7010070: Update all 2010 Oracle-changed OpenJDK files to have the proper copyright dates - second pass
Summary: Update the copyright to be 2010 on all changed files in OpenJDK
Reviewed-by: ohair
/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
class BiasedLockingCounters;
// <sys/trap.h> promises that the system will not use traps 16-31
#define ST_RESERVED_FOR_USER_0 0x10
/* Written: David Ungar 4/19/97 */
// Contains all the definitions needed for sparc assembly code generation.
// Register aliases for parts of the system:
// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
// across context switches in V8+ ABI. Of course, there are no 64 bit regs
// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
// g2-g4 are scratch registers called "application globals". Their
// meaning is reserved to the "compilation system"--which means us!
// They are are not supposed to be touched by ordinary C code, although
// highly-optimized C code might steal them for temps. They are safe
// across thread switches, and the ABI requires that they be safe
// across function calls.
//
// g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
// across func calls, and V8+ also allows g5 to be clobbered across
// func calls. Also, g1 and g5 can get touched while doing shared
// library loading.
//
// We must not touch g7 (it is the thread-self register) and g6 is
// reserved for certain tools. g0, of course, is always zero.
//
// (Sources: SunSoft Compilers Group, thread library engineers.)
// %%%% The interpreter should be revisited to reduce global scratch regs.
// This global always holds the current JavaThread pointer:
REGISTER_DECLARATION(Register, G2_thread , G2);
REGISTER_DECLARATION(Register, G6_heapbase , G6);
// The following globals are part of the Java calling convention:
REGISTER_DECLARATION(Register, G5_method , G5);
REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
// The following globals are used for the new C1 & interpreter calling convention:
REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
// This local is used to preserve G2_thread in the interpreter and in stubs:
REGISTER_DECLARATION(Register, L7_thread_cache , L7);
// These globals are used as scratch registers in the interpreter:
REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
REGISTER_DECLARATION(Register, G3_scratch , G3);
REGISTER_DECLARATION(Register, G4_scratch , G4);
// These globals are used as short-lived scratch registers in the compiler:
REGISTER_DECLARATION(Register, Gtemp , G5);
// JSR 292 fixed register usages:
REGISTER_DECLARATION(Register, G5_method_type , G5);
REGISTER_DECLARATION(Register, G3_method_handle , G3);
REGISTER_DECLARATION(Register, L7_mh_SP_save , L7);
// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
// because a single patchable "set" instruction (NativeMovConstReg,
// or NativeMovConstPatching for compiler1) instruction
// serves to set up either quantity, depending on whether the compiled
// call site is an inline cache or is megamorphic. See the function
// CompiledIC::set_to_megamorphic.
//
// If a inline cache targets an interpreted method, then the
// G5 register will be used twice during the call. First,
// the call site will be patched to load a compiledICHolder
// into G5. (This is an ordered pair of ic_klass, method.)
// The c2i adapter will first check the ic_klass, then load
// G5_method with the method part of the pair just before
// jumping into the interpreter.
//
// Note that G5_method is only the method-self for the interpreter,
// and is logically unrelated to G5_megamorphic_method.
//
// Invariants on G2_thread (the JavaThread pointer):
// - it should not be used for any other purpose anywhere
// - it must be re-initialized by StubRoutines::call_stub()
// - it must be preserved around every use of call_VM
// We can consider using g2/g3/g4 to cache more values than the
// JavaThread, such as the card-marking base or perhaps pointers into
// Eden. It's something of a waste to use them as scratch temporaries,
// since they are not supposed to be volatile. (Of course, if we find
// that Java doesn't benefit from application globals, then we can just
// use them as ordinary temporaries.)
//
// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
// it makes sense to use them routinely for procedure linkage,
// whenever the On registers are not applicable. Examples: G5_method,
// G5_inline_cache_klass, and a double handful of miscellaneous compiler
// stubs. This means that compiler stubs, etc., should be kept to a
// maximum of two or three G-register arguments.
// stub frames
REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
// Interpreter frames
#ifdef CC_INTERP
REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
REGISTER_DECLARATION(Register, L2_scratch , L2);
REGISTER_DECLARATION(Register, L3_scratch , L3);
REGISTER_DECLARATION(Register, L4_scratch , L4);
REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
REGISTER_DECLARATION(Register, O5_savedSP , O5);
REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
// a copy SP, so in 64-bit it's a biased value. The bias
// is added and removed as needed in the frame code.
// Interface to signature handler
REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler
#else
REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
REGISTER_DECLARATION(Register, Lmethod , L2);
REGISTER_DECLARATION(Register, Llocals , L3);
REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
// must match Llocals in asm interpreter
REGISTER_DECLARATION(Register, Lmonitors , L4);
REGISTER_DECLARATION(Register, Lbyte_code , L5);
// When calling out from the interpreter we record SP so that we can remove any extra stack
// space allocated during adapter transitions. This register is only live from the point
// of the call until we return.
REGISTER_DECLARATION(Register, Llast_SP , L5);
REGISTER_DECLARATION(Register, Lscratch , L5);
REGISTER_DECLARATION(Register, Lscratch2 , L6);
REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
REGISTER_DECLARATION(Register, O5_savedSP , O5);
REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
// a copy SP, so in 64-bit it's a biased value. The bias
// is added and removed as needed in the frame code.
REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
#endif /* CC_INTERP */
// NOTE: Lscratch2 and LcpoolCache point to the same registers in
// the interpreter code. If Lscratch2 needs to be used for some
// purpose than LcpoolCache should be restore after that for
// the interpreter to work right
// (These assignments must be compatible with L7_thread_cache; see above.)
// Since Lbcp points into the middle of the method object,
// it is temporarily converted into a "bcx" during GC.
// Exception processing
// These registers are passed into exception handlers.
// All exception handlers require the exception object being thrown.
// In addition, an nmethod's exception handler must be passed
// the address of the call site within the nmethod, to allow
// proper selection of the applicable catch block.
// (Interpreter frames use their own bcp() for this purpose.)
//
// The Oissuing_pc value is not always needed. When jumping to a
// handler that is known to be interpreted, the Oissuing_pc value can be
// omitted. An actual catch block in compiled code receives (from its
// nmethod's exception handler) the thrown exception in the Oexception,
// but it doesn't need the Oissuing_pc.
//
// If an exception handler (either interpreted or compiled)
// discovers there is no applicable catch block, it updates
// the Oissuing_pc to the continuation PC of its own caller,
// pops back to that caller's stack frame, and executes that
// caller's exception handler. Obviously, this process will
// iterate until the control stack is popped back to a method
// containing an applicable catch block. A key invariant is
// that the Oissuing_pc value is always a value local to
// the method whose exception handler is currently executing.
//
// Note: The issuing PC value is __not__ a raw return address (I7 value).
// It is a "return pc", the address __following__ the call.
// Raw return addresses are converted to issuing PCs by frame::pc(),
// or by stubs. Issuing PCs can be used directly with PC range tables.
