst, (int) boolconst);
else if(sizeof(bool) == 4)
movl(dst, (int) boolconst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::movbool(Address dst, Register src) {
if(sizeof(bool) == 1)
movb(dst, src);
else if(sizeof(bool) == 2)
movw(dst, src);
else if(sizeof(bool) == 4)
movl(dst, src);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::testbool(Register dst) {
if(sizeof(bool) == 1)
testb(dst, (int) 0xff);
else if(sizeof(bool) == 2) {
// testw implementation needed for two byte bools
ShouldNotReachHere();
} else if(sizeof(bool) == 4)
testl(dst, dst);
else
// unsupported
ShouldNotReachHere();
}
void MacroAssembler::verify_oop(Register reg, const char* s) {
if (!VerifyOops) return;
// Pass register number to verify_oop_subroutine
char* b = new char[strlen(s) + 50];
sprintf(b, "verify_oop: %s: %s", reg->name(), s);
pushl(rax); // save rax,
pushl(reg); // pass register argument
ExternalAddress buffer((address) b);
pushptr(buffer.addr());
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
}
void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
if (!VerifyOops) return;
// QQQ fix this
// Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
// Pass register number to verify_oop_subroutine
char* b = new char[strlen(s) + 50];
sprintf(b, "verify_oop_addr: %s", s);
pushl(rax); // save rax,
// addr may contain rsp so we will have to adjust it based on the push
// we just did
if (addr.uses(rsp)) {
leal(rax, addr);
pushl(Address(rax, BytesPerWord));
} else {
pushl(addr);
}
ExternalAddress buffer((address) b);
// pass msg argument
pushptr(buffer.addr());
// call indirectly to solve generation ordering problem
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax);
// Caller pops the arguments and restores rax, from the stack
}
void MacroAssembler::stop(const char* msg) {
ExternalAddress message((address)msg);
// push address of message
pushptr(message.addr());
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pushad(); // push registers
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
hlt();
}
void MacroAssembler::warn(const char* msg) {
push_CPU_state();
ExternalAddress message((address) msg);
// push address of message
pushptr(message.addr());
call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
addl(rsp, wordSize); // discard argument
pop_CPU_state();
}
void MacroAssembler::debug(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
// In order to get locks to work, we need to fake a in_VM state
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
ttyLocker ttyl;
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
BytecodeCounter::print();
}
// To see where a verify_oop failed, get $ebx+40/X for this frame.
// This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) {
tty->print_cr("eip = 0x%08x", eip);
tty->print_cr("rax, = 0x%08x", rax);
tty->print_cr("rbx, = 0x%08x", rbx);
tty->print_cr("rcx = 0x%08x", rcx);
tty->print_cr("rdx = 0x%08x", rdx);
tty->print_cr("rdi = 0x%08x", rdi);
tty->print_cr("rsi = 0x%08x", rsi);
tty->print_cr("rbp, = 0x%08x", rbp);
tty->print_cr("rsp = 0x%08x", rsp);
BREAKPOINT;
}
} else {
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
assert(false, "DEBUG MESSAGE");
}
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
}
void MacroAssembler::os_breakpoint() {
// instead of directly emitting a breakpoint, call os:breakpoint for better debugability
// (e.g., MSVC can't call ps() otherwise)
call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}
void MacroAssembler::push_fTOS() {
subl(rsp, 2 * wordSize);
fstp_d(Address(rsp, 0));
}
void MacroAssembler::pop_fTOS() {
fld_d(Address(rsp, 0));
addl(rsp, 2 * wordSize);
}
void MacroAssembler::empty_FPU_stack() {
if (VM_Version::supports_mmx()) {
emms();
} else {
for (int i = 8; i-- > 0; ) ffree(i);
}
}
class ControlWord {
public:
int32_t _value;
int rounding_control() const { return (_value >> 10) & 3 ; }
int precision_control() const { return (_value >> 8) & 3 ; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// rounding control
const char* rc;
switch (rounding_control()) {
case 0: rc = "round near"; break;
case 1: rc = "round down"; break;
case 2: rc = "round up "; break;
case 3: rc = "chop "; break;
};
// precision control
const char* pc;
switch (precision_control()) {
case 0: pc = "24 bits "; break;
case 1: pc = "reserved"; break;
case 2: pc = "53 bits "; break;
case 3: pc = "64 bits "; break;
};
// flags
char f[9];
f[0] = ' ';
f[1] = ' ';
f[2] = (precision ()) ? 'P' : 'p';
f[3] = (underflow ()) ? 'U' : 'u';
f[4] = (overflow ()) ? 'O' : 'o';
f[5] = (zero_divide ()) ? 'Z' : 'z';
f[6] = (denormalized()) ? 'D' : 'd';
f[7] = (invalid ()) ? 'I' : 'i';
f[8] = '\x0';
// output
printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
}
};
class StatusWord {
public:
int32_t _value;
bool busy() const { return ((_value >> 15) & 1) != 0; }
bool C3() const { return ((_value >> 14) & 1) != 0; }
bool C2() const { return ((_value >> 10) & 1) != 0; }
bool C1() const { return ((_value >> 9) & 1) != 0; }
bool C0() const { return ((_value >> 8) & 1) != 0; }
int top() const { return (_value >> 11) & 7 ; }
bool error_status() const { return ((_value >> 7) & 1) != 0; }
bool stack_fault() const { return ((_value >> 6) & 1) != 0; }
bool precision() const { return ((_value >> 5) & 1) != 0; }
bool underflow() const { return ((_value >> 4) & 1) != 0; }
bool overflow() const { return ((_value >> 3) & 1) != 0; }
bool zero_divide() const { return ((_value >> 2) & 1) != 0; }
bool denormalized() const { return ((_value >> 1) & 1) != 0; }
bool invalid() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// condition codes
char c[5];
c[0] = (C3()) ? '3' : '-';
c[1] = (C2()) ? '2' : '-';
c[2] = (C1()) ? '1' : '-';
c[3] = (C0()) ? '0' : '-';
c[4] = '\x0';
// flags
char f[9];
f[0] = (error_status()) ? 'E' : '-';
f[1] = (stack_fault ()) ? 'S' : '-';
f[2] = (precision ()) ? 'P' : '-';
f[3] = (underflow ()) ? 'U' : '-';
f[4] = (overflow ()) ? 'O' : '-';
f[5] = (zero_divide ()) ? 'Z' : '-';
f[6] = (denormalized()) ? 'D' : '-';
f[7] = (invalid ()) ? 'I' : '-';
f[8] = '\x0';
// output
printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top());
}
};
class TagWord {
public:
int32_t _value;
int tag_at(int i) const { return (_value >> (i*2)) & 3; }
void print() const {
printf("%04x", _value & 0xFFFF);
}
};
class FPU_Register {
public:
int32_t _m0;
int32_t _m1;
int16_t _ex;
bool is_indefinite() const {
return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
}
void print() const {
char sign = (_ex < 0) ? '-' : '+';
const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " ";
printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind);
};
};
class FPU_State {
public:
enum {
register_size = 10,
number_of_registers = 8,
register_mask = 7
};
ControlWord _control_word;
StatusWord _status_word;
TagWord _tag_word;
int32_t _error_offset;
int32_t _error_selector;
int32_t _data_offset;
int32_t _data_selector;
int8_t _register[register_size * number_of_registers];
int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; }
const char* tag_as_string(int tag) const {
switch (tag) {
case 0: return "valid";
case 1: return "zero";
case 2: return "special";
case 3: return "empty";
}
ShouldNotReachHere()
return NULL;
}
void print() const {
// print computation registers
{ int t = _status_word.top();
for (int i = 0; i < number_of_registers; i++) {
int j = (i - t) & register_mask;
printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
st(j)->print();
printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
}
}
printf("\n");
// print control registers
printf("ctrl = "); _control_word.print(); printf("\n");
printf("stat = "); _status_word .print(); printf("\n");
printf("tags = "); _tag_word .print(); printf("\n");
}
};
class Flag_Register {
public:
int32_t _value;
bool overflow() const { return ((_value >> 11) & 1) != 0; }
bool direction() const { return ((_value >> 10) & 1) != 0; }
bool sign() const { return ((_value >> 7) & 1) != 0; }
bool zero() const { return ((_value >> 6) & 1) != 0; }
bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; }
bool parity() const { return ((_value >> 2) & 1) != 0; }
bool carry() const { return ((_value >> 0) & 1) != 0; }
void print() const {
// flags
char f[8];
f[0] = (overflow ()) ? 'O' : '-';
f[1] = (direction ()) ? 'D' : '-';
f[2] = (sign ()) ? 'S' : '-';
f[3] = (zero ()) ? 'Z' : '-';
f[4] = (auxiliary_carry()) ? 'A' : '-';
f[5] = (parity ()) ? 'P' : '-';
f[6] = (carry ()) ? 'C' : '-';
f[7] = '\x0';
// output
printf("%08x flags = %s", _value, f);
}
};
class IU_Register {
public:
int32_t _value;
void print() const {
printf("%08x %11d", _value, _value);
}
};
class IU_State {
public:
Flag_Register _eflags;
IU_Register _rdi;
IU_Register _rsi;
IU_Register _rbp;