//
REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
// These must occur after the declarations above
#ifndef DONT_USE_REGISTER_DEFINES
#define Gthread AS_REGISTER(Register, Gthread)
#define Gmethod AS_REGISTER(Register, Gmethod)
#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
#define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
#define Gargs AS_REGISTER(Register, Gargs)
#define Lthread_cache AS_REGISTER(Register, Lthread_cache)
#define Gframe_size AS_REGISTER(Register, Gframe_size)
#define Gtemp AS_REGISTER(Register, Gtemp)
#ifdef CC_INTERP
#define Lstate AS_REGISTER(Register, Lstate)
#define Lesp AS_REGISTER(Register, Lesp)
#define L1_scratch AS_REGISTER(Register, L1_scratch)
#define Lmirror AS_REGISTER(Register, Lmirror)
#define L2_scratch AS_REGISTER(Register, L2_scratch)
#define L3_scratch AS_REGISTER(Register, L3_scratch)
#define L4_scratch AS_REGISTER(Register, L4_scratch)
#define Lscratch AS_REGISTER(Register, Lscratch)
#define Lscratch2 AS_REGISTER(Register, Lscratch2)
#define L7_scratch AS_REGISTER(Register, L7_scratch)
#define Ostate AS_REGISTER(Register, Ostate)
#else
#define Lesp AS_REGISTER(Register, Lesp)
#define Lbcp AS_REGISTER(Register, Lbcp)
#define Lmethod AS_REGISTER(Register, Lmethod)
#define Llocals AS_REGISTER(Register, Llocals)
#define Lmonitors AS_REGISTER(Register, Lmonitors)
#define Lbyte_code AS_REGISTER(Register, Lbyte_code)
#define Lscratch AS_REGISTER(Register, Lscratch)
#define Lscratch2 AS_REGISTER(Register, Lscratch2)
#define LcpoolCache AS_REGISTER(Register, LcpoolCache)
#endif /* ! CC_INTERP */
#define Lentry_args AS_REGISTER(Register, Lentry_args)
#define I5_savedSP AS_REGISTER(Register, I5_savedSP)
#define O5_savedSP AS_REGISTER(Register, O5_savedSP)
#define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
#define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
#define IdispatchTables AS_REGISTER(Register, IdispatchTables)
#define Oexception AS_REGISTER(Register, Oexception)
#define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
#endif
// Address is an abstraction used to represent a memory location.
//
// Note: A register location is represented via a Register, not
// via an address for efficiency & simplicity reasons.
class Address VALUE_OBJ_CLASS_SPEC {
private:
Register _base; // Base register.
RegisterOrConstant _index_or_disp; // Index register or constant displacement.
RelocationHolder _rspec;
public:
Address() : _base(noreg), _index_or_disp(noreg) {}
Address(Register base, RegisterOrConstant index_or_disp)
: _base(base),
_index_or_disp(index_or_disp) {
}
Address(Register base, Register index)
: _base(base),
_index_or_disp(index) {
}
Address(Register base, int disp)
: _base(base),
_index_or_disp(disp) {
}
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
Address(Register base, ByteSize disp)
: _base(base),
_index_or_disp(in_bytes(disp)) {
}
#endif
// accessors
Register base() const { return _base; }
Register index() const { return _index_or_disp.as_register(); }
int disp() const { return _index_or_disp.as_constant(); }
bool has_index() const { return _index_or_disp.is_register(); }
bool has_disp() const { return _index_or_disp.is_constant(); }
const relocInfo::relocType rtype() { return _rspec.type(); }
const RelocationHolder& rspec() { return _rspec; }
RelocationHolder rspec(int offset) const {
return offset == 0 ? _rspec : _rspec.plus(offset);
}
inline bool is_simm13(int offset = 0); // check disp+offset for overflow
Address plus_disp(int plusdisp) const { // bump disp by a small amount
assert(_index_or_disp.is_constant(), "must have a displacement");
Address a(base(), disp() + plusdisp);
return a;
}
Address after_save() const {
Address a = (*this);
a._base = a._base->after_save();
return a;
}
Address after_restore() const {
Address a = (*this);
a._base = a._base->after_restore();
return a;
}
// Convert the raw encoding form into the form expected by the
// constructor for Address.
static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
friend class Assembler;
};
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
private:
address _address;
RelocationHolder _rspec;
RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
switch (rtype) {
case relocInfo::external_word_type:
return external_word_Relocation::spec(addr);
case relocInfo::internal_word_type:
return internal_word_Relocation::spec(addr);
#ifdef _LP64
case relocInfo::opt_virtual_call_type:
return opt_virtual_call_Relocation::spec();
case relocInfo::static_call_type:
return static_call_Relocation::spec();
case relocInfo::runtime_call_type:
return runtime_call_Relocation::spec();
#endif
case relocInfo::none:
return RelocationHolder();
default:
ShouldNotReachHere();
return RelocationHolder();
}
}
protected:
// creation
AddressLiteral() : _address(NULL), _rspec(NULL) {}
public:
AddressLiteral(address addr, RelocationHolder const& rspec)
: _address(addr),
_rspec(rspec) {}
// Some constructors to avoid casting at the call site.
AddressLiteral(jobject obj, RelocationHolder const& rspec)
: _address((address) obj),
_rspec(rspec) {}
AddressLiteral(intptr_t value, RelocationHolder const& rspec)
: _address((address) value),
_rspec(rspec) {}
AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
// Some constructors to avoid casting at the call site.
AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
#ifdef _LP64
// 32-bit complains about a multiple declaration for int*.
AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
#endif
AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
: _address((address) addr),
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
intptr_t value() const { return (intptr_t) _address; }
int low10() const;
const relocInfo::relocType rtype() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
RelocationHolder rspec(int offset) const {
return offset == 0 ? _rspec : _rspec.plus(offset);
}
};
inline Address RegisterImpl::address_in_saved_window() const {
return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
}
// Argument is an abstraction used to represent an outgoing
// actual argument or an incoming formal parameter, whether
// it resides in memory or in a register, in a manner consistent
// with the SPARC Application Binary Interface, or ABI. This is
// often referred to as the native or C calling convention.
class Argument VALUE_OBJ_CLASS_SPEC {
private:
int _number;
bool _is_in;
public:
#ifdef _LP64
enum {
n_register_parameters = 6, // only 6 registers may contain integer parameters
n_float_register_parameters = 16 // Can have up to 16 floating registers
};
#else
enum {
n_register_parameters = 6 // only 6 registers may contain integer parameters
};
#endif
// creation
Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
int number() const { return _number; }
bool is_in() const { return _is_in; }
bool is_out() const { return !is_in(); }
Argument successor() const { return Argument(number() + 1, is_in()); }
Argument as_in() const { return Argument(number(), true ); }
Argument as_out() const { return Argument(number(), false); }
// locating register-based arguments:
bool is_register() const { return _number < n_register_parameters; }
#ifdef _LP64
// locating Floating Point register-based arguments:
bool is_float_register() const { return _number < n_float_register_parameters; }
FloatRegister as_float_register() const {
assert(is_float_register(), "must be a register argument");
return as_FloatRegister(( number() *2 ) + 1);
}
FloatRegister as_double_register() const {
assert(is_float_register(), "must be a register argument");
return as_FloatRegister(( number() *2 ));
}
#endif
Register as_register() const {
assert(is_register(), "must be a register argument");
return is_in() ? as_iRegister(number()) : as_oRegister(number());
}
// locating memory-based arguments
Address as_address() const {
assert(!is_register(), "must be a memory argument");
return address_in_frame();
}
// When applied to a register-based argument, give the corresponding address
// into the 6-word area "into which callee may store register arguments"
// (This is a different place than the corresponding register-save area location.)