IU_Register _rsp;
IU_Register _rbx;
IU_Register _rdx;
IU_Register _rcx;
IU_Register _rax;
void print() const {
// computation registers
printf("rax, = "); _rax.print(); printf("\n");
printf("rbx, = "); _rbx.print(); printf("\n");
printf("rcx = "); _rcx.print(); printf("\n");
printf("rdx = "); _rdx.print(); printf("\n");
printf("rdi = "); _rdi.print(); printf("\n");
printf("rsi = "); _rsi.print(); printf("\n");
printf("rbp, = "); _rbp.print(); printf("\n");
printf("rsp = "); _rsp.print(); printf("\n");
printf("\n");
// control registers
printf("flgs = "); _eflags.print(); printf("\n");
}
};
class CPU_State {
public:
FPU_State _fpu_state;
IU_State _iu_state;
void print() const {
printf("--------------------------------------------------\n");
_iu_state .print();
printf("\n");
_fpu_state.print();
printf("--------------------------------------------------\n");
}
};
static void _print_CPU_state(CPU_State* state) {
state->print();
};
void MacroAssembler::print_CPU_state() {
push_CPU_state();
pushl(rsp); // pass CPU state
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
addl(rsp, wordSize); // discard argument
pop_CPU_state();
}
static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
static int counter = 0;
FPU_State* fs = &state->_fpu_state;
counter++;
// For leaf calls, only verify that the top few elements remain empty.
// We only need 1 empty at the top for C2 code.
if( stack_depth < 0 ) {
if( fs->tag_for_st(7) != 3 ) {
printf("FPR7 not empty\n");
state->print();
assert(false, "error");
return false;
}
return true; // All other stack states do not matter
}
assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
"bad FPU control word");
// compute stack depth
int i = 0;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++;
int d = i;
while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
// verify findings
if (i != FPU_State::number_of_registers) {
// stack not contiguous
printf("%s: stack not contiguous at ST%d\n", s, i);
state->print();
assert(false, "error");
return false;
}
// check if computed stack depth corresponds to expected stack depth
if (stack_depth < 0) {
// expected stack depth is -stack_depth or less
if (d > -stack_depth) {
// too many elements on the stack
printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
state->print();
assert(false, "error");
return false;
}
} else {
// expected stack depth is stack_depth
if (d != stack_depth) {
// wrong stack depth
printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
state->print();
assert(false, "error");
return false;
}
}
// everything is cool
return true;
}
void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
if (!VerifyFPU) return;
push_CPU_state();
pushl(rsp); // pass CPU state
ExternalAddress msg((address) s);
// pass message string s
pushptr(msg.addr());
pushl(stack_depth); // pass stack depth
call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
addl(rsp, 3 * wordSize); // discard arguments
// check for error
{ Label L;
testl(rax, rax);
jcc(Assembler::notZero, L);
int3(); // break if error condition
bind(L);
}
pop_CPU_state();
}
void MacroAssembler::push_IU_state() {
pushad();
pushfd();
}
void MacroAssembler::pop_IU_state() {
popfd();
popad();
}
void MacroAssembler::push_FPU_state() {
subl(rsp, FPUStateSizeInWords * wordSize);
fnsave(Address(rsp, 0));
fwait();
}
void MacroAssembler::pop_FPU_state() {
frstor(Address(rsp, 0));
addl(rsp, FPUStateSizeInWords * wordSize);
}
void MacroAssembler::push_CPU_state() {
push_IU_state();
push_FPU_state();
}
void MacroAssembler::pop_CPU_state() {
pop_FPU_state();
pop_IU_state();
}
void MacroAssembler::push_callee_saved_registers() {
pushl(rsi);
pushl(rdi);
pushl(rdx);
pushl(rcx);
}
void MacroAssembler::pop_callee_saved_registers() {
popl(rcx);
popl(rdx);
popl(rdi);
popl(rsi);
}
void MacroAssembler::set_word_if_not_zero(Register dst) {
xorl(dst, dst);
set_byte_if_not_zero(dst);
}
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp) {
movl(tmp, thread);
shrl(tmp, os::get_serialize_page_shift_count());
andl(tmp, (os::vm_page_size() - sizeof(int)));
Address index(noreg, tmp, Address::times_1);
ExternalAddress page(os::get_memory_serialize_page());
movptr(ArrayAddress(page, index), tmp);
}
void MacroAssembler::verify_tlab() {
#ifdef ASSERT
if (UseTLAB && VerifyOops) {
Label next, ok;
Register t1 = rsi;
Register thread_reg = rbx;
pushl(t1);