Address address_in_frame() const;
// debugging
const char* name() const;
friend class Assembler;
};
// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
// level; i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.
class Assembler : public AbstractAssembler {
protected:
static void print_instruction(int inst);
static int patched_branch(int dest_pos, int inst, int inst_pos);
static int branch_destination(int inst, int pos);
friend class AbstractAssembler;
friend class AddressLiteral;
// code patchers need various routines like inv_wdisp()
friend class NativeInstruction;
friend class NativeGeneralJump;
friend class Relocation;
friend class Label;
public:
// op carries format info; see page 62 & 267
enum ops {
call_op = 1, // fmt 1
branch_op = 0, // also sethi (fmt2)
arith_op = 2, // fmt 3, arith & misc
ldst_op = 3 // fmt 3, load/store
};
enum op2s {
bpr_op2 = 3,
fb_op2 = 6,
fbp_op2 = 5,
br_op2 = 2,
bp_op2 = 1,
cb_op2 = 7, // V8
sethi_op2 = 4
};
enum op3s {
// selected op3s
add_op3 = 0x00,
and_op3 = 0x01,
or_op3 = 0x02,
xor_op3 = 0x03,
sub_op3 = 0x04,
andn_op3 = 0x05,
orn_op3 = 0x06,
xnor_op3 = 0x07,
addc_op3 = 0x08,
mulx_op3 = 0x09,
umul_op3 = 0x0a,
smul_op3 = 0x0b,
subc_op3 = 0x0c,
udivx_op3 = 0x0d,
udiv_op3 = 0x0e,
sdiv_op3 = 0x0f,
addcc_op3 = 0x10,
andcc_op3 = 0x11,
orcc_op3 = 0x12,
xorcc_op3 = 0x13,
subcc_op3 = 0x14,
andncc_op3 = 0x15,
orncc_op3 = 0x16,
xnorcc_op3 = 0x17,
addccc_op3 = 0x18,
umulcc_op3 = 0x1a,
smulcc_op3 = 0x1b,
subccc_op3 = 0x1c,
udivcc_op3 = 0x1e,
sdivcc_op3 = 0x1f,
taddcc_op3 = 0x20,
tsubcc_op3 = 0x21,
taddcctv_op3 = 0x22,
tsubcctv_op3 = 0x23,
mulscc_op3 = 0x24,
sll_op3 = 0x25,
sllx_op3 = 0x25,
srl_op3 = 0x26,
srlx_op3 = 0x26,
sra_op3 = 0x27,
srax_op3 = 0x27,
rdreg_op3 = 0x28,
membar_op3 = 0x28,
flushw_op3 = 0x2b,
movcc_op3 = 0x2c,
sdivx_op3 = 0x2d,
popc_op3 = 0x2e,
movr_op3 = 0x2f,
sir_op3 = 0x30,
wrreg_op3 = 0x30,
saved_op3 = 0x31,
fpop1_op3 = 0x34,
fpop2_op3 = 0x35,
impdep1_op3 = 0x36,
impdep2_op3 = 0x37,
jmpl_op3 = 0x38,
rett_op3 = 0x39,
trap_op3 = 0x3a,
flush_op3 = 0x3b,
save_op3 = 0x3c,
restore_op3 = 0x3d,
done_op3 = 0x3e,
retry_op3 = 0x3e,
lduw_op3 = 0x00,
ldub_op3 = 0x01,
lduh_op3 = 0x02,
ldd_op3 = 0x03,
stw_op3 = 0x04,
stb_op3 = 0x05,
sth_op3 = 0x06,
std_op3 = 0x07,
ldsw_op3 = 0x08,
ldsb_op3 = 0x09,
ldsh_op3 = 0x0a,
ldx_op3 = 0x0b,
ldstub_op3 = 0x0d,
stx_op3 = 0x0e,
swap_op3 = 0x0f,
stwa_op3 = 0x14,
stxa_op3 = 0x1e,
ldf_op3 = 0x20,
ldfsr_op3 = 0x21,
ldqf_op3 = 0x22,
lddf_op3 = 0x23,
stf_op3 = 0x24,
stfsr_op3 = 0x25,
stqf_op3 = 0x26,
stdf_op3 = 0x27,
prefetch_op3 = 0x2d,
ldc_op3 = 0x30,
ldcsr_op3 = 0x31,
lddc_op3 = 0x33,
stc_op3 = 0x34,
stcsr_op3 = 0x35,
stdcq_op3 = 0x36,
stdc_op3 = 0x37,
casa_op3 = 0x3c,
casxa_op3 = 0x3e,
alt_bit_op3 = 0x10,
cc_bit_op3 = 0x10
};
enum opfs {
// selected opfs
fmovs_opf = 0x01,
fmovd_opf = 0x02,
fnegs_opf = 0x05,
fnegd_opf = 0x06,
fadds_opf = 0x41,
faddd_opf = 0x42,
fsubs_opf = 0x45,
fsubd_opf = 0x46,
fmuls_opf = 0x49,
fmuld_opf = 0x4a,
fdivs_opf = 0x4d,
fdivd_opf = 0x4e,
fcmps_opf = 0x51,
fcmpd_opf = 0x52,
fstox_opf = 0x81,
fdtox_opf = 0x82,
fxtos_opf = 0x84,
fxtod_opf = 0x88,
fitos_opf = 0xc4,
fdtos_opf = 0xc6,
fitod_opf = 0xc8,
fstod_opf = 0xc9,
fstoi_opf = 0xd1,
fdtoi_opf = 0xd2
};
enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7 };
enum Condition {
// for FBfcc & FBPfcc instruction
f_never = 0,
f_notEqual = 1,
f_notZero = 1,
f_lessOrGreater = 2,
f_unorderedOrLess = 3,
f_less = 4,
f_unorderedOrGreater = 5,
f_greater = 6,
f_unordered = 7,
f_always = 8,
f_equal = 9,
f_zero = 9,
f_unorderedOrEqual = 10,
f_greaterOrEqual = 11,
f_unorderedOrGreaterOrEqual = 12,
f_lessOrEqual = 13,
f_unorderedOrLessOrEqual = 14,
f_ordered = 15,
// V8 coproc, pp 123 v8 manual
cp_always = 8,
cp_never = 0,
cp_3 = 7,
cp_2 = 6,
cp_2or3 = 5,
cp_1 = 4,
cp_1or3 = 3,
cp_1or2 = 2,
cp_1or2or3 = 1,
cp_0 = 9,
cp_0or3 = 10,
cp_0or2 = 11,
cp_0or2or3 = 12,
cp_0or1 = 13,
cp_0or1or3 = 14,
cp_0or1or2 = 15,
// for integers
never = 0,
equal = 1,
zero = 1,
lessEqual = 2,
less = 3,
lessEqualUnsigned = 4,
lessUnsigned = 5,
carrySet = 5,
negative = 6,
overflowSet = 7,
always = 8,
notEqual = 9,
notZero = 9,
greater = 10,
greaterEqual = 11,
greaterUnsigned = 12,
greaterEqualUnsigned = 13,
carryClear = 13,
positive = 14,
overflowClear = 15
};
enum CC {
icc = 0, xcc = 2,
// ptr_cc is the correct condition code for a pointer or intptr_t:
ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
};
enum PrefetchFcn {
severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
};
public:
// Helper functions for groups of instructions
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
enum Membar_mask_bits { // page 184, v9
StoreStore = 1 << 3,
LoadStore = 1 << 2,
StoreLoad = 1 << 1,
LoadLoad = 1 << 0,
Sync = 1 << 6,
MemIssue = 1 << 5,
Lookaside = 1 << 4
};
// test if x is within signed immediate range for nbits
static bool is_simm(intptr_t x, int nbits) { return -( intptr_t(1) << nbits-1 ) <= x && x < ( intptr_t(1) << nbits-1 ); }
// test if -4096 <= x <= 4095
static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
static bool is_in_wdisp_range(address a, address b, int nbits) {
intptr_t d = intptr_t(b) - intptr_t(a);
return is_simm(d, nbits + 2);
}
// test if label is in simm16 range in words (wdisp16).
bool is_in_wdisp16_range(Label& L) {
return is_in_wdisp_range(target(L), pc(), 16);
}
// test if the distance between two addresses fits in simm30 range in words
static bool is_in_wdisp30_range(address a, address b) {
return is_in_wdisp_range(a, b, 30);
}
enum ASIs { // page 72, v9
ASI_PRIMARY = 0x80,
ASI_PRIMARY_LITTLE = 0x88
// add more from book as needed
};
protected:
// helpers
// x is supposed to fit in a field "nbits" wide
// and be sign-extended. Check the range.
static void assert_signed_range(intptr_t x, int nbits) {
assert( nbits == 32
|| -(1 << nbits-1) <= x && x < ( 1 << nbits-1),
"value out of range");
}
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
assert( (x & 3) == 0, "not word aligned");
assert_signed_range(x, nbits + 2);
}
static void assert_unsigned_const(int x, int nbits) {
assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
}
// fields: note bits numbered from LSB = 0,
// fields known by inclusive bit range
static int fmask(juint hi_bit, juint lo_bit) {
assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
return (1 << ( hi_bit-lo_bit + 1 )) - 1;
}
// inverse of u_field
static int inv_u_field(int x, int hi_bit, int lo_bit) {
juint r = juint(x) >> lo_bit;
r &= fmask( hi_bit, lo_bit);
return int(r);
}
// signed version: extract from field and sign-extend
static int inv_s_field(int x, int hi_bit, int lo_bit) {
int sign_shift = 31 - hi_bit;
return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
}
// given a field that ranges from hi_bit to lo_bit (inclusive,
// LSB = 0), and an unsigned value for the field,
// shift it into the field
#ifdef ASSERT
static int u_field(int x, int hi_bit, int lo_bit) {
assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
"value out of range");
int r = x << lo_bit;
assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
return r;
}
#else
// make sure this is inlined as it will reduce code size significantly
#define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
#endif
static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
static int op( int x) { return u_field(x, 31, 30); }
static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
static int fcn( int x) { return u_field(x, 29, 25); }
static int op3( int x) { return u_field(x, 24, 19); }
static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
static int cond( int x) { return u_field(x, 28, 25); }
static int cond_mov( int x) { return u_field(x, 17, 14); }
static int rcond( RCondition x) { return u_field(x, 12, 10); }
static int op2( int x) { return u_field(x, 24, 22); }
static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
static int imm_asi( int x) { return u_field(x, 12, 5); }
static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
static int opf_low6( int w) { return u_field(w, 10, 5); }
static int opf_low5( int w) { return u_field(w, 9, 5); }
static int trapcc( CC cc) { return u_field(cc, 12, 11); }
static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
static int opf( int x) { return u_field(x, 13, 5); }
static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
// some float instructions use this encoding on the op3 field
static int alt_op3(int op, FloatRegisterImpl::Width w) {
int r;
switch(w) {
case FloatRegisterImpl::S: r = op + 0; break;
case FloatRegisterImpl::D: r = op + 3; break;
case FloatRegisterImpl::Q: r = op + 2; break;
default: ShouldNotReachHere(); break;
}
return op3(r);
}
// compute inverse of simm
static int inv_simm(int x, int nbits) {
return (int)(x << (32 - nbits)) >> (32 - nbits);
}
static int inv_simm13( int x ) { return inv_simm(x, 13); }
// signed immediate, in low bits, nbits long
static int simm(int x, int nbits) {
assert_signed_range(x, nbits);
return x & (( 1 << nbits ) - 1);
}
// compute inverse of wdisp16
static intptr_t inv_wdisp16(int x, intptr_t pos) {
int lo = x & (( 1 << 14 ) - 1);
int hi = (x >> 20) & 3;
if (hi >= 2) hi |= ~1;
return (((hi << 14) | lo) << 2) + pos;
}
// word offset, 14 bits at LSend, 2 bits at B21, B20
static int wdisp16(intptr_t x, intptr_t off) {
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, 16);
int r = (xx >> 2) & ((1 << 14) - 1)
| ( ( (xx>>(2+14)) & 3 ) << 20 );
assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
return r;
}
// word displacement in low-order nbits bits
static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
int pre_sign_extend = x & (( 1 << nbits ) - 1);
int r = pre_sign_extend >= ( 1 << (nbits-1) )
? pre_sign_extend | ~(( 1 << nbits ) - 1)
: pre_sign_extend;
return (r << 2) + pos;
}
static int wdisp( intptr_t x, intptr_t off, int nbits ) {
intptr_t xx = x - off;
assert_signed_word_disp_range(xx, nbits);
int r = (xx >> 2) & (( 1 << nbits ) - 1);
assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
return r;
}
// Extract the top 32 bits in a 64 bit word
static int32_t hi32( int64_t x ) {
int32_t r = int32_t( (uint64_t)x >> 32 );
return r;
}
// given a sethi instruction, extract the constant, left-justified
static int inv_hi22( int x ) {
return x << 10;
}
// create an imm22 field, given a 32-bit left-justified constant
static int hi22( int x ) {
int r = int( juint(x) >> 10 );
assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
return r;
}
// create a low10 __value__ (not a field) for a given a 32-bit constant
static int low10( int x ) {
return x & ((1 << 10) - 1);
}
// instruction only in v9
static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
// instruction only in v8
static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
// instruction deprecated in v9
static void v9_dep() { } // do nothing for now
// some float instructions only exist for single prec. on v8
static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
// v8 has no CC field
static void v8_no_cc(CC cc) { if (cc) v9_only(); }
protected:
// Simple delay-slot scheme:
// In order to check the programmer, the assembler keeps track of deley slots.
// It forbids CTIs in delay slots (conservative, but should be OK).
// Also, when putting an instruction into a delay slot, you must say
// asm->delayed()->add(...), in order to check that you don't omit
// delay-slot instructions.
// To implement this, we use a simple FSA
#ifdef ASSERT
#define CHECK_DELAY
#endif
#ifdef CHECK_DELAY
enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
#endif
public:
// Tells assembler next instruction must NOT be in delay slot.
// Use at start of multinstruction macros.
void assert_not_delayed() {
// This is a separate overloading to avoid creation of string constants
// in non-asserted code--with some compilers this pollutes the object code.