pushl(thread_reg);
get_thread(thread_reg);
movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
jcc(Assembler::aboveEqual, next);
stop("assert(top >= start)");
should_not_reach_here();
bind(next);
movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
jcc(Assembler::aboveEqual, ok);
stop("assert(top <= end)");
should_not_reach_here();
bind(ok);
popl(thread_reg);
popl(t1);
}
#endif
}
// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
Register t1, Label& slow_case) {
assert(obj == rax, "obj must be in rax, for cmpxchg");
assert_different_registers(obj, var_size_in_bytes, t1);
Register end = t1;
Label retry;
bind(retry);
ExternalAddress heap_top((address) Universe::heap()->top_addr());
movptr(obj, heap_top);
if (var_size_in_bytes == noreg) {
leal(end, Address(obj, con_size_in_bytes));
} else {
leal(end, Address(obj, var_size_in_bytes, Address::times_1));
}
// if end < obj then we wrapped around => object too long => slow case
cmpl(end, obj);
jcc(Assembler::below, slow_case);
cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
jcc(Assembler::above, slow_case);
// Compare obj with the top addr, and if still equal, store the new top addr in
// end at the address of the top addr pointer. Sets ZF if was equal, and clears
// it otherwise. Use lock prefix for atomicity on MPs.
if (os::is_MP()) {
lock();
}
cmpxchgptr(end, heap_top);
jcc(Assembler::notEqual, retry);
}
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
Register t1, Register t2, Label& slow_case) {
assert_different_registers(obj, t1, t2);
assert_different_registers(obj, var_size_in_bytes, t1);
Register end = t2;
Register thread = t1;
verify_tlab();
get_thread(thread);
movl(obj, Address(thread, JavaThread::tlab_top_offset()));
if (var_size_in_bytes == noreg) {
leal(end, Address(obj, con_size_in_bytes));
} else {
leal(end, Address(obj, var_size_in_bytes, Address::times_1));
}
cmpl(end, Address(thread, JavaThread::tlab_end_offset()));
jcc(Assembler::above, slow_case);
// update the tlab top pointer
movl(Address(thread, JavaThread::tlab_top_offset()), end);
// recover var_size_in_bytes if necessary
if (var_size_in_bytes == end) {
subl(var_size_in_bytes, obj);
}
verify_tlab();
}
// Preserves rbx, and rdx.
void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
Register top = rax;
Register t1 = rcx;
Register t2 = rsi;
Register thread_reg = rdi;
assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
Label do_refill, discard_tlab;
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden.
jmp(slow_case);
}
get_thread(thread_reg);
movl(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
// calculate amount of free space
subl(t1, top);
shrl(t1, LogHeapWordSize);
// Retain tlab and allocate object in shared space if
// the amount free in the tlab is too large to discard.
cmpl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
jcc(Assembler::lessEqual, discard_tlab);
// Retain
movl(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
addl(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
if (TLABStats) {
// increment number of slow_allocations
addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
}
jmp(try_eden);
bind(discard_tlab);
if (TLABStats) {
// increment number of refills
addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
// accumulate wastage -- t1 is amount free in tlab
addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
}
// if tlab is currently allocated (top or end != null) then
// fill [top, end + alignment_reserve) with array object
testl (top, top);
jcc(Assembler::zero, do_refill);
// set up the mark word
movl(Address(top, oopDesc::mark_offset_in_bytes()), (int)markOopDesc::prototype()->copy_set_hash(0x2));
// set the length to the remaining space
subl(t1, typeArrayOopDesc::header_size(T_INT));
addl(t1, ThreadLocalAllocBuffer::alignment_reserve());
shll(t1, log2_intptr(HeapWordSize/sizeof(jint)));
movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
// set klass to intArrayKlass
// dubious reloc why not an oop reloc?
movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
movl(Address(top, oopDesc::klass_offset_in_bytes()), t1);
// refill the tlab with an eden allocation
bind(do_refill);
movl(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
shll(t1, LogHeapWordSize);
// add object_size ??
eden_allocate(top, t1, 0, t2, slow_case);
// Check that t1 was preserved in eden_allocate.
#ifdef ASSERT
if (UseTLAB) {
Label ok;
Register tsize = rsi;
assert_different_registers(tsize, thread_reg, t1);
pushl(tsize);
movl(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
shll(tsize, LogHeapWordSize);
cmpl(t1, tsize);
jcc(Assembler::equal, ok);
stop("assert(t1 != tlab size)");
should_not_reach_here();
bind(ok);
popl(tsize);
}
#endif
movl(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
movl(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
addl(top, t1);
subl(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
movl(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
verify_tlab();
jmp(retry);
}
int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
bool swap_reg_contains_mark,
Label& done, Label* slow_case,
BiasedLockingCounters* counters) {
assert(UseBiasedLocking, "why call this otherwise?");
assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
assert_different_registers(lock_reg, obj_reg, swap_reg);
if (PrintBiasedLockingStatistics && counters == NULL)
counters = BiasedLocking::counters();
bool need_tmp_reg = false;
if (tmp_reg == noreg) {
need_tmp_reg = true;
tmp_reg = lock_reg;
} else {
assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
}
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes());
Address saved_mark_addr(lock_reg, 0);
// Biased locking
// See whether the lock is currently biased toward our thread and
// whether the epoch is still valid
// Note that the runtime guarantees sufficient alignment of JavaThread
// pointers to allow age to be placed into low bits
// First check to see whether biasing is even enabled for this object
Label cas_label;
int null_check_offset = -1;
if (!swap_reg_contains_mark) {
null_check_offset = offset();
movl(swap_reg, mark_addr);
}
if (need_tmp_reg) {
pushl(tmp_reg);
}
movl(tmp_reg, swap_reg);
andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
if (need_tmp_reg) {
popl(tmp_reg);
}
jcc(Assembler::notEqual, cas_label);
// The bias pattern is present in the object's header. Need to check
// whether the bias owner and the epoch are both still current.
// Note that because there is no current thread register on x86 we
// need to store off the mark word we read out of the object to
// avoid reloading it and needing to recheck invariants below. This
// store is unfortunate but it makes the overall code shorter and
// simpler.
movl(saved_mark_addr, swap_reg);
if (need_tmp_reg) {
pushl(tmp_reg);
}
get_thread(tmp_reg);
xorl(swap_reg, tmp_reg);
if (swap_reg_contains_mark) {
null_check_offset = offset();
}
movl(tmp_reg, klass_addr);
xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
if (need_tmp_reg) {
popl(tmp_reg);
}
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->biased_lock_entry_count_addr()));
}
jcc(Assembler::equal, done);
Label try_revoke_bias;
Label try_rebias;
// At this point we know that the header has the bias pattern and
// that we are not the bias owner in the current epoch. We need to
// figure out more details about the state of the header in order to
// know what operations can be legally performed on the object's
// header.
// If the low three bits in the xor result aren't clear, that means
// the prototype header is no longer biased and we have to revoke
// the bias on this object.
testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
jcc(Assembler::notZero, try_revoke_bias);
// Biasing is still enabled for this data type. See whether the
// epoch of the current bias is still valid, meaning that the epoch
// bits of the mark word are equal to the epoch bits of the
// prototype header. (Note that the prototype header's epoch bits
// only change at a safepoint.) If not, attempt to rebias the object
// toward the current thread. Note that we must be absolutely sure
// that the current epoch is invalid in order to do this because
// otherwise the manipulations it performs on the mark word are
// illegal.
testl(swap_reg, markOopDesc::epoch_mask_in_place);
jcc(Assembler::notZero, try_rebias);
// The epoch of the current bias is still valid but we know nothing
// about the owner; it might be set or it might be clear. Try to
// acquire the bias of the object using an atomic operation. If this
// fails we will go in to the runtime to revoke the object's bias.
// Note that we first construct the presumed unbiased header so we
// don't accidentally blow away another thread's valid bias.
movl(swap_reg, saved_mark_addr);
andl(swap_reg,
markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
if (need_tmp_reg) {
pushl(tmp_reg);
}
get_thread(tmp_reg);
orl(tmp_reg, swap_reg);
if (os::is_MP()) {
lock();
}
cmpxchg(tmp_reg, Address(obj_reg, 0));
if (need_tmp_reg) {
popl(tmp_reg);
}
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_rebias);
// At this point we know the epoch has expired, meaning that the
// current "bias owner", if any, is actually invalid. Under these
// circumstances _only_, we are allowed to use the current header's
// value as the comparison value when doing the cas to acquire the
// bias in the current epoch. In other words, we allow transfer of
// the bias from one thread to another directly in this situation.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
if (need_tmp_reg) {
pushl(tmp_reg);
}
get_thread(tmp_reg);
movl(swap_reg, klass_addr);
orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
movl(swap_reg, saved_mark_addr);
if (os::is_MP()) {
lock();
}
cmpxchg(tmp_reg, Address(obj_reg, 0));
if (need_tmp_reg) {
popl(tmp_reg);
}
// If the biasing toward our thread failed, then another thread
// succeeded in biasing it toward itself and we need to revoke that
// bias. The revocation will occur in the runtime in the slow case.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
}
if (slow_case != NULL) {
jcc(Assembler::notZero, *slow_case);
}
jmp(done);
bind(try_revoke_bias);
// The prototype mark in the klass doesn't have the bias bit set any
// more, indicating that objects of this data type are not supposed
// to be biased any more. We are going to try to reset the mark of
// this object to the prototype value and fall through to the
// CAS-based locking scheme. Note that if our CAS fails, it means
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
movl(swap_reg, saved_mark_addr);
if (need_tmp_reg) {
pushl(tmp_reg);
}
movl(tmp_reg, klass_addr);
movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
if (os::is_MP()) {
lock();
}
cmpxchg(tmp_reg, Address(obj_reg, 0));
if (need_tmp_reg) {
popl(tmp_reg);
}
// Fall through to the normal CAS-based lock, because no matter what
// the result of the above CAS, some thread must have succeeded in
// removing the bias bit from the object's header.
if (counters != NULL) {
cond_inc32(Assembler::zero,
ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
}
bind(cas_label);
return null_check_offset;
}
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
assert(UseBiasedLocking, "why call this otherwise?");
// Check for biased locking unlock case, which is a no-op
// Note: we do not have to check the thread ID for two reasons.
// First, the interpreter checks for IllegalMonitorStateException at
// a higher level. Second, if the bias was revoked while we held the
// lock, the object could not be rebiased toward another thread, so
// the bias bit would be clear.
movl(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
andl(temp_reg, markOopDesc::biased_lock_mask_in_place);
cmpl(temp_reg, markOopDesc::biased_lock_pattern);
jcc(Assembler::equal, done);
}
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
switch (cond) {
// Note some conditions are synonyms for others
case Assembler::zero: return Assembler::notZero;
case Assembler::notZero: return Assembler::zero;
case Assembler::less: return Assembler::greaterEqual;
case Assembler::lessEqual: return Assembler::greater;
case Assembler::greater: return Assembler::lessEqual;
case Assembler::greaterEqual: return Assembler::less;
case Assembler::below: return Assembler::aboveEqual;
case Assembler::belowEqual: return Assembler::above;
case Assembler::above: return Assembler::belowEqual;
case Assembler::aboveEqual: return Assembler::below;
case Assembler::overflow: return Assembler::noOverflow;
case Assembler::noOverflow: return Assembler::overflow;
case Assembler::negative: return Assembler::positive;
case Assembler::positive: return Assembler::negative;
case Assembler::parity: return Assembler::noParity;
case Assembler::noParity: return Assembler::parity;
}
ShouldNotReachHere(); return Assembler::overflow;
}
void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
Condition negated_cond = negate_condition(cond);
Label L;
jcc(negated_cond, L);
atomic_incl(counter_addr);
bind(L);
}
void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
pushfd();
if (os::is_MP())
lock();
increment(counter_addr);
popfd();
}
SkipIfEqual::SkipIfEqual(
MacroAssembler* masm, const bool* flag_addr, bool value) {
_masm = masm;
_masm->cmp8(ExternalAddress((address)flag_addr), value);
_masm->jcc(Assembler::equal, _label);
}
SkipIfEqual::~SkipIfEqual() {
_masm->bind(_label);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
movl(tmp, rsp);
// Bang stack for total size given plus shadow page size.
// Bang one page at a time because large size can bang beyond yellow and
// red zones.
Label loop;
bind(loop);
movl(Address(tmp, (-os::vm_page_size())), size );
subl(tmp, os::vm_page_size());
subl(size, os::vm_page_size());
jcc(Assembler::greater, loop);
// Bang down shadow pages too.
// The -1 because we already subtracted 1 page.
for (int i = 0; i< StackShadowPages-1; i++) {
movl(Address(tmp, (-i*os::vm_page_size())), size );
}
}