#ifdef CHECK_DELAY
assert_not_delayed("next instruction should not be a delay slot");
#endif
}
void assert_not_delayed(const char* msg) {
#ifdef CHECK_DELAY
assert(delay_state == no_delay, msg);
#endif
}
protected:
// Delay slot helpers
// cti is called when emitting control-transfer instruction,
// BEFORE doing the emitting.
// Only effective when assertion-checking is enabled.
void cti() {
#ifdef CHECK_DELAY
assert_not_delayed("cti should not be in delay slot");
#endif
}
// called when emitting cti with a delay slot, AFTER emitting
void has_delay_slot() {
#ifdef CHECK_DELAY
assert_not_delayed("just checking");
delay_state = at_delay_slot;
#endif
}
public:
// Tells assembler you know that next instruction is delayed
Assembler* delayed() {
#ifdef CHECK_DELAY
assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
delay_state = filling_delay_slot;
#endif
return this;
}
void flush() {
#ifdef CHECK_DELAY
assert ( delay_state == no_delay, "ending code with a delay slot");
#endif
AbstractAssembler::flush();
}
inline void emit_long(int); // shadows AbstractAssembler::emit_long
inline void emit_data(int x) { emit_long(x); }
inline void emit_data(int, RelocationHolder const&);
inline void emit_data(int, relocInfo::relocType rtype);
// helper for above fcns
inline void check_delay();
public:
// instructions, refer to page numbers in the SPARC Architecture Manual, V9
// pp 135 (addc was addx in v8)
inline void add(Register s1, Register s2, Register d );
inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
inline void add(const Address& a, Register d, int offset = 0);
void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 136
inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
protected: // use MacroAssembler::br instead
// pp 138
inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
inline void fb( Condition c, bool a, Label& L );
// pp 141
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
public:
// pp 144
inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
inline void br( Condition c, bool a, Label& L );
// pp 146
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
// pp 121 (V8)
inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
inline void cb( Condition c, bool a, Label& L );
// pp 149
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
// pp 150
// These instructions compare the contents of s2 with the contents of
// memory at address in s1. If the values are equal, the contents of memory
// at address s1 is swapped with the data in d. If the values are not equal,
// the the contents of memory at s1 is loaded into d, without the swap.
void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
// pp 152
void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 155
void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
// pp 156
void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
// pp 157
void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
// pp 159
void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
// pp 160
void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
// pp 161
void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
// pp 162
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
// page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
// on v8 to do negation of single, double and quad precision floats.
void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
// page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
// on v8 to do abs operation on single/double/quad precision floats.
void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
// pp 163
void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
// pp 164
void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
// pp 165
inline void flush( Register s1, Register s2 );
inline void flush( Register s1, int simm13a);
// pp 167
void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); }
// pp 168
void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
// v8 unimp == illtrap(0)
// pp 169
void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
// pp 149 (v8)
void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
// pp 170
void jmpl( Register s1, Register s2, Register d );
void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
// 171
inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
inline void ldfsr( Register s1, Register s2 );
inline void ldfsr( Register s1, int simm13a);
inline void ldxfsr( Register s1, Register s2 );
inline void ldxfsr( Register s1, int simm13a);
// pp 94 (v8)
inline void ldc( Register s1, Register s2, int crd );
inline void ldc( Register s1, int simm13a, int crd);
inline void lddc( Register s1, Register s2, int crd );
inline void lddc( Register s1, int simm13a, int crd);
inline void ldcsr( Register s1, Register s2, int crd );
inline void ldcsr( Register s1, int simm13a, int crd);
// 173
void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 175, lduw is ld on v8
inline void ldsb( Register s1, Register s2, Register d );
inline void ldsb( Register s1, int simm13a, Register d);
inline void ldsh( Register s1, Register s2, Register d );
inline void ldsh( Register s1, int simm13a, Register d);
inline void ldsw( Register s1, Register s2, Register d );
inline void ldsw( Register s1, int simm13a, Register d);
inline void ldub( Register s1, Register s2, Register d );
inline void ldub( Register s1, int simm13a, Register d);
inline void lduh( Register s1, Register s2, Register d );
inline void lduh( Register s1, int simm13a, Register d);
inline void lduw( Register s1, Register s2, Register d );
inline void lduw( Register s1, int simm13a, Register d);
inline void ldx( Register s1, Register s2, Register d );
inline void ldx( Register s1, int simm13a, Register d);
inline void ld( Register s1, Register s2, Register d );
inline void ld( Register s1, int simm13a, Register d);
inline void ldd( Register s1, Register s2, Register d );
inline void ldd( Register s1, int simm13a, Register d);
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void ld( Register s1, ByteSize simm13a, Register d);
#endif
inline void ldsb(const Address& a, Register d, int offset = 0);
inline void ldsh(const Address& a, Register d, int offset = 0);
inline void ldsw(const Address& a, Register d, int offset = 0);
inline void ldub(const Address& a, Register d, int offset = 0);
inline void lduh(const Address& a, Register d, int offset = 0);
inline void lduw(const Address& a, Register d, int offset = 0);
inline void ldx( const Address& a, Register d, int offset = 0);
inline void ld( const Address& a, Register d, int offset = 0);
inline void ldd( const Address& a, Register d, int offset = 0);
inline void ldub( Register s1, RegisterOrConstant s2, Register d );
inline void ldsb( Register s1, RegisterOrConstant s2, Register d );
inline void lduh( Register s1, RegisterOrConstant s2, Register d );
inline void ldsh( Register s1, RegisterOrConstant s2, Register d );
inline void lduw( Register s1, RegisterOrConstant s2, Register d );
inline void ldsw( Register s1, RegisterOrConstant s2, Register d );
inline void ldx( Register s1, RegisterOrConstant s2, Register d );
inline void ld( Register s1, RegisterOrConstant s2, Register d );
inline void ldd( Register s1, RegisterOrConstant s2, Register d );
// pp 177
void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 179
inline void ldstub( Register s1, Register s2, Register d );
inline void ldstub( Register s1, int simm13a, Register d);
// pp 180
void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 181
void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void andn( Register s1, RegisterOrConstant s2, Register d);
void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 183
void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
// pp 185
void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
// pp 189
void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
// pp 191
void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
// pp 195
void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
// pp 196
void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 197
void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 199
void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 201
void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
// pp 202
void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
// pp 203
void prefetch( Register s1, Register s2, PrefetchFcn f);
void prefetch( Register s1, int simm13a, PrefetchFcn f);
void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
// pp 208
// not implementing read privileged register
inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
// pp 213
inline void rett( Register s1, Register s2);
inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
// pp 214
void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
void save( Register s1, int simm13a, Register d ) {
// make sure frame is at least large enough for the register save area
assert(-simm13a >= 16 * wordSize, "frame too small");
emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
}
void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 216
void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
// pp 217
inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
// pp 218
void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
// pp 220
void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
// pp 221
void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
// pp 222
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
inline void stfsr( Register s1, Register s2 );
inline void stfsr( Register s1, int simm13a);
inline void stxfsr( Register s1, Register s2 );
inline void stxfsr( Register s1, int simm13a);
// pp 224
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// p 226
inline void stb( Register d, Register s1, Register s2 );
inline void stb( Register d, Register s1, int simm13a);
inline void sth( Register d, Register s1, Register s2 );
inline void sth( Register d, Register s1, int simm13a);
inline void stw( Register d, Register s1, Register s2 );
inline void stw( Register d, Register s1, int simm13a);
inline void st( Register d, Register s1, Register s2 );
inline void st( Register d, Register s1, int simm13a);
inline void stx( Register d, Register s1, Register s2 );
inline void stx( Register d, Register s1, int simm13a);
inline void std( Register d, Register s1, Register s2 );
inline void std( Register d, Register s1, int simm13a);
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void st( Register d, Register s1, ByteSize simm13a);
#endif
inline void stb( Register d, const Address& a, int offset = 0 );
inline void sth( Register d, const Address& a, int offset = 0 );
inline void stw( Register d, const Address& a, int offset = 0 );
inline void stx( Register d, const Address& a, int offset = 0 );
inline void st( Register d, const Address& a, int offset = 0 );
inline void std( Register d, const Address& a, int offset = 0 );
inline void stb( Register d, Register s1, RegisterOrConstant s2 );
inline void sth( Register d, Register s1, RegisterOrConstant s2 );
inline void stw( Register d, Register s1, RegisterOrConstant s2 );
inline void stx( Register d, Register s1, RegisterOrConstant s2 );
inline void std( Register d, Register s1, RegisterOrConstant s2 );
inline void st( Register d, Register s1, RegisterOrConstant s2 );
// pp 177
void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 97 (v8)
inline void stc( int crd, Register s1, Register s2 );
inline void stc( int crd, Register s1, int simm13a);
inline void stdc( int crd, Register s1, Register s2 );
inline void stdc( int crd, Register s1, int simm13a);
inline void stcsr( int crd, Register s1, Register s2 );
inline void stcsr( int crd, Register s1, int simm13a);
inline void stdcq( int crd, Register s1, Register s2 );
inline void stdcq( int crd, Register s1, int simm13a);
// pp 230
void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// Note: offset is added to s2.
inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 231
inline void swap( Register s1, Register s2, Register d );
inline void swap( Register s1, int simm13a, Register d);
inline void swap( Address& a, Register d, int offset = 0 );
// pp 232
void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 234, note op in book is wrong, see pp 268
void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 235
void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
// pp 237
void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
// simple uncond. trap
void trap( int trapa ) { trap( always, icc, G0, trapa ); }
// pp 239 omit write priv register for now
inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
rs1(s) |
op3(wrreg_op3) |
u_field(2, 29, 25) |
u_field(1, 13, 13) |
simm(simm13a, 13)); }
inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
// For a given register condition, return the appropriate condition code
// Condition (the one you would use to get the same effect after "tst" on
// the target register.)
Assembler::Condition reg_cond_to_cc_cond(RCondition in);
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
#ifdef CHECK_DELAY
delay_state = no_delay;
#endif
}
// Testing
#ifndef PRODUCT
void test_v9();
void test_v8_onlys();
#endif
};
class RegistersForDebugging : public StackObj {
public:
intptr_t i[8], l[8], o[8], g[8];
float f[32];
double d[32];
void print(outputStream* s);
static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
// gen asm code to save regs
static void save_registers(MacroAssembler* a);
// restore global registers in case C code disturbed them
static void restore_registers(MacroAssembler* a, Register r);
};
// MacroAssembler extends Assembler by a few frequently used macros.
//
// Most of the standard SPARC synthetic ops are defined here.
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
#define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__)
#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
class MacroAssembler: public Assembler {
protected:
// Support for VM calls
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
#ifdef CC_INTERP
#define VIRTUAL
#else
#define VIRTUAL virtual
#endif
VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
//
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// A non-volatile java_thread_cache register should be specified so
// that the G2_thread value can be preserved across the call.
// (If java_thread_cache is noreg, then a slow get_thread call
// will re-initialize the G2_thread.) call_VM_base returns the register that contains the
// thread.
//
// If no last_java_sp is specified (noreg) than SP will be used instead.
virtual void call_VM_base(
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread_cache, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after call
bool check_exception=true // flag which indicates if exception should be checked
);
// This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles and ForceEarlyReturn PopFrame requests.
virtual void check_and_handle_popframe(Register scratch_reg);
virtual void check_and_handle_earlyret(Register scratch_reg);
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
//
// %%%%%% Currently not done for SPARC
void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(intptr_t offset);
// support for delayed instructions
MacroAssembler* delayed() { Assembler::delayed(); return this; }
// branches that use right instruction for v8 vs. v9
inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void br( Condition c, bool a, Predict p, Label& L );
inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void fb( Condition c, bool a, Predict p, Label& L );
// compares register with zero and branches (V9 and V8 instructions)
void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
// Compares a pointer register with zero and branches on (not)null.
// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
void br_null ( Register s1, bool a, Predict p, Label& L );
void br_notnull( Register s1, bool a, Predict p, Label& L );
// These versions will do the most efficient thing on v8 and v9. Perhaps
// this is what the routine above was meant to do, but it didn't (and
// didn't cover both target address kinds.)
void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
// Branch that tests xcc in LP64 and icc in !LP64
inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void brx( Condition c, bool a, Predict p, Label& L );
// unconditional short branch
inline void ba( bool a, Label& L );
// Branch that tests fp condition codes
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
// get PC the best way
inline int get_pc( Register d );
// Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
inline void jmp( Register s1, Register s2 );
inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
// Check if the call target is out of wdisp30 range (relative to the code cache)
static inline bool is_far_target(address d);
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
inline void callr( Register s1, Register s2 );
inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
// Emits nothing on V8
inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
inline void iprefetch( Label& L);
inline void tst( Register s ) { orcc( G0, s, G0 ); }
#ifdef PRODUCT
inline void ret( bool trace = TraceJumps ) { if (trace) {
mov(I7, O7); // traceable register
JMP(O7, 2 * BytesPerInstWord);
} else {
jmpl( I7, 2 * BytesPerInstWord, G0 );
}
}
inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
#else
void ret( bool trace = TraceJumps );
void retl( bool trace = TraceJumps );
#endif /* PRODUCT */
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
static void pd_print_patched_instruction(address branch);
#endif
// sethi Macro handles optimizations and relocations
private:
void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
public:
void sethi(const AddressLiteral& addrlit, Register d);
void patchable_sethi(const AddressLiteral& addrlit, Register d);
// compute the number of instructions for a sethi/set
static int insts_for_sethi( address a, bool worst_case = false );
static int worst_case_insts_for_set();
// set may be either setsw or setuw (high 32 bits may be zero or sign)
private:
void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
static int insts_for_internal_set(intptr_t value);
public:
void set(const AddressLiteral& addrlit, Register d);
void set(intptr_t value, Register d);
void set(address addr, Register d, RelocationHolder const& rspec);
static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
void patchable_set(const AddressLiteral& addrlit, Register d);
void patchable_set(intptr_t value, Register d);
void set64(jlong value, Register d, Register tmp);
static int insts_for_set64(jlong value);
// sign-extend 32 to 64
inline void signx( Register s, Register d ) { sra( s, G0, d); }
inline void signx( Register d ) { sra( d, G0, d); }
inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
inline void not1( Register d ) { xnor( d, G0, d ); }
inline void neg( Register s, Register d ) { sub( G0, s, d ); }
inline void neg( Register d ) { sub( G0, d, d ); }
inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
// Functions for isolating 64 bit atomic swaps for LP64
// cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
inline void cas_ptr( Register s1, Register s2, Register d) {
#ifdef _LP64
casx( s1, s2, d );
#else
cas( s1, s2, d );
#endif
}
// Functions for isolating 64 bit shifts for LP64
inline void sll_ptr( Register s1, Register s2, Register d );
inline void sll_ptr( Register s1, int imm6a, Register d );
inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
inline void srl_ptr( Register s1, Register s2, Register d );
inline void srl_ptr( Register s1, int imm6a, Register d );
// little-endian
inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
inline void clr( Register d ) { or3( G0, G0, d ); }
inline void clrb( Register s1, Register s2);
inline void clrh( Register s1, Register s2);
inline void clr( Register s1, Register s2);
inline void clrx( Register s1, Register s2);
inline void clrb( Register s1, int simm13a);
inline void clrh( Register s1, int simm13a);
inline void clr( Register s1, int simm13a);
inline void clrx( Register s1, int simm13a);
// copy & clear upper word
inline void clruw( Register s, Register d ) { srl( s, G0, d); }
// clear upper word
inline void clruwu( Register d ) { srl( d, G0, d); }
// membar psuedo instruction. takes into account target memory model.
inline void membar( Assembler::Membar_mask_bits const7a );
// returns if membar generates anything.
inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
// mov pseudo instructions
inline void mov( Register s, Register d) {
if ( s != d ) or3( G0, s, d);
else assert_not_delayed(); // Put something useful in the delay slot!
}
inline void mov_or_nop( Register s, Register d) {
if ( s != d ) or3( G0, s, d);
else nop();
}
inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
// address pseudos: make these names unlike instruction names to avoid confusion
inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
// ring buffer traceable jumps
void jmp2( Register r1, Register r2, const char* file, int line );
void jmp ( Register r1, int offset, const char* file, int line );
void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
void jump (const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line);
// argument pseudos:
inline void load_argument( Argument& a, Register d );
inline void store_argument( Register s, Argument& a );
inline void store_ptr_argument( Register s, Argument& a );
inline void store_float_argument( FloatRegister s, Argument& a );
inline void store_double_argument( FloatRegister s, Argument& a );
inline void store_long_argument( Register s, Argument& a );
// handy macros:
inline void round_to( Register r, int modulus ) {
assert_not_delayed();
inc( r, modulus - 1 );
and3( r, -modulus, r );
}
// --------------------------------------------------
// Functions for isolating 64 bit loads for LP64
// ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
// st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
inline void ld_ptr(Register s1, Register s2, Register d);
inline void ld_ptr(Register s1, int simm13a, Register d);
inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
inline void ld_ptr(const Address& a, Register d, int offset = 0);
inline void st_ptr(Register d, Register s1, Register s2);
inline void st_ptr(Register d, Register s1, int simm13a);
inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
inline void st_ptr(Register d, const Address& a, int offset = 0);
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
inline void st_ptr(Register d, Register s1, ByteSize simm13a);
#endif
// ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
// st_long will perform std for 32 bit VM's and stx for 64 bit VM's
inline void ld_long(Register s1, Register s2, Register d);
inline void ld_long(Register s1, int simm13a, Register d);
inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
inline void ld_long(const Address& a, Register d, int offset = 0);
inline void st_long(Register d, Register s1, Register s2);
inline void st_long(Register d, Register s1, int simm13a);
inline void st_long(Register d, Register s1, RegisterOrConstant s2);
inline void st_long(Register d, const Address& a, int offset = 0);
// Helpers for address formation.
// - They emit only a move if s2 is a constant zero.
// - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
// - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
if (is_simm13(src.constant_or_zero()))
return src; // register or short constant
guarantee(temp != noreg, "constant offset overflow");
set(src.as_constant(), temp);
return temp;
}
// --------------------------------------------------
public:
// traps as per trap.h (SPARC ABI?)
void breakpoint_trap();
void breakpoint_trap(Condition c, CC cc = icc);
void flush_windows_trap();
void clean_windows_trap();
void get_psr_trap();
void set_psr_trap();
// V8/V9 flush_windows
void flush_windows();
// Support for serializing memory accesses between threads
void serialize_memory(Register thread, Register tmp1, Register tmp2);
// Stack frame creation/removal
void enter();
void leave();
// V8/V9 integer multiply
void mult(Register s1, Register s2, Register d);
void mult(Register s1, int simm13a, Register d);
// V8/V9 read and write of condition codes.
void read_ccr(Register d);
void write_ccr(Register s);
// Manipulation of C++ bools
// These are idioms to flag the need for care with accessing bools but on
// this platform we assume byte size
inline void stbool(Register d, const Address& a) { stb(d, a); }
inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
inline void tstbool( Register s ) { tst(s); }
inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
// klass oop manipulations if compressed
void load_klass(Register src_oop, Register klass);
void store_klass(Register klass, Register dst_oop);
void store_klass_gap(Register s, Register dst_oop);
// oop manipulations
void load_heap_oop(const Address& s, Register d);
void load_heap_oop(Register s1, Register s2, Register d);
void load_heap_oop(Register s1, int simm13a, Register d);
void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
void store_heap_oop(Register d, Register s1, Register s2);
void store_heap_oop(Register d, Register s1, int simm13a);
void store_heap_oop(Register d, const Address& a, int offset = 0);
void encode_heap_oop(Register src, Register dst);
void encode_heap_oop(Register r) {
encode_heap_oop(r, r);
}
void decode_heap_oop(Register src, Register dst);
void decode_heap_oop(Register r) {
decode_heap_oop(r, r);
}
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register src, Register dst);
void decode_heap_oop_not_null(Register src, Register dst);
// Support for managing the JavaThread pointer (i.e.; the reference to
// thread-local information).
void get_thread(); // load G2_thread
void verify_thread(); // verify G2_thread contents
void save_thread (const Register threache); // save to cache
void restore_thread(const Register thread_cache); // restore from cache
// Support for last Java frame (but use call_VM instead where possible)
void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
void reset_last_Java_frame(void);
// Call into the VM.
// Passes the thread pointer (in O0) as a prepended argument.
// Makes sure oop return values are visible to the GC.
void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
// these overloadings are not presently used on SPARC:
void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
void get_vm_result (Register oop_result);
void get_vm_result_2(Register oop_result);
// vm result is currently getting hijacked to for oop preservation
void set_vm_result(Register oop_result);
// if call_VM_base was called with check_exceptions=false, then call
// check_and_forward_exception to handle exceptions when it is safe
void check_and_forward_exception(Register scratch_reg);
private:
// For V8
void read_ccr_trap(Register ccr_save);
void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
#ifdef ASSERT
// For V8 debugging. Uses V8 instruction sequence and checks
// result with V9 insturctions rdccr and wrccr.
// Uses Gscatch and Gscatch2
void read_ccr_v8_assert(Register ccr_save);
void write_ccr_v8_assert(Register ccr_save);
#endif // ASSERT
public:
// Write to card table for - register is destroyed afterwards.
void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
#ifndef SERIALGC
// Array store and offset
void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
// May do filtering, depending on the boolean arguments.
void g1_card_table_write(jbyte* byte_map_base,
Register tmp, Register obj, Register new_val,
bool region_filter, bool null_filter);
#endif // SERIALGC
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void push_fTOS();
// pops double TOS element from CPU stack and pushes on FPU stack
void pop_fTOS();
void empty_FPU_stack();
void push_IU_state();
void pop_IU_state();
void push_FPU_state();
void pop_FPU_state();
void push_CPU_state();
void pop_CPU_state();
// if heap base register is used - reinit it with the correct value
void reinit_heapbase();
// Debugging
void _verify_oop(Register reg, const char * msg, const char * file, int line);
void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
// only if +VerifyOops
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
// only if +VerifyFPU
void stop(const char* msg); // prints msg, dumps registers and stops execution
void warn(const char* msg); // prints msg, but don't stop
void untested(const char* what = "");
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
void should_not_reach_here() { stop("should not reach here"); }
void print_CPU_state();
// oops in code
AddressLiteral allocate_oop_address(jobject obj); // allocate_index
AddressLiteral constant_oop_address(jobject obj); // find_index
inline void set_oop (jobject obj, Register d); // uses allocate_oop_address
inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address
inline void set_oop (const AddressLiteral& obj_addr, Register d); // same as load_address
void set_narrow_oop( jobject obj, Register d );
// nop padding
void align(int modulus);
// declare a safepoint
void safepoint();
// factor out part of stop into subroutine to save space
void stop_subroutine();
// factor out part of verify_oop into subroutine to save space
void verify_oop_subroutine();
// side-door communication with signalHandler in os_solaris.cpp
static address _verify_oop_implicit_branch[3];
#ifndef PRODUCT
static void test();
#endif
// convert an incoming arglist to varargs format; put the pointer in d
void set_varargs( Argument a, Register d );
int total_frame_size_in_bytes(int extraWords);
// used when extraWords known statically
void save_frame(int extraWords);
void save_frame_c1(int size_in_bytes);
// make a frame, and simultaneously pass up one or two register value
// into the new register window
void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
// give no. (outgoing) params, calc # of words will need on frame
void calc_mem_param_words(Register Rparam_words, Register Rresult);
// used to calculate frame size dynamically
// result is in bytes and must be negated for save inst
void calc_frame_size(Register extraWords, Register resultReg);
// calc and also save
void calc_frame_size_and_save(Register extraWords, Register resultReg);
static void debug(char* msg, RegistersForDebugging* outWindow);
// implementations of bytecodes used by both interpreter and compiler
void lcmp( Register Ra_hi, Register Ra_low,
Register Rb_hi, Register Rb_low,
Register Rresult);
void lneg( Register Rhi, Register Rlow );
void lshl( Register Rin_high, Register Rin_low, Register Rcount,
Register Rout_high, Register Rout_low, Register Rtemp );
void lshr( Register Rin_high, Register Rin_low, Register Rcount,
Register Rout_high, Register Rout_low, Register Rtemp );
void lushr( Register Rin_high, Register Rin_low, Register Rcount,
Register Rout_high, Register Rout_low, Register Rtemp );
#ifdef _LP64
void lcmp( Register Ra, Register Rb, Register Rresult);
#endif
// Load and store values by size and signed-ness
void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
void store_sized_value(Register src, Address dst, size_t size_in_bytes);
void float_cmp( bool is_float, int unordered_result,
FloatRegister Fa, FloatRegister Fb,
Register Rresult);
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
void save_all_globals_into_locals();
void restore_globals_from_locals();
void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
address lock_addr=0, bool use_call_vm=false);
void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
address lock_addr=0, bool use_call_vm=false);
void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
// These set the icc condition code to equal if the lock succeeded
// and notEqual if it failed and requires a slow case
void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
Register Rscratch,
BiasedLockingCounters* counters = NULL,
bool try_bias = UseBiasedLocking);
void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
Register Rscratch,
bool try_bias = UseBiasedLocking);
// Biased locking support
// Upon entry, lock_reg must point to the lock record on the stack,
// obj_reg must contain the target object, and mark_reg must contain
// the target object's header.
// Destroys mark_reg if an attempt is made to bias an anonymously
// biased lock. In this case a failure will go either to the slow
// case or fall through with the notEqual condition code set with
// the expectation that the slow case in the runtime will be called.
// In the fall-through case where the CAS-based lock is done,
// mark_reg is not destroyed.
void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
Label& done, Label* slow_case = NULL,
BiasedLockingCounters* counters = NULL);
// Upon entry, the base register of mark_addr must contain the oop.
// Destroys temp_reg.
// If allow_delay_slot_filling is set to true, the next instruction
// emitted after this one will go in an annulled delay slot if the
// biased locking exit case failed.
void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
// allocation
void eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
Register t1, Register t2);
// interface method calling
void lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register temp_reg, Register temp2_reg,
Label& no_such_interface);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be NULL, meaning take the fall-through.
// If super_check_offset is -1, the value is loaded up from super_klass.
// No registers are killed, except temp_reg and temp2_reg.
// If super_check_offset is not -1, temp2_reg is not used and can be noreg.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset = RegisterOrConstant(-1),
Register instanceof_hack = noreg);
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
// The temp_reg can be noreg, if no temps are available.
// It can also be sub_klass or super_klass, meaning it's OK to kill that one.
// Updates the sub's secondary super cache as necessary.
void check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Register temp3_reg,
Register temp4_reg,
Label* L_success,
Label* L_failure);
// Simplified, combined version, good for typical uses.
// Falls through on failure.
void check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label& L_success);
// method handles (JSR 292)
void check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type);
void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg);
void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
// offset relative to Gargs of argument at tos[arg_slot].
// (arg_slot == 0 means the last argument, not the first).
RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
int extra_slot_offset = 0);
// Address of Gargs and argument_offset.
Address argument_address(RegisterOrConstant arg_slot,
int extra_slot_offset = 0);
// Stack overflow checking
// Note: this clobbers G3_scratch
void bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
set((-offset)+STACK_BIAS, G3_scratch);
st(G0, SP, G3_scratch);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. Clobbers tsp and scratch registers.
void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
void verify_tlab();
Condition negate_condition(Condition cond);
// Helper functions for statistics gathering.
// Conditionally (non-atomically) increments passed counter address, preserving condition codes.
void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
// Unconditional increment.
void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
void inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2);
// Compare char[] arrays aligned to 4 bytes.
void char_arrays_equals(Register ary1, Register ary2,
Register limit, Register result,
Register chr1, Register chr2, Label& Ldone);
#undef VIRTUAL
};
/**
* class SkipIfEqual:
*
* Instantiating this class will result in assembly code being output that will
* jump around any code emitted between the creation of the instance and it's
* automatic destruction at the end of a scope block, depending on the value of
* the flag passed to the constructor, which will be checked at run-time.
*/
class SkipIfEqual : public StackObj {
private:
MacroAssembler* _masm;
Label _label;
public:
// 'temp' is a temp register that this object can use (and trash)
SkipIfEqual(MacroAssembler*, Register temp,
const bool* flag_addr, Assembler::Condition condition);
~SkipIfEqual();
};
#ifdef ASSERT
// On RISC, there's no benefit to verifying instruction boundaries.
inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
#endif
#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP