8214526: Change CodeHeap State Analytics control from UL to Print*
Reviewed-by: coleenp, kvn, stuefe, thartmann
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "code/codeCache.hpp"
#include "code/compiledIC.hpp"
#include "code/compiledMethod.inline.hpp"
#include "code/dependencies.hpp"
#include "code/nativeInst.hpp"
#include "code/nmethod.hpp"
#include "code/scopeDesc.hpp"
#include "compiler/abstractCompiler.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp"
#include "compiler/compilerDirectives.hpp"
#include "compiler/directivesParser.hpp"
#include "compiler/disassembler.hpp"
#include "interpreter/bytecode.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/access.inline.hpp"
#include "oops/method.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiImpl.hpp"
#include "runtime/atomic.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/sweeper.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/align.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/events.hpp"
#include "utilities/resourceHash.hpp"
#include "utilities/xmlstream.hpp"
#if INCLUDE_JVMCI
#include "jvmci/jvmciJavaClasses.hpp"
#endif
#ifdef DTRACE_ENABLED
// Only bother with this argument setup if dtrace is available
#define DTRACE_METHOD_UNLOAD_PROBE(method) \
{ \
Method* m = (method); \
if (m != NULL) { \
Symbol* klass_name = m->klass_name(); \
Symbol* name = m->name(); \
Symbol* signature = m->signature(); \
HOTSPOT_COMPILED_METHOD_UNLOAD( \
(char *) klass_name->bytes(), klass_name->utf8_length(), \
(char *) name->bytes(), name->utf8_length(), \
(char *) signature->bytes(), signature->utf8_length()); \
} \
}
#else // ndef DTRACE_ENABLED
#define DTRACE_METHOD_UNLOAD_PROBE(method)
#endif
//---------------------------------------------------------------------------------
// NMethod statistics
// They are printed under various flags, including:
// PrintC1Statistics, PrintOptoStatistics, LogVMOutput, and LogCompilation.
// (In the latter two cases, they like other stats are printed to the log only.)
#ifndef PRODUCT
// These variables are put into one block to reduce relocations
// and make it simpler to print from the debugger.
struct java_nmethod_stats_struct {
int nmethod_count;
int total_size;
int relocation_size;
int consts_size;
int insts_size;
int stub_size;
int scopes_data_size;
int scopes_pcs_size;
int dependencies_size;
int handler_table_size;
int nul_chk_table_size;
int oops_size;
int metadata_size;
void note_nmethod(nmethod* nm) {
nmethod_count += 1;
total_size += nm->size();
relocation_size += nm->relocation_size();
consts_size += nm->consts_size();
insts_size += nm->insts_size();
stub_size += nm->stub_size();
oops_size += nm->oops_size();
metadata_size += nm->metadata_size();
scopes_data_size += nm->scopes_data_size();
scopes_pcs_size += nm->scopes_pcs_size();
dependencies_size += nm->dependencies_size();
handler_table_size += nm->handler_table_size();
nul_chk_table_size += nm->nul_chk_table_size();
}
void print_nmethod_stats(const char* name) {
if (nmethod_count == 0) return;
tty->print_cr("Statistics for %d bytecoded nmethods for %s:", nmethod_count, name);
if (total_size != 0) tty->print_cr(" total in heap = %d", total_size);
if (nmethod_count != 0) tty->print_cr(" header = " SIZE_FORMAT, nmethod_count * sizeof(nmethod));
if (relocation_size != 0) tty->print_cr(" relocation = %d", relocation_size);
if (consts_size != 0) tty->print_cr(" constants = %d", consts_size);
if (insts_size != 0) tty->print_cr(" main code = %d", insts_size);
if (stub_size != 0) tty->print_cr(" stub code = %d", stub_size);
if (oops_size != 0) tty->print_cr(" oops = %d", oops_size);
if (metadata_size != 0) tty->print_cr(" metadata = %d", metadata_size);
if (scopes_data_size != 0) tty->print_cr(" scopes data = %d", scopes_data_size);
if (scopes_pcs_size != 0) tty->print_cr(" scopes pcs = %d", scopes_pcs_size);
if (dependencies_size != 0) tty->print_cr(" dependencies = %d", dependencies_size);
if (handler_table_size != 0) tty->print_cr(" handler table = %d", handler_table_size);
if (nul_chk_table_size != 0) tty->print_cr(" nul chk table = %d", nul_chk_table_size);
}
};
struct native_nmethod_stats_struct {
int native_nmethod_count;
int native_total_size;
int native_relocation_size;
int native_insts_size;
int native_oops_size;
int native_metadata_size;
void note_native_nmethod(nmethod* nm) {
native_nmethod_count += 1;
native_total_size += nm->size();
native_relocation_size += nm->relocation_size();
native_insts_size += nm->insts_size();
native_oops_size += nm->oops_size();
native_metadata_size += nm->metadata_size();
}
void print_native_nmethod_stats() {
if (native_nmethod_count == 0) return;
tty->print_cr("Statistics for %d native nmethods:", native_nmethod_count);
if (native_total_size != 0) tty->print_cr(" N. total size = %d", native_total_size);
if (native_relocation_size != 0) tty->print_cr(" N. relocation = %d", native_relocation_size);
if (native_insts_size != 0) tty->print_cr(" N. main code = %d", native_insts_size);
if (native_oops_size != 0) tty->print_cr(" N. oops = %d", native_oops_size);
if (native_metadata_size != 0) tty->print_cr(" N. metadata = %d", native_metadata_size);
}
};
struct pc_nmethod_stats_struct {
int pc_desc_resets; // number of resets (= number of caches)
int pc_desc_queries; // queries to nmethod::find_pc_desc
int pc_desc_approx; // number of those which have approximate true
int pc_desc_repeats; // number of _pc_descs[0] hits
int pc_desc_hits; // number of LRU cache hits
int pc_desc_tests; // total number of PcDesc examinations
int pc_desc_searches; // total number of quasi-binary search steps
int pc_desc_adds; // number of LUR cache insertions
void print_pc_stats() {
tty->print_cr("PcDesc Statistics: %d queries, %.2f comparisons per query",
pc_desc_queries,
(double)(pc_desc_tests + pc_desc_searches)
/ pc_desc_queries);
tty->print_cr(" caches=%d queries=%d/%d, hits=%d+%d, tests=%d+%d, adds=%d",
pc_desc_resets,
pc_desc_queries, pc_desc_approx,
pc_desc_repeats, pc_desc_hits,
pc_desc_tests, pc_desc_searches, pc_desc_adds);
}
};
#ifdef COMPILER1
static java_nmethod_stats_struct c1_java_nmethod_stats;
#endif
#ifdef COMPILER2
static java_nmethod_stats_struct c2_java_nmethod_stats;
#endif
#if INCLUDE_JVMCI
static java_nmethod_stats_struct jvmci_java_nmethod_stats;
#endif
static java_nmethod_stats_struct unknown_java_nmethod_stats;
static native_nmethod_stats_struct native_nmethod_stats;
static pc_nmethod_stats_struct pc_nmethod_stats;
static void note_java_nmethod(nmethod* nm) {
#ifdef COMPILER1
if (nm->is_compiled_by_c1()) {
c1_java_nmethod_stats.note_nmethod(nm);
} else
#endif
#ifdef COMPILER2
if (nm->is_compiled_by_c2()) {
c2_java_nmethod_stats.note_nmethod(nm);
} else
#endif
#if INCLUDE_JVMCI
if (nm->is_compiled_by_jvmci()) {
jvmci_java_nmethod_stats.note_nmethod(nm);
} else
#endif
{
unknown_java_nmethod_stats.note_nmethod(nm);
}
}
#endif // !PRODUCT
//---------------------------------------------------------------------------------
ExceptionCache::ExceptionCache(Handle exception, address pc, address handler) {
assert(pc != NULL, "Must be non null");
assert(exception.not_null(), "Must be non null");
assert(handler != NULL, "Must be non null");
_count = 0;
_exception_type = exception->klass();
_next = NULL;
_purge_list_next = NULL;
add_address_and_handler(pc,handler);
}
address ExceptionCache::match(Handle exception, address pc) {
assert(pc != NULL,"Must be non null");
assert(exception.not_null(),"Must be non null");
if (exception->klass() == exception_type()) {
return (test_address(pc));
}
return NULL;
}
bool ExceptionCache::match_exception_with_space(Handle exception) {
assert(exception.not_null(),"Must be non null");
if (exception->klass() == exception_type() && count() < cache_size) {
return true;
}
return false;
}
address ExceptionCache::test_address(address addr) {
int limit = count();
for (int i = 0; i < limit; i++) {
if (pc_at(i) == addr) {
return handler_at(i);
}
}
return NULL;
}
bool ExceptionCache::add_address_and_handler(address addr, address handler) {
if (test_address(addr) == handler) return true;
int index = count();
if (index < cache_size) {
set_pc_at(index, addr);
set_handler_at(index, handler);
increment_count();
return true;
}
return false;
}
ExceptionCache* ExceptionCache::next() {
return Atomic::load(&_next);
}
void ExceptionCache::set_next(ExceptionCache *ec) {
Atomic::store(ec, &_next);
}
//-----------------------------------------------------------------------------
// Helper used by both find_pc_desc methods.
static inline bool match_desc(PcDesc* pc, int pc_offset, bool approximate) {
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_tests);
if (!approximate)
return pc->pc_offset() == pc_offset;
else
return (pc-1)->pc_offset() < pc_offset && pc_offset <= pc->pc_offset();
}
void PcDescCache::reset_to(PcDesc* initial_pc_desc) {
if (initial_pc_desc == NULL) {
_pc_descs[0] = NULL; // native method; no PcDescs at all
return;
}
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_resets);
// reset the cache by filling it with benign (non-null) values
assert(initial_pc_desc->pc_offset() < 0, "must be sentinel");
for (int i = 0; i < cache_size; i++)
_pc_descs[i] = initial_pc_desc;
}
PcDesc* PcDescCache::find_pc_desc(int pc_offset, bool approximate) {
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_queries);
NOT_PRODUCT(if (approximate) ++pc_nmethod_stats.pc_desc_approx);
// Note: one might think that caching the most recently
// read value separately would be a win, but one would be
// wrong. When many threads are updating it, the cache
// line it's in would bounce between caches, negating
// any benefit.
// In order to prevent race conditions do not load cache elements
// repeatedly, but use a local copy:
PcDesc* res;
// Step one: Check the most recently added value.
res = _pc_descs[0];
if (res == NULL) return NULL; // native method; no PcDescs at all
if (match_desc(res, pc_offset, approximate)) {
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_repeats);
return res;
}
// Step two: Check the rest of the LRU cache.
for (int i = 1; i < cache_size; ++i) {
res = _pc_descs[i];
if (res->pc_offset() < 0) break; // optimization: skip empty cache
if (match_desc(res, pc_offset, approximate)) {
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_hits);
return res;
}
}
// Report failure.
return NULL;
}
void PcDescCache::add_pc_desc(PcDesc* pc_desc) {
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_adds);
// Update the LRU cache by shifting pc_desc forward.
for (int i = 0; i < cache_size; i++) {
PcDesc* next = _pc_descs[i];
_pc_descs[i] = pc_desc;
pc_desc = next;
}
}
// adjust pcs_size so that it is a multiple of both oopSize and
// sizeof(PcDesc) (assumes that if sizeof(PcDesc) is not a multiple
// of oopSize, then 2*sizeof(PcDesc) is)
static int adjust_pcs_size(int pcs_size) {
int nsize = align_up(pcs_size, oopSize);
if ((nsize % sizeof(PcDesc)) != 0) {
nsize = pcs_size + sizeof(PcDesc);
}
assert((nsize % oopSize) == 0, "correct alignment");
return nsize;
}
int nmethod::total_size() const {
return
consts_size() +
insts_size() +
stub_size() +
scopes_data_size() +
scopes_pcs_size() +
handler_table_size() +
nul_chk_table_size();
}
address* nmethod::orig_pc_addr(const frame* fr) {
return (address*) ((address)fr->unextended_sp() + _orig_pc_offset);
}
const char* nmethod::compile_kind() const {
if (is_osr_method()) return "osr";
if (method() != NULL && is_native_method()) return "c2n";
return NULL;
}
// Fill in default values for various flag fields
void nmethod::init_defaults() {
_state = not_installed;
_has_flushed_dependencies = 0;
_lock_count = 0;
_stack_traversal_mark = 0;
_unload_reported = false; // jvmti state
_is_far_code = false; // nmethods are located in CodeCache
#ifdef ASSERT
_oops_are_stale = false;
#endif
_oops_do_mark_link = NULL;
_jmethod_id = NULL;
_osr_link = NULL;
_scavenge_root_link = NULL;
_scavenge_root_state = 0;
#if INCLUDE_RTM_OPT
_rtm_state = NoRTM;
#endif
#if INCLUDE_JVMCI
_jvmci_installed_code = NULL;
_speculation_log = NULL;
_jvmci_installed_code_triggers_invalidation = false;
#endif
}
nmethod* nmethod::new_native_nmethod(const methodHandle& method,
int compile_id,
CodeBuffer *code_buffer,
int vep_offset,
int frame_complete,
int frame_size,
ByteSize basic_lock_owner_sp_offset,
ByteSize basic_lock_sp_offset,
OopMapSet* oop_maps) {
code_buffer->finalize_oop_references(method);
// create nmethod
nmethod* nm = NULL;
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int native_nmethod_size = CodeBlob::allocation_size(code_buffer, sizeof(nmethod));
CodeOffsets offsets;
offsets.set_value(CodeOffsets::Verified_Entry, vep_offset);
offsets.set_value(CodeOffsets::Frame_Complete, frame_complete);
nm = new (native_nmethod_size, CompLevel_none) nmethod(method(), compiler_none, native_nmethod_size,
compile_id, &offsets,
code_buffer, frame_size,
basic_lock_owner_sp_offset,
basic_lock_sp_offset, oop_maps);
NOT_PRODUCT(if (nm != NULL) native_nmethod_stats.note_native_nmethod(nm));
}
if (nm != NULL) {
// verify nmethod
debug_only(nm->verify();) // might block
nm->log_new_nmethod();
nm->make_in_use();
}
return nm;
}
nmethod* nmethod::new_nmethod(const methodHandle& method,
int compile_id,
int entry_bci,
CodeOffsets* offsets,
int orig_pc_offset,
DebugInformationRecorder* debug_info,
Dependencies* dependencies,
CodeBuffer* code_buffer, int frame_size,
OopMapSet* oop_maps,
ExceptionHandlerTable* handler_table,
ImplicitExceptionTable* nul_chk_table,
AbstractCompiler* compiler,
int comp_level
#if INCLUDE_JVMCI
, jweak installed_code,
jweak speculationLog
#endif
)
{
assert(debug_info->oop_recorder() == code_buffer->oop_recorder(), "shared OR");
code_buffer->finalize_oop_references(method);
// create nmethod
nmethod* nm = NULL;
{ MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int nmethod_size =
CodeBlob::allocation_size(code_buffer, sizeof(nmethod))
+ adjust_pcs_size(debug_info->pcs_size())
+ align_up((int)dependencies->size_in_bytes(), oopSize)
+ align_up(handler_table->size_in_bytes() , oopSize)
+ align_up(nul_chk_table->size_in_bytes() , oopSize)
+ align_up(debug_info->data_size() , oopSize);
nm = new (nmethod_size, comp_level)
nmethod(method(), compiler->type(), nmethod_size, compile_id, entry_bci, offsets,
orig_pc_offset, debug_info, dependencies, code_buffer, frame_size,
oop_maps,
handler_table,
nul_chk_table,
compiler,
comp_level
#if INCLUDE_JVMCI
, installed_code,
speculationLog
#endif
);
if (nm != NULL) {
// To make dependency checking during class loading fast, record
// the nmethod dependencies in the classes it is dependent on.
// This allows the dependency checking code to simply walk the
// class hierarchy above the loaded class, checking only nmethods
// which are dependent on those classes. The slow way is to
// check every nmethod for dependencies which makes it linear in
// the number of methods compiled. For applications with a lot
// classes the slow way is too slow.
for (Dependencies::DepStream deps(nm); deps.next(); ) {
if (deps.type() == Dependencies::call_site_target_value) {
// CallSite dependencies are managed on per-CallSite instance basis.
oop call_site = deps.argument_oop(0);
MethodHandles::add_dependent_nmethod(call_site, nm);
} else {
Klass* klass = deps.context_type();
if (klass == NULL) {
continue; // ignore things like evol_method
}
// record this nmethod as dependent on this klass
InstanceKlass::cast(klass)->add_dependent_nmethod(nm);
}
}
NOT_PRODUCT(if (nm != NULL) note_java_nmethod(nm));
}
}
// Do verification and logging outside CodeCache_lock.
if (nm != NULL) {
// Safepoints in nmethod::verify aren't allowed because nm hasn't been installed yet.
DEBUG_ONLY(nm->verify();)
nm->log_new_nmethod();
}
return nm;
}
// For native wrappers
nmethod::nmethod(
Method* method,
CompilerType type,
int nmethod_size,
int compile_id,
CodeOffsets* offsets,
CodeBuffer* code_buffer,
int frame_size,
ByteSize basic_lock_owner_sp_offset,
ByteSize basic_lock_sp_offset,
OopMapSet* oop_maps )
: CompiledMethod(method, "native nmethod", type, nmethod_size, sizeof(nmethod), code_buffer, offsets->value(CodeOffsets::Frame_Complete), frame_size, oop_maps, false),
_is_unloading_state(0),
_native_receiver_sp_offset(basic_lock_owner_sp_offset),
_native_basic_lock_sp_offset(basic_lock_sp_offset)
{
{
int scopes_data_offset = 0;
int deoptimize_offset = 0;
int deoptimize_mh_offset = 0;
debug_only(NoSafepointVerifier nsv;)
assert_locked_or_safepoint(CodeCache_lock);
init_defaults();
_entry_bci = InvocationEntryBci;
// We have no exception handler or deopt handler make the
// values something that will never match a pc like the nmethod vtable entry
_exception_offset = 0;
_orig_pc_offset = 0;
_consts_offset = data_offset();
_stub_offset = data_offset();
_oops_offset = data_offset();
_metadata_offset = _oops_offset + align_up(code_buffer->total_oop_size(), oopSize);
scopes_data_offset = _metadata_offset + align_up(code_buffer->total_metadata_size(), wordSize);
_scopes_pcs_offset = scopes_data_offset;
_dependencies_offset = _scopes_pcs_offset;
_handler_table_offset = _dependencies_offset;
_nul_chk_table_offset = _handler_table_offset;
_nmethod_end_offset = _nul_chk_table_offset;
_compile_id = compile_id;
_comp_level = CompLevel_none;
_entry_point = code_begin() + offsets->value(CodeOffsets::Entry);
_verified_entry_point = code_begin() + offsets->value(CodeOffsets::Verified_Entry);
_osr_entry_point = NULL;
_exception_cache = NULL;
_pc_desc_container.reset_to(NULL);
_hotness_counter = NMethodSweeper::hotness_counter_reset_val();
_scopes_data_begin = (address) this + scopes_data_offset;
_deopt_handler_begin = (address) this + deoptimize_offset;
_deopt_mh_handler_begin = (address) this + deoptimize_mh_offset;
code_buffer->copy_code_and_locs_to(this);
code_buffer->copy_values_to(this);
clear_unloading_state();
if (ScavengeRootsInCode) {
Universe::heap()->register_nmethod(this);
}
debug_only(Universe::heap()->verify_nmethod(this));
CodeCache::commit(this);
}
if (PrintNativeNMethods || PrintDebugInfo || PrintRelocations || PrintDependencies) {
ttyLocker ttyl; // keep the following output all in one block
// This output goes directly to the tty, not the compiler log.
// To enable tools to match it up with the compilation activity,
// be sure to tag this tty output with the compile ID.
if (xtty != NULL) {
xtty->begin_head("print_native_nmethod");
xtty->method(_method);
xtty->stamp();
xtty->end_head(" address='" INTPTR_FORMAT "'", (intptr_t) this);
}
// print the header part first
print();
// then print the requested information
if (PrintNativeNMethods) {
print_code();
if (oop_maps != NULL) {
oop_maps->print();
}
}
if (PrintRelocations) {
print_relocations();
}
if (xtty != NULL) {
xtty->tail("print_native_nmethod");
}
}
}
void* nmethod::operator new(size_t size, int nmethod_size, int comp_level) throw () {
return CodeCache::allocate(nmethod_size, CodeCache::get_code_blob_type(comp_level));
}
nmethod::nmethod(
Method* method,
CompilerType type,
int nmethod_size,
int compile_id,
int entry_bci,
CodeOffsets* offsets,
int orig_pc_offset,
DebugInformationRecorder* debug_info,
Dependencies* dependencies,
CodeBuffer *code_buffer,
int frame_size,
OopMapSet* oop_maps,
ExceptionHandlerTable* handler_table,
ImplicitExceptionTable* nul_chk_table,
AbstractCompiler* compiler,
int comp_level
#if INCLUDE_JVMCI
, jweak installed_code,
jweak speculation_log
#endif
)
: CompiledMethod(method, "nmethod", type, nmethod_size, sizeof(nmethod), code_buffer, offsets->value(CodeOffsets::Frame_Complete), frame_size, oop_maps, false),
_is_unloading_state(0),
_native_receiver_sp_offset(in_ByteSize(-1)),
_native_basic_lock_sp_offset(in_ByteSize(-1))
{
assert(debug_info->oop_recorder() == code_buffer->oop_recorder(), "shared OR");
{
debug_only(NoSafepointVerifier nsv;)
assert_locked_or_safepoint(CodeCache_lock);
_deopt_handler_begin = (address) this;
_deopt_mh_handler_begin = (address) this;
init_defaults();
_entry_bci = entry_bci;
_compile_id = compile_id;
_comp_level = comp_level;
_orig_pc_offset = orig_pc_offset;
_hotness_counter = NMethodSweeper::hotness_counter_reset_val();
// Section offsets
_consts_offset = content_offset() + code_buffer->total_offset_of(code_buffer->consts());
_stub_offset = content_offset() + code_buffer->total_offset_of(code_buffer->stubs());
set_ctable_begin(header_begin() + _consts_offset);
#if INCLUDE_JVMCI
_jvmci_installed_code = installed_code;
_speculation_log = speculation_log;
oop obj = JNIHandles::resolve(installed_code);
if (obj == NULL || (obj->is_a(HotSpotNmethod::klass()) && HotSpotNmethod::isDefault(obj))) {
_jvmci_installed_code_triggers_invalidation = false;
} else {
_jvmci_installed_code_triggers_invalidation = true;
}
if (compiler->is_jvmci()) {
// JVMCI might not produce any stub sections
if (offsets->value(CodeOffsets::Exceptions) != -1) {
_exception_offset = code_offset() + offsets->value(CodeOffsets::Exceptions);
} else {
_exception_offset = -1;
}
if (offsets->value(CodeOffsets::Deopt) != -1) {
_deopt_handler_begin = (address) this + code_offset() + offsets->value(CodeOffsets::Deopt);
} else {
_deopt_handler_begin = NULL;
}
if (offsets->value(CodeOffsets::DeoptMH) != -1) {
_deopt_mh_handler_begin = (address) this + code_offset() + offsets->value(CodeOffsets::DeoptMH);
} else {
_deopt_mh_handler_begin = NULL;
}
} else {
#endif
// Exception handler and deopt handler are in the stub section
assert(offsets->value(CodeOffsets::Exceptions) != -1, "must be set");
assert(offsets->value(CodeOffsets::Deopt ) != -1, "must be set");
_exception_offset = _stub_offset + offsets->value(CodeOffsets::Exceptions);
_deopt_handler_begin = (address) this + _stub_offset + offsets->value(CodeOffsets::Deopt);
if (offsets->value(CodeOffsets::DeoptMH) != -1) {
_deopt_mh_handler_begin = (address) this + _stub_offset + offsets->value(CodeOffsets::DeoptMH);
} else {
_deopt_mh_handler_begin = NULL;
#if INCLUDE_JVMCI
}
#endif
}
if (offsets->value(CodeOffsets::UnwindHandler) != -1) {
_unwind_handler_offset = code_offset() + offsets->value(CodeOffsets::UnwindHandler);
} else {
_unwind_handler_offset = -1;
}
_oops_offset = data_offset();
_metadata_offset = _oops_offset + align_up(code_buffer->total_oop_size(), oopSize);
int scopes_data_offset = _metadata_offset + align_up(code_buffer->total_metadata_size(), wordSize);
_scopes_pcs_offset = scopes_data_offset + align_up(debug_info->data_size (), oopSize);
_dependencies_offset = _scopes_pcs_offset + adjust_pcs_size(debug_info->pcs_size());
_handler_table_offset = _dependencies_offset + align_up((int)dependencies->size_in_bytes (), oopSize);
_nul_chk_table_offset = _handler_table_offset + align_up(handler_table->size_in_bytes(), oopSize);
_nmethod_end_offset = _nul_chk_table_offset + align_up(nul_chk_table->size_in_bytes(), oopSize);
_entry_point = code_begin() + offsets->value(CodeOffsets::Entry);
_verified_entry_point = code_begin() + offsets->value(CodeOffsets::Verified_Entry);
_osr_entry_point = code_begin() + offsets->value(CodeOffsets::OSR_Entry);
_exception_cache = NULL;
_scopes_data_begin = (address) this + scopes_data_offset;
_pc_desc_container.reset_to(scopes_pcs_begin());
code_buffer->copy_code_and_locs_to(this);
// Copy contents of ScopeDescRecorder to nmethod
code_buffer->copy_values_to(this);
debug_info->copy_to(this);
dependencies->copy_to(this);
clear_unloading_state();
if (ScavengeRootsInCode) {
Universe::heap()->register_nmethod(this);
}
debug_only(Universe::heap()->verify_nmethod(this));
CodeCache::commit(this);
// Copy contents of ExceptionHandlerTable to nmethod
handler_table->copy_to(this);
nul_chk_table->copy_to(this);
// we use the information of entry points to find out if a method is
// static or non static
assert(compiler->is_c2() || compiler->is_jvmci() ||
_method->is_static() == (entry_point() == _verified_entry_point),
" entry points must be same for static methods and vice versa");
}
}
// Print a short set of xml attributes to identify this nmethod. The
// output should be embedded in some other element.
void nmethod::log_identity(xmlStream* log) const {
log->print(" compile_id='%d'", compile_id());
const char* nm_kind = compile_kind();
if (nm_kind != NULL) log->print(" compile_kind='%s'", nm_kind);
log->print(" compiler='%s'", compiler_name());
if (TieredCompilation) {
log->print(" level='%d'", comp_level());
}
#if INCLUDE_JVMCI
char buffer[O_BUFLEN];
char* jvmci_name = jvmci_installed_code_name(buffer, O_BUFLEN);
if (jvmci_name != NULL) {
log->print(" jvmci_installed_code_name='");
log->text("%s", jvmci_name);
log->print("'");
}
#endif
}
#define LOG_OFFSET(log, name) \
if (p2i(name##_end()) - p2i(name##_begin())) \
log->print(" " XSTR(name) "_offset='" INTX_FORMAT "'" , \
p2i(name##_begin()) - p2i(this))
void nmethod::log_new_nmethod() const {
if (LogCompilation && xtty != NULL) {
ttyLocker ttyl;
HandleMark hm;
xtty->begin_elem("nmethod");
log_identity(xtty);
xtty->print(" entry='" INTPTR_FORMAT "' size='%d'", p2i(code_begin()), size());
xtty->print(" address='" INTPTR_FORMAT "'", p2i(this));
LOG_OFFSET(xtty, relocation);
LOG_OFFSET(xtty, consts);
LOG_OFFSET(xtty, insts);
LOG_OFFSET(xtty, stub);
LOG_OFFSET(xtty, scopes_data);
LOG_OFFSET(xtty, scopes_pcs);
LOG_OFFSET(xtty, dependencies);
LOG_OFFSET(xtty, handler_table);
LOG_OFFSET(xtty, nul_chk_table);
LOG_OFFSET(xtty, oops);
LOG_OFFSET(xtty, metadata);
xtty->method(method());
xtty->stamp();
xtty->end_elem();
}
}
#undef LOG_OFFSET
// Print out more verbose output usually for a newly created nmethod.
void nmethod::print_on(outputStream* st, const char* msg) const {
if (st != NULL) {
ttyLocker ttyl;
if (WizardMode) {
CompileTask::print(st, this, msg, /*short_form:*/ true);
st->print_cr(" (" INTPTR_FORMAT ")", p2i(this));
} else {
CompileTask::print(st, this, msg, /*short_form:*/ false);
}
}
}
void nmethod::maybe_print_nmethod(DirectiveSet* directive) {
bool printnmethods = directive->PrintAssemblyOption || directive->PrintNMethodsOption;
if (printnmethods || PrintDebugInfo || PrintRelocations || PrintDependencies || PrintExceptionHandlers) {
print_nmethod(printnmethods);
}
}
void nmethod::print_nmethod(bool printmethod) {
ttyLocker ttyl; // keep the following output all in one block
if (xtty != NULL) {
xtty->begin_head("print_nmethod");
xtty->stamp();
xtty->end_head();
}
// print the header part first
print();
// then print the requested information
if (printmethod) {
print_code();
print_pcs();
if (oop_maps()) {
oop_maps()->print();
}
}
if (printmethod || PrintDebugInfo || CompilerOracle::has_option_string(_method, "PrintDebugInfo")) {
print_scopes();
}
if (printmethod || PrintRelocations || CompilerOracle::has_option_string(_method, "PrintRelocations")) {
print_relocations();
}
if (printmethod || PrintDependencies || CompilerOracle::has_option_string(_method, "PrintDependencies")) {
print_dependencies();
}
if (printmethod || PrintExceptionHandlers) {
print_handler_table();
print_nul_chk_table();
}
if (printmethod) {
print_recorded_oops();
print_recorded_metadata();
}
if (xtty != NULL) {
xtty->tail("print_nmethod");
}
}
// Promote one word from an assembly-time handle to a live embedded oop.
inline void nmethod::initialize_immediate_oop(oop* dest, jobject handle) {
if (handle == NULL ||
// As a special case, IC oops are initialized to 1 or -1.
handle == (jobject) Universe::non_oop_word()) {
(*dest) = (oop) handle;
} else {
(*dest) = JNIHandles::resolve_non_null(handle);
}
}
// Have to have the same name because it's called by a template
void nmethod::copy_values(GrowableArray<jobject>* array) {
int length = array->length();
assert((address)(oops_begin() + length) <= (address)oops_end(), "oops big enough");
oop* dest = oops_begin();
for (int index = 0 ; index < length; index++) {
initialize_immediate_oop(&dest[index], array->at(index));
}
// Now we can fix up all the oops in the code. We need to do this
// in the code because the assembler uses jobjects as placeholders.
// The code and relocations have already been initialized by the
// CodeBlob constructor, so it is valid even at this early point to
// iterate over relocations and patch the code.
fix_oop_relocations(NULL, NULL, /*initialize_immediates=*/ true);
}
void nmethod::copy_values(GrowableArray<Metadata*>* array) {
int length = array->length();
assert((address)(metadata_begin() + length) <= (address)metadata_end(), "big enough");
Metadata** dest = metadata_begin();
for (int index = 0 ; index < length; index++) {
dest[index] = array->at(index);
}
}
void nmethod::fix_oop_relocations(address begin, address end, bool initialize_immediates) {
// re-patch all oop-bearing instructions, just in case some oops moved
RelocIterator iter(this, begin, end);
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop_Relocation* reloc = iter.oop_reloc();
if (initialize_immediates && reloc->oop_is_immediate()) {
oop* dest = reloc->oop_addr();
initialize_immediate_oop(dest, (jobject) *dest);
}
// Refresh the oop-related bits of this instruction.
reloc->fix_oop_relocation();
} else if (iter.type() == relocInfo::metadata_type) {
metadata_Relocation* reloc = iter.metadata_reloc();
reloc->fix_metadata_relocation();
}
}
}
void nmethod::verify_clean_inline_caches() {
assert(CompiledICLocker::is_safe(this), "mt unsafe call");
ResourceMark rm;
RelocIterator iter(this, oops_reloc_begin());
while(iter.next()) {
switch(iter.type()) {
case relocInfo::virtual_call_type:
case relocInfo::opt_virtual_call_type: {
CompiledIC *ic = CompiledIC_at(&iter);
// Ok, to lookup references to zombies here
CodeBlob *cb = CodeCache::find_blob_unsafe(ic->ic_destination());
assert(cb != NULL, "destination not in CodeBlob?");
nmethod* nm = cb->as_nmethod_or_null();
if( nm != NULL ) {
// Verify that inline caches pointing to both zombie and not_entrant methods are clean
if (!nm->is_in_use() || (nm->method()->code() != nm)) {
assert(ic->is_clean(), "IC should be clean");
}
}
break;
}
case relocInfo::static_call_type: {
CompiledStaticCall *csc = compiledStaticCall_at(iter.reloc());
CodeBlob *cb = CodeCache::find_blob_unsafe(csc->destination());
assert(cb != NULL, "destination not in CodeBlob?");
nmethod* nm = cb->as_nmethod_or_null();
if( nm != NULL ) {
// Verify that inline caches pointing to both zombie and not_entrant methods are clean
if (!nm->is_in_use() || (nm->method()->code() != nm)) {
assert(csc->is_clean(), "IC should be clean");
}
}
break;
}
default:
break;
}
}
}
// This is a private interface with the sweeper.
void nmethod::mark_as_seen_on_stack() {
assert(is_alive(), "Must be an alive method");
// Set the traversal mark to ensure that the sweeper does 2
// cleaning passes before moving to zombie.
set_stack_traversal_mark(NMethodSweeper::traversal_count());
}
// Tell if a non-entrant method can be converted to a zombie (i.e.,
// there are no activations on the stack, not in use by the VM,
// and not in use by the ServiceThread)
bool nmethod::can_convert_to_zombie() {
// Note that this is called when the sweeper has observed the nmethod to be
// not_entrant. However, with concurrent code cache unloading, the state
// might have moved on to unloaded if it is_unloading(), due to racing
// concurrent GC threads.
assert(is_not_entrant() || is_unloading(), "must be a non-entrant method");
// Since the nmethod sweeper only does partial sweep the sweeper's traversal
// count can be greater than the stack traversal count before it hits the
// nmethod for the second time.
// If an is_unloading() nmethod is still not_entrant, then it is not safe to
// convert it to zombie due to GC unloading interactions. However, if it
// has become unloaded, then it is okay to convert such nmethods to zombie.
return stack_traversal_mark() + 1 < NMethodSweeper::traversal_count() &&
!is_locked_by_vm() && (!is_unloading() || is_unloaded());
}
void nmethod::inc_decompile_count() {
if (!is_compiled_by_c2() && !is_compiled_by_jvmci()) return;
// Could be gated by ProfileTraps, but do not bother...
Method* m = method();
if (m == NULL) return;
MethodData* mdo = m->method_data();
if (mdo == NULL) return;
// There is a benign race here. See comments in methodData.hpp.
mdo->inc_decompile_count();
}
void nmethod::make_unloaded() {
post_compiled_method_unload();
// This nmethod is being unloaded, make sure that dependencies
// recorded in instanceKlasses get flushed.
// Since this work is being done during a GC, defer deleting dependencies from the
// InstanceKlass.
assert(Universe::heap()->is_gc_active() || Thread::current()->is_ConcurrentGC_thread(),
"should only be called during gc");
flush_dependencies(/*delete_immediately*/false);
// Break cycle between nmethod & method
LogTarget(Trace, class, unload, nmethod) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print("making nmethod " INTPTR_FORMAT
" unloadable, Method*(" INTPTR_FORMAT
") ",
p2i(this), p2i(_method));
ls.cr();
}
// Unlink the osr method, so we do not look this up again
if (is_osr_method()) {
// Invalidate the osr nmethod only once
if (is_in_use()) {
invalidate_osr_method();
}
#ifdef ASSERT
if (method() != NULL) {
// Make sure osr nmethod is invalidated, i.e. not on the list
bool found = method()->method_holder()->remove_osr_nmethod(this);
assert(!found, "osr nmethod should have been invalidated");
}
#endif
}
// If _method is already NULL the Method* is about to be unloaded,
// so we don't have to break the cycle. Note that it is possible to
// have the Method* live here, in case we unload the nmethod because
// it is pointing to some oop (other than the Method*) being unloaded.
if (_method != NULL) {
// OSR methods point to the Method*, but the Method* does not
// point back!
if (_method->code() == this) {
_method->clear_code(); // Break a cycle
}
_method = NULL; // Clear the method of this dead nmethod
}
// Make the class unloaded - i.e., change state and notify sweeper
assert(SafepointSynchronize::is_at_safepoint() || Thread::current()->is_ConcurrentGC_thread(),
"must be at safepoint");
// Unregister must be done before the state change
Universe::heap()->unregister_nmethod(this);
// Log the unloading.
log_state_change();
#if INCLUDE_JVMCI
// The method can only be unloaded after the pointer to the installed code
// Java wrapper is no longer alive. Here we need to clear out this weak
// reference to the dead object.
maybe_invalidate_installed_code();
#endif
// The Method* is gone at this point
assert(_method == NULL, "Tautology");
set_osr_link(NULL);
NMethodSweeper::report_state_change(this);
// The release is only needed for compile-time ordering, as accesses
// into the nmethod after the store are not safe due to the sweeper
// being allowed to free it when the store is observed, during
// concurrent nmethod unloading. Therefore, there is no need for
// acquire on the loader side.
OrderAccess::release_store(&_state, (signed char)unloaded);
}
void nmethod::invalidate_osr_method() {
assert(_entry_bci != InvocationEntryBci, "wrong kind of nmethod");
// Remove from list of active nmethods
if (method() != NULL) {
method()->method_holder()->remove_osr_nmethod(this);
}
}
void nmethod::log_state_change() const {
if (LogCompilation) {
if (xtty != NULL) {
ttyLocker ttyl; // keep the following output all in one block
if (_state == unloaded) {
xtty->begin_elem("make_unloaded thread='" UINTX_FORMAT "'",
os::current_thread_id());
} else {
xtty->begin_elem("make_not_entrant thread='" UINTX_FORMAT "'%s",
os::current_thread_id(),
(_state == zombie ? " zombie='1'" : ""));
}
log_identity(xtty);
xtty->stamp();
xtty->end_elem();
}
}
const char *state_msg = _state == zombie ? "made zombie" : "made not entrant";
CompileTask::print_ul(this, state_msg);
if (PrintCompilation && _state != unloaded) {
print_on(tty, state_msg);
}
}
/**
* Common functionality for both make_not_entrant and make_zombie
*/
bool nmethod::make_not_entrant_or_zombie(int state) {
assert(state == zombie || state == not_entrant, "must be zombie or not_entrant");
assert(!is_zombie(), "should not already be a zombie");
if (_state == state) {
// Avoid taking the lock if already in required state.
// This is safe from races because the state is an end-state,
// which the nmethod cannot back out of once entered.
// No need for fencing either.
return false;
}
// Make sure neither the nmethod nor the method is flushed in case of a safepoint in code below.
nmethodLocker nml(this);
methodHandle the_method(method());
// This can be called while the system is already at a safepoint which is ok
NoSafepointVerifier nsv(true, !SafepointSynchronize::is_at_safepoint());
// during patching, depending on the nmethod state we must notify the GC that
// code has been unloaded, unregistering it. We cannot do this right while
// holding the Patching_lock because we need to use the CodeCache_lock. This
// would be prone to deadlocks.
// This flag is used to remember whether we need to later lock and unregister.
bool nmethod_needs_unregister = false;
{
// invalidate osr nmethod before acquiring the patching lock since
// they both acquire leaf locks and we don't want a deadlock.
// This logic is equivalent to the logic below for patching the
// verified entry point of regular methods. We check that the
// nmethod is in use to ensure that it is invalidated only once.
if (is_osr_method() && is_in_use()) {
// this effectively makes the osr nmethod not entrant
invalidate_osr_method();
}
// Enter critical section. Does not block for safepoint.
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
if (_state == state) {
// another thread already performed this transition so nothing
// to do, but return false to indicate this.
return false;
}
// The caller can be calling the method statically or through an inline
// cache call.
if (!is_osr_method() && !is_not_entrant()) {
NativeJump::patch_verified_entry(entry_point(), verified_entry_point(),
SharedRuntime::get_handle_wrong_method_stub());
}
if (is_in_use() && update_recompile_counts()) {
// It's a true state change, so mark the method as decompiled.
// Do it only for transition from alive.
inc_decompile_count();
}
// If the state is becoming a zombie, signal to unregister the nmethod with
// the heap.
// This nmethod may have already been unloaded during a full GC.
if ((state == zombie) && !is_unloaded()) {
nmethod_needs_unregister = true;
}
// Must happen before state change. Otherwise we have a race condition in
// nmethod::can_not_entrant_be_converted(). I.e., a method can immediately
// transition its state from 'not_entrant' to 'zombie' without having to wait
// for stack scanning.
if (state == not_entrant) {
mark_as_seen_on_stack();
OrderAccess::storestore(); // _stack_traversal_mark and _state
}
// Change state
_state = state;
// Log the transition once
log_state_change();
// Invalidate while holding the patching lock
JVMCI_ONLY(maybe_invalidate_installed_code());
// Remove nmethod from method.
// We need to check if both the _code and _from_compiled_code_entry_point
// refer to this nmethod because there is a race in setting these two fields
// in Method* as seen in bugid 4947125.
// If the vep() points to the zombie nmethod, the memory for the nmethod
// could be flushed and the compiler and vtable stubs could still call
// through it.
if (method() != NULL && (method()->code() == this ||
method()->from_compiled_entry() == verified_entry_point())) {
HandleMark hm;
method()->clear_code(false /* already owns Patching_lock */);
}
} // leave critical region under Patching_lock
#ifdef ASSERT
if (is_osr_method() && method() != NULL) {
// Make sure osr nmethod is invalidated, i.e. not on the list
bool found = method()->method_holder()->remove_osr_nmethod(this);
assert(!found, "osr nmethod should have been invalidated");
}
#endif
// When the nmethod becomes zombie it is no longer alive so the
// dependencies must be flushed. nmethods in the not_entrant
// state will be flushed later when the transition to zombie
// happens or they get unloaded.
if (state == zombie) {
{
// Flushing dependencies must be done before any possible
// safepoint can sneak in, otherwise the oops used by the
// dependency logic could have become stale.
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
if (nmethod_needs_unregister) {
Universe::heap()->unregister_nmethod(this);
}
flush_dependencies(/*delete_immediately*/true);
}
// zombie only - if a JVMTI agent has enabled the CompiledMethodUnload
// event and it hasn't already been reported for this nmethod then
// report it now. The event may have been reported earlier if the GC
// marked it for unloading). JvmtiDeferredEventQueue support means
// we no longer go to a safepoint here.
post_compiled_method_unload();
#ifdef ASSERT
// It's no longer safe to access the oops section since zombie
// nmethods aren't scanned for GC.
_oops_are_stale = true;
#endif
// the Method may be reclaimed by class unloading now that the
// nmethod is in zombie state
set_method(NULL);
} else {
assert(state == not_entrant, "other cases may need to be handled differently");
}
if (TraceCreateZombies) {
ResourceMark m;
tty->print_cr("nmethod <" INTPTR_FORMAT "> %s code made %s", p2i(this), this->method() ? this->method()->name_and_sig_as_C_string() : "null", (state == not_entrant) ? "not entrant" : "zombie");
}
NMethodSweeper::report_state_change(this);
return true;
}
void nmethod::flush() {
// Note that there are no valid oops in the nmethod anymore.
assert(!is_osr_method() || is_unloaded() || is_zombie(),
"osr nmethod must be unloaded or zombie before flushing");
assert(is_zombie() || is_osr_method(), "must be a zombie method");
assert (!is_locked_by_vm(), "locked methods shouldn't be flushed");
assert_locked_or_safepoint(CodeCache_lock);
// completely deallocate this method
Events::log(JavaThread::current(), "flushing nmethod " INTPTR_FORMAT, p2i(this));
if (PrintMethodFlushing) {
tty->print_cr("*flushing %s nmethod %3d/" INTPTR_FORMAT ". Live blobs:" UINT32_FORMAT
"/Free CodeCache:" SIZE_FORMAT "Kb",
is_osr_method() ? "osr" : "",_compile_id, p2i(this), CodeCache::blob_count(),
CodeCache::unallocated_capacity(CodeCache::get_code_blob_type(this))/1024);
}
// We need to deallocate any ExceptionCache data.
// Note that we do not need to grab the nmethod lock for this, it
// better be thread safe if we're disposing of it!
ExceptionCache* ec = exception_cache();
set_exception_cache(NULL);
while(ec != NULL) {
ExceptionCache* next = ec->next();
delete ec;
ec = next;
}
if (on_scavenge_root_list()) {
CodeCache::drop_scavenge_root_nmethod(this);
}
#if INCLUDE_JVMCI
assert(_jvmci_installed_code == NULL, "should have been nulled out when transitioned to zombie");
assert(_speculation_log == NULL, "should have been nulled out when transitioned to zombie");
#endif
CodeBlob::flush();
CodeCache::free(this);
}
oop nmethod::oop_at(int index) const {
if (index == 0) {
return NULL;
}
return NativeAccess<AS_NO_KEEPALIVE>::oop_load(oop_addr_at(index));
}
//
// Notify all classes this nmethod is dependent on that it is no
// longer dependent. This should only be called in two situations.
// First, when a nmethod transitions to a zombie all dependents need
// to be clear. Since zombification happens at a safepoint there's no
// synchronization issues. The second place is a little more tricky.
// During phase 1 of mark sweep class unloading may happen and as a
// result some nmethods may get unloaded. In this case the flushing
// of dependencies must happen during phase 1 since after GC any
// dependencies in the unloaded nmethod won't be updated, so
// traversing the dependency information in unsafe. In that case this
// function is called with a boolean argument and this function only
// notifies instanceKlasses that are reachable
void nmethod::flush_dependencies(bool delete_immediately) {
DEBUG_ONLY(bool called_by_gc = Universe::heap()->is_gc_active() || Thread::current()->is_ConcurrentGC_thread();)
assert(called_by_gc != delete_immediately,
"delete_immediately is false if and only if we are called during GC");
if (!has_flushed_dependencies()) {
set_has_flushed_dependencies();
for (Dependencies::DepStream deps(this); deps.next(); ) {
if (deps.type() == Dependencies::call_site_target_value) {
// CallSite dependencies are managed on per-CallSite instance basis.
oop call_site = deps.argument_oop(0);
if (delete_immediately) {
assert_locked_or_safepoint(CodeCache_lock);
MethodHandles::remove_dependent_nmethod(call_site, this);
} else {
MethodHandles::clean_dependency_context(call_site);
}
} else {
Klass* klass = deps.context_type();
if (klass == NULL) {
continue; // ignore things like evol_method
}
// During GC delete_immediately is false, and liveness
// of dependee determines class that needs to be updated.
if (delete_immediately) {
assert_locked_or_safepoint(CodeCache_lock);
InstanceKlass::cast(klass)->remove_dependent_nmethod(this);
} else if (klass->is_loader_alive()) {
// The GC may clean dependency contexts concurrently and in parallel.
InstanceKlass::cast(klass)->clean_dependency_context();
}
}
}
}
}
// ------------------------------------------------------------------
// post_compiled_method_load_event
// new method for install_code() path
// Transfer information from compilation to jvmti
void nmethod::post_compiled_method_load_event() {
Method* moop = method();
HOTSPOT_COMPILED_METHOD_LOAD(
(char *) moop->klass_name()->bytes(),
moop->klass_name()->utf8_length(),
(char *) moop->name()->bytes(),
moop->name()->utf8_length(),
(char *) moop->signature()->bytes(),
moop->signature()->utf8_length(),
insts_begin(), insts_size());
if (JvmtiExport::should_post_compiled_method_load() ||
JvmtiExport::should_post_compiled_method_unload()) {
get_and_cache_jmethod_id();
}
if (JvmtiExport::should_post_compiled_method_load()) {
// Let the Service thread (which is a real Java thread) post the event
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
JvmtiDeferredEventQueue::enqueue(
JvmtiDeferredEvent::compiled_method_load_event(this));
}
}
jmethodID nmethod::get_and_cache_jmethod_id() {
if (_jmethod_id == NULL) {
// Cache the jmethod_id since it can no longer be looked up once the
// method itself has been marked for unloading.
_jmethod_id = method()->jmethod_id();
}
return _jmethod_id;
}
void nmethod::post_compiled_method_unload() {
if (unload_reported()) {
// During unloading we transition to unloaded and then to zombie
// and the unloading is reported during the first transition.
return;
}
assert(_method != NULL && !is_unloaded(), "just checking");
DTRACE_METHOD_UNLOAD_PROBE(method());
// If a JVMTI agent has enabled the CompiledMethodUnload event then
// post the event. Sometime later this nmethod will be made a zombie
// by the sweeper but the Method* will not be valid at that point.
// If the _jmethod_id is null then no load event was ever requested
// so don't bother posting the unload. The main reason for this is
// that the jmethodID is a weak reference to the Method* so if
// it's being unloaded there's no way to look it up since the weak
// ref will have been cleared.
if (_jmethod_id != NULL && JvmtiExport::should_post_compiled_method_unload()) {
assert(!unload_reported(), "already unloaded");
JvmtiDeferredEvent event =
JvmtiDeferredEvent::compiled_method_unload_event(this,
_jmethod_id, insts_begin());
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
JvmtiDeferredEventQueue::enqueue(event);
}
// The JVMTI CompiledMethodUnload event can be enabled or disabled at
// any time. As the nmethod is being unloaded now we mark it has
// having the unload event reported - this will ensure that we don't
// attempt to report the event in the unlikely scenario where the
// event is enabled at the time the nmethod is made a zombie.
set_unload_reported();
}
// Iterate over metadata calling this function. Used by RedefineClasses
void nmethod::metadata_do(void f(Metadata*)) {
{
// Visit all immediate references that are embedded in the instruction stream.
RelocIterator iter(this, oops_reloc_begin());
while (iter.next()) {
if (iter.type() == relocInfo::metadata_type ) {
metadata_Relocation* r = iter.metadata_reloc();
// In this metadata, we must only follow those metadatas directly embedded in
// the code. Other metadatas (oop_index>0) are seen as part of
// the metadata section below.
assert(1 == (r->metadata_is_immediate()) +
(r->metadata_addr() >= metadata_begin() && r->metadata_addr() < metadata_end()),
"metadata must be found in exactly one place");
if (r->metadata_is_immediate() && r->metadata_value() != NULL) {
Metadata* md = r->metadata_value();
if (md != _method) f(md);
}
} else if (iter.type() == relocInfo::virtual_call_type) {
// Check compiledIC holders associated with this nmethod
ResourceMark rm;
CompiledIC *ic = CompiledIC_at(&iter);
if (ic->is_icholder_call()) {
CompiledICHolder* cichk = ic->cached_icholder();
f(cichk->holder_metadata());
f(cichk->holder_klass());
} else {
Metadata* ic_oop = ic->cached_metadata();
if (ic_oop != NULL) {
f(ic_oop);
}
}
}
}
}
// Visit the metadata section
for (Metadata** p = metadata_begin(); p < metadata_end(); p++) {
if (*p == Universe::non_oop_word() || *p == NULL) continue; // skip non-oops
Metadata* md = *p;
f(md);
}
// Visit metadata not embedded in the other places.
if (_method != NULL) f(_method);
}
// The _is_unloading_state encodes a tuple comprising the unloading cycle
// and the result of IsUnloadingBehaviour::is_unloading() fpr that cycle.
// This is the bit layout of the _is_unloading_state byte: 00000CCU
// CC refers to the cycle, which has 2 bits, and U refers to the result of
// IsUnloadingBehaviour::is_unloading() for that unloading cycle.
class IsUnloadingState: public AllStatic {
static const uint8_t _is_unloading_mask = 1;
static const uint8_t _is_unloading_shift = 0;
static const uint8_t _unloading_cycle_mask = 6;
static const uint8_t _unloading_cycle_shift = 1;
static uint8_t set_is_unloading(uint8_t state, bool value) {
state &= ~_is_unloading_mask;
if (value) {
state |= 1 << _is_unloading_shift;
}
assert(is_unloading(state) == value, "unexpected unloading cycle overflow");
return state;
}
static uint8_t set_unloading_cycle(uint8_t state, uint8_t value) {
state &= ~_unloading_cycle_mask;
state |= value << _unloading_cycle_shift;
assert(unloading_cycle(state) == value, "unexpected unloading cycle overflow");
return state;
}
public:
static bool is_unloading(uint8_t state) { return (state & _is_unloading_mask) >> _is_unloading_shift == 1; }
static uint8_t unloading_cycle(uint8_t state) { return (state & _unloading_cycle_mask) >> _unloading_cycle_shift; }
static uint8_t create(bool is_unloading, uint8_t unloading_cycle) {
uint8_t state = 0;
state = set_is_unloading(state, is_unloading);
state = set_unloading_cycle(state, unloading_cycle);
return state;
}
};
bool nmethod::is_unloading() {
uint8_t state = RawAccess<MO_RELAXED>::load(&_is_unloading_state);
bool state_is_unloading = IsUnloadingState::is_unloading(state);
uint8_t state_unloading_cycle = IsUnloadingState::unloading_cycle(state);
if (state_is_unloading) {
return true;
}
if (state_unloading_cycle == CodeCache::unloading_cycle()) {
return false;
}
// The IsUnloadingBehaviour is responsible for checking if there are any dead
// oops in the CompiledMethod, by calling oops_do on it.
state_unloading_cycle = CodeCache::unloading_cycle();
state_is_unloading = IsUnloadingBehaviour::current()->is_unloading(this);
state = IsUnloadingState::create(state_is_unloading, state_unloading_cycle);
RawAccess<MO_RELAXED>::store(&_is_unloading_state, state);
return state_is_unloading;
}
void nmethod::clear_unloading_state() {
uint8_t state = IsUnloadingState::create(false, CodeCache::unloading_cycle());
RawAccess<MO_RELAXED>::store(&_is_unloading_state, state);
}
// This is called at the end of the strong tracing/marking phase of a
// GC to unload an nmethod if it contains otherwise unreachable
// oops.
void nmethod::do_unloading(bool unloading_occurred) {
// Make sure the oop's ready to receive visitors
assert(!is_zombie() && !is_unloaded(),
"should not call follow on zombie or unloaded nmethod");
if (is_unloading()) {
make_unloaded();
} else {
#if INCLUDE_JVMCI
if (_jvmci_installed_code != NULL) {
if (JNIHandles::is_global_weak_cleared(_jvmci_installed_code)) {
if (_jvmci_installed_code_triggers_invalidation) {
make_not_entrant();
}
clear_jvmci_installed_code();
}
}
#endif
unload_nmethod_caches(unloading_occurred);
}
}
void nmethod::oops_do(OopClosure* f, bool allow_zombie) {
// make sure the oops ready to receive visitors
assert(allow_zombie || !is_zombie(), "should not call follow on zombie nmethod");
assert(!is_unloaded(), "should not call follow on unloaded nmethod");
// Prevent extra code cache walk for platforms that don't have immediate oops.
if (relocInfo::mustIterateImmediateOopsInCode()) {
RelocIterator iter(this, oops_reloc_begin());
while (iter.next()) {
if (iter.type() == relocInfo::oop_type ) {
oop_Relocation* r = iter.oop_reloc();
// In this loop, we must only follow those oops directly embedded in
// the code. Other oops (oop_index>0) are seen as part of scopes_oops.
assert(1 == (r->oop_is_immediate()) +
(r->oop_addr() >= oops_begin() && r->oop_addr() < oops_end()),
"oop must be found in exactly one place");
if (r->oop_is_immediate() && r->oop_value() != NULL) {
f->do_oop(r->oop_addr());
}
}
}
}
// Scopes
// This includes oop constants not inlined in the code stream.
for (oop* p = oops_begin(); p < oops_end(); p++) {
if (*p == Universe::non_oop_word()) continue; // skip non-oops
f->do_oop(p);
}
}
#define NMETHOD_SENTINEL ((nmethod*)badAddress)
nmethod* volatile nmethod::_oops_do_mark_nmethods;
// An nmethod is "marked" if its _mark_link is set non-null.
// Even if it is the end of the linked list, it will have a non-null link value,
// as long as it is on the list.
// This code must be MP safe, because it is used from parallel GC passes.
bool nmethod::test_set_oops_do_mark() {
assert(nmethod::oops_do_marking_is_active(), "oops_do_marking_prologue must be called");
if (_oops_do_mark_link == NULL) {
// Claim this nmethod for this thread to mark.
if (Atomic::replace_if_null(NMETHOD_SENTINEL, &_oops_do_mark_link)) {
// Atomically append this nmethod (now claimed) to the head of the list:
nmethod* observed_mark_nmethods = _oops_do_mark_nmethods;
for (;;) {
nmethod* required_mark_nmethods = observed_mark_nmethods;
_oops_do_mark_link = required_mark_nmethods;
observed_mark_nmethods =
Atomic::cmpxchg(this, &_oops_do_mark_nmethods, required_mark_nmethods);
if (observed_mark_nmethods == required_mark_nmethods)
break;
}
// Mark was clear when we first saw this guy.
LogTarget(Trace, gc, nmethod) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
CompileTask::print(&ls, this, "oops_do, mark", /*short_form:*/ true);
}
return false;
}
}
// On fall through, another racing thread marked this nmethod before we did.
return true;
}
void nmethod::oops_do_marking_prologue() {
log_trace(gc, nmethod)("oops_do_marking_prologue");
assert(_oops_do_mark_nmethods == NULL, "must not call oops_do_marking_prologue twice in a row");
// We use cmpxchg instead of regular assignment here because the user
// may fork a bunch of threads, and we need them all to see the same state.
nmethod* observed = Atomic::cmpxchg(NMETHOD_SENTINEL, &_oops_do_mark_nmethods, (nmethod*)NULL);
guarantee(observed == NULL, "no races in this sequential code");
}
void nmethod::oops_do_marking_epilogue() {
assert(_oops_do_mark_nmethods != NULL, "must not call oops_do_marking_epilogue twice in a row");
nmethod* cur = _oops_do_mark_nmethods;
while (cur != NMETHOD_SENTINEL) {
assert(cur != NULL, "not NULL-terminated");
nmethod* next = cur->_oops_do_mark_link;
cur->_oops_do_mark_link = NULL;
DEBUG_ONLY(cur->verify_oop_relocations());
LogTarget(Trace, gc, nmethod) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
CompileTask::print(&ls, cur, "oops_do, unmark", /*short_form:*/ true);
}
cur = next;
}
nmethod* required = _oops_do_mark_nmethods;
nmethod* observed = Atomic::cmpxchg((nmethod*)NULL, &_oops_do_mark_nmethods, required);
guarantee(observed == required, "no races in this sequential code");
log_trace(gc, nmethod)("oops_do_marking_epilogue");
}
class DetectScavengeRoot: public OopClosure {
bool _detected_scavenge_root;
nmethod* _print_nm;
public:
DetectScavengeRoot(nmethod* nm) : _detected_scavenge_root(false), _print_nm(nm) {}
bool detected_scavenge_root() { return _detected_scavenge_root; }
virtual void do_oop(oop* p) {
if ((*p) != NULL && Universe::heap()->is_scavengable(*p)) {
NOT_PRODUCT(maybe_print(p));
_detected_scavenge_root = true;
}
}
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
#ifndef PRODUCT
void maybe_print(oop* p) {
LogTarget(Trace, gc, nmethod) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
if (!_detected_scavenge_root) {
CompileTask::print(&ls, _print_nm, "new scavenge root", /*short_form:*/ true);
}
ls.print("" PTR_FORMAT "[offset=%d] detected scavengable oop " PTR_FORMAT " (found at " PTR_FORMAT ") ",
p2i(_print_nm), (int)((intptr_t)p - (intptr_t)_print_nm),
p2i(*p), p2i(p));
ls.cr();
}
}
#endif //PRODUCT
};
bool nmethod::detect_scavenge_root_oops() {
DetectScavengeRoot detect_scavenge_root(this);
oops_do(&detect_scavenge_root);
return detect_scavenge_root.detected_scavenge_root();
}
inline bool includes(void* p, void* from, void* to) {
return from <= p && p < to;
}
void nmethod::copy_scopes_pcs(PcDesc* pcs, int count) {
assert(count >= 2, "must be sentinel values, at least");
#ifdef ASSERT
// must be sorted and unique; we do a binary search in find_pc_desc()
int prev_offset = pcs[0].pc_offset();
assert(prev_offset == PcDesc::lower_offset_limit,
"must start with a sentinel");
for (int i = 1; i < count; i++) {
int this_offset = pcs[i].pc_offset();
assert(this_offset > prev_offset, "offsets must be sorted");
prev_offset = this_offset;
}
assert(prev_offset == PcDesc::upper_offset_limit,
"must end with a sentinel");
#endif //ASSERT
// Search for MethodHandle invokes and tag the nmethod.
for (int i = 0; i < count; i++) {
if (pcs[i].is_method_handle_invoke()) {
set_has_method_handle_invokes(true);
break;
}
}
assert(has_method_handle_invokes() == (_deopt_mh_handler_begin != NULL), "must have deopt mh handler");
int size = count * sizeof(PcDesc);
assert(scopes_pcs_size() >= size, "oob");
memcpy(scopes_pcs_begin(), pcs, size);
// Adjust the final sentinel downward.
PcDesc* last_pc = &scopes_pcs_begin()[count-1];
assert(last_pc->pc_offset() == PcDesc::upper_offset_limit, "sanity");
last_pc->set_pc_offset(content_size() + 1);
for (; last_pc + 1 < scopes_pcs_end(); last_pc += 1) {
// Fill any rounding gaps with copies of the last record.
last_pc[1] = last_pc[0];
}
// The following assert could fail if sizeof(PcDesc) is not
// an integral multiple of oopSize (the rounding term).
// If it fails, change the logic to always allocate a multiple
// of sizeof(PcDesc), and fill unused words with copies of *last_pc.
assert(last_pc + 1 == scopes_pcs_end(), "must match exactly");
}
void nmethod::copy_scopes_data(u_char* buffer, int size) {
assert(scopes_data_size() >= size, "oob");
memcpy(scopes_data_begin(), buffer, size);
}
#ifdef ASSERT
static PcDesc* linear_search(const PcDescSearch& search, int pc_offset, bool approximate) {
PcDesc* lower = search.scopes_pcs_begin();
PcDesc* upper = search.scopes_pcs_end();
lower += 1; // exclude initial sentinel
PcDesc* res = NULL;
for (PcDesc* p = lower; p < upper; p++) {
NOT_PRODUCT(--pc_nmethod_stats.pc_desc_tests); // don't count this call to match_desc
if (match_desc(p, pc_offset, approximate)) {
if (res == NULL)
res = p;
else
res = (PcDesc*) badAddress;
}
}
return res;
}
#endif
// Finds a PcDesc with real-pc equal to "pc"
PcDesc* PcDescContainer::find_pc_desc_internal(address pc, bool approximate, const PcDescSearch& search) {
address base_address = search.code_begin();
if ((pc < base_address) ||
(pc - base_address) >= (ptrdiff_t) PcDesc::upper_offset_limit) {
return NULL; // PC is wildly out of range
}
int pc_offset = (int) (pc - base_address);
// Check the PcDesc cache if it contains the desired PcDesc
// (This as an almost 100% hit rate.)
PcDesc* res = _pc_desc_cache.find_pc_desc(pc_offset, approximate);
if (res != NULL) {
assert(res == linear_search(search, pc_offset, approximate), "cache ok");
return res;
}
// Fallback algorithm: quasi-linear search for the PcDesc
// Find the last pc_offset less than the given offset.
// The successor must be the required match, if there is a match at all.
// (Use a fixed radix to avoid expensive affine pointer arithmetic.)
PcDesc* lower = search.scopes_pcs_begin();
PcDesc* upper = search.scopes_pcs_end();
upper -= 1; // exclude final sentinel
if (lower >= upper) return NULL; // native method; no PcDescs at all
#define assert_LU_OK \
/* invariant on lower..upper during the following search: */ \
assert(lower->pc_offset() < pc_offset, "sanity"); \
assert(upper->pc_offset() >= pc_offset, "sanity")
assert_LU_OK;
// Use the last successful return as a split point.
PcDesc* mid = _pc_desc_cache.last_pc_desc();
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_searches);
if (mid->pc_offset() < pc_offset) {
lower = mid;
} else {
upper = mid;
}
// Take giant steps at first (4096, then 256, then 16, then 1)
const int LOG2_RADIX = 4 /*smaller steps in debug mode:*/ debug_only(-1);
const int RADIX = (1 << LOG2_RADIX);
for (int step = (1 << (LOG2_RADIX*3)); step > 1; step >>= LOG2_RADIX) {
while ((mid = lower + step) < upper) {
assert_LU_OK;
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_searches);
if (mid->pc_offset() < pc_offset) {
lower = mid;
} else {
upper = mid;
break;
}
}
assert_LU_OK;
}
// Sneak up on the value with a linear search of length ~16.
while (true) {
assert_LU_OK;
mid = lower + 1;
NOT_PRODUCT(++pc_nmethod_stats.pc_desc_searches);
if (mid->pc_offset() < pc_offset) {
lower = mid;
} else {
upper = mid;
break;
}
}
#undef assert_LU_OK
if (match_desc(upper, pc_offset, approximate)) {
assert(upper == linear_search(search, pc_offset, approximate), "search ok");
_pc_desc_cache.add_pc_desc(upper);
return upper;
} else {
assert(NULL == linear_search(search, pc_offset, approximate), "search ok");
return NULL;
}
}
void nmethod::check_all_dependencies(DepChange& changes) {
// Checked dependencies are allocated into this ResourceMark
ResourceMark rm;
// Turn off dependency tracing while actually testing dependencies.
NOT_PRODUCT( FlagSetting fs(TraceDependencies, false) );
typedef ResourceHashtable<DependencySignature, int, &DependencySignature::hash,
&DependencySignature::equals, 11027> DepTable;
DepTable* table = new DepTable();
// Iterate over live nmethods and check dependencies of all nmethods that are not
// marked for deoptimization. A particular dependency is only checked once.
NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
nmethod* nm = iter.method();
// Only notify for live nmethods
if (!nm->is_marked_for_deoptimization()) {
for (Dependencies::DepStream deps(nm); deps.next(); ) {
// Construct abstraction of a dependency.
DependencySignature* current_sig = new DependencySignature(deps);
// Determine if dependency is already checked. table->put(...) returns
// 'true' if the dependency is added (i.e., was not in the hashtable).
if (table->put(*current_sig, 1)) {
if (deps.check_dependency() != NULL) {
// Dependency checking failed. Print out information about the failed
// dependency and finally fail with an assert. We can fail here, since
// dependency checking is never done in a product build.
tty->print_cr("Failed dependency:");
changes.print();
nm->print();
nm->print_dependencies();
assert(false, "Should have been marked for deoptimization");
}
}
}
}
}
}
bool nmethod::check_dependency_on(DepChange& changes) {
// What has happened:
// 1) a new class dependee has been added
// 2) dependee and all its super classes have been marked
bool found_check = false; // set true if we are upset
for (Dependencies::DepStream deps(this); deps.next(); ) {
// Evaluate only relevant dependencies.
if (deps.spot_check_dependency_at(changes) != NULL) {
found_check = true;
NOT_DEBUG(break);
}
}
return found_check;
}
bool nmethod::is_evol_dependent_on(Klass* dependee) {
InstanceKlass *dependee_ik = InstanceKlass::cast(dependee);
Array<Method*>* dependee_methods = dependee_ik->methods();
for (Dependencies::DepStream deps(this); deps.next(); ) {
if (deps.type() == Dependencies::evol_method) {
Method* method = deps.method_argument(0);
for (int j = 0; j < dependee_methods->length(); j++) {
if (dependee_methods->at(j) == method) {
if (log_is_enabled(Debug, redefine, class, nmethod)) {
ResourceMark rm;
log_debug(redefine, class, nmethod)
("Found evol dependency of nmethod %s.%s(%s) compile_id=%d on method %s.%s(%s)",
_method->method_holder()->external_name(),
_method->name()->as_C_string(),
_method->signature()->as_C_string(),
compile_id(),
method->method_holder()->external_name(),
method->name()->as_C_string(),
method->signature()->as_C_string());
}
if (TraceDependencies || LogCompilation)
deps.log_dependency(dependee);
return true;
}
}
}
}
return false;
}
// Called from mark_for_deoptimization, when dependee is invalidated.
bool nmethod::is_dependent_on_method(Method* dependee) {
for (Dependencies::DepStream deps(this); deps.next(); ) {
if (deps.type() != Dependencies::evol_method)
continue;
Method* method = deps.method_argument(0);
if (method == dependee) return true;
}
return false;
}
bool nmethod::is_patchable_at(address instr_addr) {
assert(insts_contains(instr_addr), "wrong nmethod used");
if (is_zombie()) {
// a zombie may never be patched
return false;
}
return true;
}
address nmethod::continuation_for_implicit_exception(address pc) {
// Exception happened outside inline-cache check code => we are inside
// an active nmethod => use cpc to determine a return address
int exception_offset = pc - code_begin();
int cont_offset = ImplicitExceptionTable(this).at( exception_offset );
#ifdef ASSERT
if (cont_offset == 0) {
Thread* thread = Thread::current();
ResetNoHandleMark rnm; // Might be called from LEAF/QUICK ENTRY
HandleMark hm(thread);
ResourceMark rm(thread);
CodeBlob* cb = CodeCache::find_blob(pc);
assert(cb != NULL && cb == this, "");
ttyLocker ttyl;
tty->print_cr("implicit exception happened at " INTPTR_FORMAT, p2i(pc));
print();
method()->print_codes();
print_code();
print_pcs();
}
#endif
if (cont_offset == 0) {
// Let the normal error handling report the exception
return NULL;
}
return code_begin() + cont_offset;
}
void nmethod_init() {
// make sure you didn't forget to adjust the filler fields
assert(sizeof(nmethod) % oopSize == 0, "nmethod size must be multiple of a word");
}
//-------------------------------------------------------------------------------------------
// QQQ might we make this work from a frame??
nmethodLocker::nmethodLocker(address pc) {
CodeBlob* cb = CodeCache::find_blob(pc);
guarantee(cb != NULL && cb->is_compiled(), "bad pc for a nmethod found");
_nm = cb->as_compiled_method();
lock_nmethod(_nm);
}
// Only JvmtiDeferredEvent::compiled_method_unload_event()
// should pass zombie_ok == true.
void nmethodLocker::lock_nmethod(CompiledMethod* cm, bool zombie_ok) {
if (cm == NULL) return;
if (cm->is_aot()) return; // FIXME: Revisit once _lock_count is added to aot_method
nmethod* nm = cm->as_nmethod();
Atomic::inc(&nm->_lock_count);
assert(zombie_ok || !nm->is_zombie(), "cannot lock a zombie method");
}
void nmethodLocker::unlock_nmethod(CompiledMethod* cm) {
if (cm == NULL) return;
if (cm->is_aot()) return; // FIXME: Revisit once _lock_count is added to aot_method
nmethod* nm = cm->as_nmethod();
Atomic::dec(&nm->_lock_count);
assert(nm->_lock_count >= 0, "unmatched nmethod lock/unlock");
}
// -----------------------------------------------------------------------------
// Verification
class VerifyOopsClosure: public OopClosure {
nmethod* _nm;
bool _ok;
public:
VerifyOopsClosure(nmethod* nm) : _nm(nm), _ok(true) { }
bool ok() { return _ok; }
virtual void do_oop(oop* p) {
if (oopDesc::is_oop_or_null(*p)) return;
if (_ok) {
_nm->print_nmethod(true);
_ok = false;
}
tty->print_cr("*** non-oop " PTR_FORMAT " found at " PTR_FORMAT " (offset %d)",
p2i(*p), p2i(p), (int)((intptr_t)p - (intptr_t)_nm));
}
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
void nmethod::verify() {
// Hmm. OSR methods can be deopted but not marked as zombie or not_entrant
// seems odd.
if (is_zombie() || is_not_entrant() || is_unloaded())
return;
// Make sure all the entry points are correctly aligned for patching.
NativeJump::check_verified_entry_alignment(entry_point(), verified_entry_point());
// assert(oopDesc::is_oop(method()), "must be valid");
ResourceMark rm;
if (!CodeCache::contains(this)) {
fatal("nmethod at " INTPTR_FORMAT " not in zone", p2i(this));
}
if(is_native_method() )
return;
nmethod* nm = CodeCache::find_nmethod(verified_entry_point());
if (nm != this) {
fatal("findNMethod did not find this nmethod (" INTPTR_FORMAT ")", p2i(this));
}
for (PcDesc* p = scopes_pcs_begin(); p < scopes_pcs_end(); p++) {
if (! p->verify(this)) {
tty->print_cr("\t\tin nmethod at " INTPTR_FORMAT " (pcs)", p2i(this));
}
}
VerifyOopsClosure voc(this);
oops_do(&voc);
assert(voc.ok(), "embedded oops must be OK");
Universe::heap()->verify_nmethod(this);
verify_scopes();
}
void nmethod::verify_interrupt_point(address call_site) {
// Verify IC only when nmethod installation is finished.
if (!is_not_installed()) {
if (CompiledICLocker::is_safe(this)) {
CompiledIC_at(this, call_site);
CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
} else {
CompiledICLocker ml_verify(this);
CompiledIC_at(this, call_site);
}
}
PcDesc* pd = pc_desc_at(nativeCall_at(call_site)->return_address());
assert(pd != NULL, "PcDesc must exist");
for (ScopeDesc* sd = new ScopeDesc(this, pd->scope_decode_offset(),
pd->obj_decode_offset(), pd->should_reexecute(), pd->rethrow_exception(),
pd->return_oop());
!sd->is_top(); sd = sd->sender()) {
sd->verify();
}
}
void nmethod::verify_scopes() {
if( !method() ) return; // Runtime stubs have no scope
if (method()->is_native()) return; // Ignore stub methods.
// iterate through all interrupt point
// and verify the debug information is valid.
RelocIterator iter((nmethod*)this);
while (iter.next()) {
address stub = NULL;
switch (iter.type()) {
case relocInfo::virtual_call_type:
verify_interrupt_point(iter.addr());
break;
case relocInfo::opt_virtual_call_type:
stub = iter.opt_virtual_call_reloc()->static_stub(false);
verify_interrupt_point(iter.addr());
break;
case relocInfo::static_call_type:
stub = iter.static_call_reloc()->static_stub(false);
//verify_interrupt_point(iter.addr());
break;
case relocInfo::runtime_call_type:
case relocInfo::runtime_call_w_cp_type: {
address destination = iter.reloc()->value();
// Right now there is no way to find out which entries support
// an interrupt point. It would be nice if we had this
// information in a table.
break;
}
default:
break;
}
assert(stub == NULL || stub_contains(stub), "static call stub outside stub section");
}
}
// -----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
class DebugScavengeRoot: public OopClosure {
nmethod* _nm;
bool _ok;
public:
DebugScavengeRoot(nmethod* nm) : _nm(nm), _ok(true) { }
bool ok() { return _ok; }
virtual void do_oop(oop* p) {
if ((*p) == NULL || !Universe::heap()->is_scavengable(*p)) return;
if (_ok) {
_nm->print_nmethod(true);
_ok = false;
}
tty->print_cr("*** scavengable oop " PTR_FORMAT " found at " PTR_FORMAT " (offset %d)",
p2i(*p), p2i(p), (int)((intptr_t)p - (intptr_t)_nm));
(*p)->print();
}
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
void nmethod::verify_scavenge_root_oops() {
if (!on_scavenge_root_list()) {
// Actually look inside, to verify the claim that it's clean.
DebugScavengeRoot debug_scavenge_root(this);
oops_do(&debug_scavenge_root);
if (!debug_scavenge_root.ok())
fatal("found an unadvertised bad scavengable oop in the code cache");
}
assert(scavenge_root_not_marked(), "");
}
#endif // PRODUCT
// Printing operations
void nmethod::print() const {
ResourceMark rm;
ttyLocker ttyl; // keep the following output all in one block
tty->print("Compiled method ");
if (is_compiled_by_c1()) {
tty->print("(c1) ");
} else if (is_compiled_by_c2()) {
tty->print("(c2) ");
} else if (is_compiled_by_jvmci()) {
tty->print("(JVMCI) ");
} else {
tty->print("(nm) ");
}
print_on(tty, NULL);
if (WizardMode) {
tty->print("((nmethod*) " INTPTR_FORMAT ") ", p2i(this));
tty->print(" for method " INTPTR_FORMAT , p2i(method()));
tty->print(" { ");
tty->print_cr("%s ", state());
if (on_scavenge_root_list()) tty->print("scavenge_root ");
tty->print_cr("}:");
}
if (size () > 0) tty->print_cr(" total in heap [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(this),
p2i(this) + size(),
size());
if (relocation_size () > 0) tty->print_cr(" relocation [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(relocation_begin()),
p2i(relocation_end()),
relocation_size());
if (consts_size () > 0) tty->print_cr(" constants [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(consts_begin()),
p2i(consts_end()),
consts_size());
if (insts_size () > 0) tty->print_cr(" main code [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(insts_begin()),
p2i(insts_end()),
insts_size());
if (stub_size () > 0) tty->print_cr(" stub code [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(stub_begin()),
p2i(stub_end()),
stub_size());
if (oops_size () > 0) tty->print_cr(" oops [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(oops_begin()),
p2i(oops_end()),
oops_size());
if (metadata_size () > 0) tty->print_cr(" metadata [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(metadata_begin()),
p2i(metadata_end()),
metadata_size());
if (scopes_data_size () > 0) tty->print_cr(" scopes data [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(scopes_data_begin()),
p2i(scopes_data_end()),
scopes_data_size());
if (scopes_pcs_size () > 0) tty->print_cr(" scopes pcs [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(scopes_pcs_begin()),
p2i(scopes_pcs_end()),
scopes_pcs_size());
if (dependencies_size () > 0) tty->print_cr(" dependencies [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(dependencies_begin()),
p2i(dependencies_end()),
dependencies_size());
if (handler_table_size() > 0) tty->print_cr(" handler table [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(handler_table_begin()),
p2i(handler_table_end()),
handler_table_size());
if (nul_chk_table_size() > 0) tty->print_cr(" nul chk table [" INTPTR_FORMAT "," INTPTR_FORMAT "] = %d",
p2i(nul_chk_table_begin()),
p2i(nul_chk_table_end()),
nul_chk_table_size());
}
#ifndef PRODUCT
void nmethod::print_scopes() {
// Find the first pc desc for all scopes in the code and print it.
ResourceMark rm;
for (PcDesc* p = scopes_pcs_begin(); p < scopes_pcs_end(); p++) {
if (p->scope_decode_offset() == DebugInformationRecorder::serialized_null)
continue;
ScopeDesc* sd = scope_desc_at(p->real_pc(this));
while (sd != NULL) {
sd->print_on(tty, p);
sd = sd->sender();
}
}
}
void nmethod::print_dependencies() {
ResourceMark rm;
ttyLocker ttyl; // keep the following output all in one block
tty->print_cr("Dependencies:");
for (Dependencies::DepStream deps(this); deps.next(); ) {
deps.print_dependency();
Klass* ctxk = deps.context_type();
if (ctxk != NULL) {
if (ctxk->is_instance_klass() && InstanceKlass::cast(ctxk)->is_dependent_nmethod(this)) {
tty->print_cr(" [nmethod<=klass]%s", ctxk->external_name());
}
}
deps.log_dependency(); // put it into the xml log also
}
}
void nmethod::print_relocations() {
ResourceMark m; // in case methods get printed via the debugger
tty->print_cr("relocations:");
RelocIterator iter(this);
iter.print();
}
void nmethod::print_pcs() {
ResourceMark m; // in case methods get printed via debugger
tty->print_cr("pc-bytecode offsets:");
for (PcDesc* p = scopes_pcs_begin(); p < scopes_pcs_end(); p++) {
p->print(this);
}
}
void nmethod::print_recorded_oops() {
tty->print_cr("Recorded oops:");
for (int i = 0; i < oops_count(); i++) {
oop o = oop_at(i);
tty->print("#%3d: " INTPTR_FORMAT " ", i, p2i(o));
if (o == Universe::non_oop_word()) {
tty->print("non-oop word");
} else {
if (o != NULL) {
o->print_value();
} else {
tty->print_cr("NULL");
}
}
tty->cr();
}
}
void nmethod::print_recorded_metadata() {
tty->print_cr("Recorded metadata:");
for (int i = 0; i < metadata_count(); i++) {
Metadata* m = metadata_at(i);
tty->print("#%3d: " INTPTR_FORMAT " ", i, p2i(m));
if (m == (Metadata*)Universe::non_oop_word()) {
tty->print("non-metadata word");
} else {
Metadata::print_value_on_maybe_null(tty, m);
}
tty->cr();
}
}
#endif // PRODUCT
const char* nmethod::reloc_string_for(u_char* begin, u_char* end) {
RelocIterator iter(this, begin, end);
bool have_one = false;
while (iter.next()) {
have_one = true;
switch (iter.type()) {
case relocInfo::none: return "no_reloc";
case relocInfo::oop_type: {
stringStream st;
oop_Relocation* r = iter.oop_reloc();
oop obj = r->oop_value();
st.print("oop(");
if (obj == NULL) st.print("NULL");
else obj->print_value_on(&st);
st.print(")");
return st.as_string();
}
case relocInfo::metadata_type: {
stringStream st;
metadata_Relocation* r = iter.metadata_reloc();
Metadata* obj = r->metadata_value();
st.print("metadata(");
if (obj == NULL) st.print("NULL");
else obj->print_value_on(&st);
st.print(")");
return st.as_string();
}
case relocInfo::runtime_call_type:
case relocInfo::runtime_call_w_cp_type: {
stringStream st;
st.print("runtime_call");
CallRelocation* r = (CallRelocation*)iter.reloc();
address dest = r->destination();
CodeBlob* cb = CodeCache::find_blob(dest);
if (cb != NULL) {
st.print(" %s", cb->name());
} else {
ResourceMark rm;
const int buflen = 1024;
char* buf = NEW_RESOURCE_ARRAY(char, buflen);
int offset;
if (os::dll_address_to_function_name(dest, buf, buflen, &offset)) {
st.print(" %s", buf);
if (offset != 0) {
st.print("+%d", offset);
}
}
}
return st.as_string();
}
case relocInfo::virtual_call_type: {
stringStream st;
st.print_raw("virtual_call");
virtual_call_Relocation* r = iter.virtual_call_reloc();
Method* m = r->method_value();
if (m != NULL) {
assert(m->is_method(), "");
m->print_short_name(&st);
}
return st.as_string();
}
case relocInfo::opt_virtual_call_type: {
stringStream st;
st.print_raw("optimized virtual_call");
opt_virtual_call_Relocation* r = iter.opt_virtual_call_reloc();
Method* m = r->method_value();
if (m != NULL) {
assert(m->is_method(), "");
m->print_short_name(&st);
}
return st.as_string();
}
case relocInfo::static_call_type: {
stringStream st;
st.print_raw("static_call");
static_call_Relocation* r = iter.static_call_reloc();
Method* m = r->method_value();
if (m != NULL) {
assert(m->is_method(), "");
m->print_short_name(&st);
}
return st.as_string();
}
case relocInfo::static_stub_type: return "static_stub";
case relocInfo::external_word_type: return "external_word";
case relocInfo::internal_word_type: return "internal_word";
case relocInfo::section_word_type: return "section_word";
case relocInfo::poll_type: return "poll";
case relocInfo::poll_return_type: return "poll_return";
case relocInfo::type_mask: return "type_bit_mask";
default:
break;
}
}
return have_one ? "other" : NULL;
}
// Return a the last scope in (begin..end]
ScopeDesc* nmethod::scope_desc_in(address begin, address end) {
PcDesc* p = pc_desc_near(begin+1);
if (p != NULL && p->real_pc(this) <= end) {
return new ScopeDesc(this, p->scope_decode_offset(),
p->obj_decode_offset(), p->should_reexecute(), p->rethrow_exception(),
p->return_oop());
}
return NULL;
}
void nmethod::print_nmethod_labels(outputStream* stream, address block_begin) const {
if (block_begin == entry_point()) stream->print_cr("[Entry Point]");
if (block_begin == verified_entry_point()) stream->print_cr("[Verified Entry Point]");
if (JVMCI_ONLY(_exception_offset >= 0 &&) block_begin == exception_begin()) stream->print_cr("[Exception Handler]");
if (block_begin == stub_begin()) stream->print_cr("[Stub Code]");
if (JVMCI_ONLY(_deopt_handler_begin != NULL &&) block_begin == deopt_handler_begin()) stream->print_cr("[Deopt Handler Code]");
if (has_method_handle_invokes())
if (block_begin == deopt_mh_handler_begin()) stream->print_cr("[Deopt MH Handler Code]");
if (block_begin == consts_begin()) stream->print_cr("[Constants]");
if (block_begin == entry_point()) {
methodHandle m = method();
if (m.not_null()) {
stream->print(" # ");
m->print_value_on(stream);
stream->cr();
}
if (m.not_null() && !is_osr_method()) {
ResourceMark rm;
int sizeargs = m->size_of_parameters();
BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, sizeargs);
VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sizeargs);
{
int sig_index = 0;
if (!m->is_static())
sig_bt[sig_index++] = T_OBJECT; // 'this'
for (SignatureStream ss(m->signature()); !ss.at_return_type(); ss.next()) {
BasicType t = ss.type();
sig_bt[sig_index++] = t;
if (type2size[t] == 2) {
sig_bt[sig_index++] = T_VOID;
} else {
assert(type2size[t] == 1, "size is 1 or 2");
}
}
assert(sig_index == sizeargs, "");
}
const char* spname = "sp"; // make arch-specific?
intptr_t out_preserve = SharedRuntime::java_calling_convention(sig_bt, regs, sizeargs, false);
int stack_slot_offset = this->frame_size() * wordSize;
int tab1 = 14, tab2 = 24;
int sig_index = 0;
int arg_index = (m->is_static() ? 0 : -1);
bool did_old_sp = false;
for (SignatureStream ss(m->signature()); !ss.at_return_type(); ) {
bool at_this = (arg_index == -1);
bool at_old_sp = false;
BasicType t = (at_this ? T_OBJECT : ss.type());
assert(t == sig_bt[sig_index], "sigs in sync");
if (at_this)
stream->print(" # this: ");
else
stream->print(" # parm%d: ", arg_index);
stream->move_to(tab1);
VMReg fst = regs[sig_index].first();
VMReg snd = regs[sig_index].second();
if (fst->is_reg()) {
stream->print("%s", fst->name());
if (snd->is_valid()) {
stream->print(":%s", snd->name());
}
} else if (fst->is_stack()) {
int offset = fst->reg2stack() * VMRegImpl::stack_slot_size + stack_slot_offset;
if (offset == stack_slot_offset) at_old_sp = true;
stream->print("[%s+0x%x]", spname, offset);
} else {
stream->print("reg%d:%d??", (int)(intptr_t)fst, (int)(intptr_t)snd);
}
stream->print(" ");
stream->move_to(tab2);
stream->print("= ");
if (at_this) {
m->method_holder()->print_value_on(stream);
} else {
bool did_name = false;
if (!at_this && ss.is_object()) {
Symbol* name = ss.as_symbol_or_null();
if (name != NULL) {
name->print_value_on(stream);
did_name = true;
}
}
if (!did_name)
stream->print("%s", type2name(t));
}
if (at_old_sp) {
stream->print(" (%s of caller)", spname);
did_old_sp = true;
}
stream->cr();
sig_index += type2size[t];
arg_index += 1;
if (!at_this) ss.next();
}
if (!did_old_sp) {
stream->print(" # ");
stream->move_to(tab1);
stream->print("[%s+0x%x]", spname, stack_slot_offset);
stream->print(" (%s of caller)", spname);
stream->cr();
}
}
}
}
void nmethod::print_code_comment_on(outputStream* st, int column, u_char* begin, u_char* end) {
// First, find an oopmap in (begin, end].
// We use the odd half-closed interval so that oop maps and scope descs
// which are tied to the byte after a call are printed with the call itself.
address base = code_begin();
ImmutableOopMapSet* oms = oop_maps();
if (oms != NULL) {
for (int i = 0, imax = oms->count(); i < imax; i++) {
const ImmutableOopMapPair* pair = oms->pair_at(i);
const ImmutableOopMap* om = pair->get_from(oms);
address pc = base + pair->pc_offset();
if (pc > begin) {
if (pc <= end) {
st->move_to(column);
st->print("; ");
om->print_on(st);
}
break;
}
}
}
// Print any debug info present at this pc.
ScopeDesc* sd = scope_desc_in(begin, end);
if (sd != NULL) {
st->move_to(column);
if (sd->bci() == SynchronizationEntryBCI) {
st->print(";*synchronization entry");
} else if (sd->bci() == AfterBci) {
st->print(";* method exit (unlocked if synchronized)");
} else if (sd->bci() == UnwindBci) {
st->print(";* unwind (locked if synchronized)");
} else if (sd->bci() == AfterExceptionBci) {
st->print(";* unwind (unlocked if synchronized)");
} else if (sd->bci() == UnknownBci) {
st->print(";* unknown");
} else if (sd->bci() == InvalidFrameStateBci) {
st->print(";* invalid frame state");
} else {
if (sd->method() == NULL) {
st->print("method is NULL");
} else if (sd->method()->is_native()) {
st->print("method is native");
} else {
Bytecodes::Code bc = sd->method()->java_code_at(sd->bci());
st->print(";*%s", Bytecodes::name(bc));
switch (bc) {
case Bytecodes::_invokevirtual:
case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic:
case Bytecodes::_invokeinterface:
{
Bytecode_invoke invoke(sd->method(), sd->bci());
st->print(" ");
if (invoke.name() != NULL)
invoke.name()->print_symbol_on(st);
else
st->print("<UNKNOWN>");
break;
}
case Bytecodes::_getfield:
case Bytecodes::_putfield:
case Bytecodes::_getstatic:
case Bytecodes::_putstatic:
{
Bytecode_field field(sd->method(), sd->bci());
st->print(" ");
if (field.name() != NULL)
field.name()->print_symbol_on(st);
else
st->print("<UNKNOWN>");
}
default:
break;
}
}
st->print(" {reexecute=%d rethrow=%d return_oop=%d}", sd->should_reexecute(), sd->rethrow_exception(), sd->return_oop());
}
// Print all scopes
for (;sd != NULL; sd = sd->sender()) {
st->move_to(column);
st->print("; -");
if (sd->method() == NULL) {
st->print("method is NULL");
} else {
sd->method()->print_short_name(st);
}
int lineno = sd->method()->line_number_from_bci(sd->bci());
if (lineno != -1) {
st->print("@%d (line %d)", sd->bci(), lineno);
} else {
st->print("@%d", sd->bci());
}
st->cr();
}
}
// Print relocation information
const char* str = reloc_string_for(begin, end);
if (str != NULL) {
if (sd != NULL) st->cr();
st->move_to(column);
st->print("; {%s}", str);
}
int cont_offset = ImplicitExceptionTable(this).at(begin - code_begin());
if (cont_offset != 0) {
st->move_to(column);
st->print("; implicit exception: dispatches to " INTPTR_FORMAT, p2i(code_begin() + cont_offset));
}
}
class DirectNativeCallWrapper: public NativeCallWrapper {
private:
NativeCall* _call;
public:
DirectNativeCallWrapper(NativeCall* call) : _call(call) {}
virtual address destination() const { return _call->destination(); }
virtual address instruction_address() const { return _call->instruction_address(); }
virtual address next_instruction_address() const { return _call->next_instruction_address(); }
virtual address return_address() const { return _call->return_address(); }
virtual address get_resolve_call_stub(bool is_optimized) const {
if (is_optimized) {
return SharedRuntime::get_resolve_opt_virtual_call_stub();
}
return SharedRuntime::get_resolve_virtual_call_stub();
}
virtual void set_destination_mt_safe(address dest) {
#if INCLUDE_AOT
if (UseAOT) {
CodeBlob* callee = CodeCache::find_blob(dest);
CompiledMethod* cm = callee->as_compiled_method_or_null();
if (cm != NULL && cm->is_far_code()) {
// Temporary fix, see JDK-8143106
CompiledDirectStaticCall* csc = CompiledDirectStaticCall::at(instruction_address());
csc->set_to_far(methodHandle(cm->method()), dest);
return;
}
}
#endif
_call->set_destination_mt_safe(dest);
}
virtual void set_to_interpreted(const methodHandle& method, CompiledICInfo& info) {
CompiledDirectStaticCall* csc = CompiledDirectStaticCall::at(instruction_address());
#if INCLUDE_AOT
if (info.to_aot()) {
csc->set_to_far(method, info.entry());
} else
#endif
{
csc->set_to_interpreted(method, info.entry());
}
}
virtual void verify() const {
// make sure code pattern is actually a call imm32 instruction
_call->verify();
_call->verify_alignment();
}
virtual void verify_resolve_call(address dest) const {
CodeBlob* db = CodeCache::find_blob_unsafe(dest);
assert(db != NULL && !db->is_adapter_blob(), "must use stub!");
}
virtual bool is_call_to_interpreted(address dest) const {
CodeBlob* cb = CodeCache::find_blob(_call->instruction_address());
return cb->contains(dest);
}
virtual bool is_safe_for_patching() const { return false; }
virtual NativeInstruction* get_load_instruction(virtual_call_Relocation* r) const {
return nativeMovConstReg_at(r->cached_value());
}
virtual void *get_data(NativeInstruction* instruction) const {
return (void*)((NativeMovConstReg*) instruction)->data();
}
virtual void set_data(NativeInstruction* instruction, intptr_t data) {
((NativeMovConstReg*) instruction)->set_data(data);
}
};
NativeCallWrapper* nmethod::call_wrapper_at(address call) const {
return new DirectNativeCallWrapper((NativeCall*) call);
}
NativeCallWrapper* nmethod::call_wrapper_before(address return_pc) const {
return new DirectNativeCallWrapper(nativeCall_before(return_pc));
}
address nmethod::call_instruction_address(address pc) const {
if (NativeCall::is_call_before(pc)) {
NativeCall *ncall = nativeCall_before(pc);
return ncall->instruction_address();
}
return NULL;
}
CompiledStaticCall* nmethod::compiledStaticCall_at(Relocation* call_site) const {
return CompiledDirectStaticCall::at(call_site);
}
CompiledStaticCall* nmethod::compiledStaticCall_at(address call_site) const {
return CompiledDirectStaticCall::at(call_site);
}
CompiledStaticCall* nmethod::compiledStaticCall_before(address return_addr) const {
return CompiledDirectStaticCall::before(return_addr);
}
#ifndef PRODUCT
void nmethod::print_value_on(outputStream* st) const {
st->print("nmethod");
print_on(st, NULL);
}
void nmethod::print_calls(outputStream* st) {
RelocIterator iter(this);
while (iter.next()) {
switch (iter.type()) {
case relocInfo::virtual_call_type:
case relocInfo::opt_virtual_call_type: {
CompiledICLocker ml_verify(this);
CompiledIC_at(&iter)->print();
break;
}
case relocInfo::static_call_type:
st->print_cr("Static call at " INTPTR_FORMAT, p2i(iter.reloc()->addr()));
CompiledDirectStaticCall::at(iter.reloc())->print();
break;
default:
break;
}
}
}
void nmethod::print_handler_table() {
ExceptionHandlerTable(this).print();
}
void nmethod::print_nul_chk_table() {
ImplicitExceptionTable(this).print(code_begin());
}
void nmethod::print_statistics() {
ttyLocker ttyl;
if (xtty != NULL) xtty->head("statistics type='nmethod'");
native_nmethod_stats.print_native_nmethod_stats();
#ifdef COMPILER1
c1_java_nmethod_stats.print_nmethod_stats("C1");
#endif
#ifdef COMPILER2
c2_java_nmethod_stats.print_nmethod_stats("C2");
#endif
#if INCLUDE_JVMCI
jvmci_java_nmethod_stats.print_nmethod_stats("JVMCI");
#endif
unknown_java_nmethod_stats.print_nmethod_stats("Unknown");
DebugInformationRecorder::print_statistics();
#ifndef PRODUCT
pc_nmethod_stats.print_pc_stats();
#endif
Dependencies::print_statistics();
if (xtty != NULL) xtty->tail("statistics");
}
#endif // !PRODUCT
#if INCLUDE_JVMCI
void nmethod::clear_jvmci_installed_code() {
assert_locked_or_safepoint(Patching_lock);
if (_jvmci_installed_code != NULL) {
JNIHandles::destroy_weak_global(_jvmci_installed_code);
_jvmci_installed_code = NULL;
}
}
void nmethod::clear_speculation_log() {
assert_locked_or_safepoint(Patching_lock);
if (_speculation_log != NULL) {
JNIHandles::destroy_weak_global(_speculation_log);
_speculation_log = NULL;
}
}
void nmethod::maybe_invalidate_installed_code() {
if (!is_compiled_by_jvmci()) {
return;
}
assert(Patching_lock->is_locked() ||
SafepointSynchronize::is_at_safepoint(), "should be performed under a lock for consistency");
oop installed_code = JNIHandles::resolve(_jvmci_installed_code);
if (installed_code != NULL) {
// Update the values in the InstalledCode instance if it still refers to this nmethod
nmethod* nm = (nmethod*)InstalledCode::address(installed_code);
if (nm == this) {
if (!is_alive() || is_unloading()) {
// Break the link between nmethod and InstalledCode such that the nmethod
// can subsequently be flushed safely. The link must be maintained while
// the method could have live activations since invalidateInstalledCode
// might want to invalidate all existing activations.
InstalledCode::set_address(installed_code, 0);
InstalledCode::set_entryPoint(installed_code, 0);
} else if (is_not_entrant()) {
// Remove the entry point so any invocation will fail but keep
// the address link around that so that existing activations can
// be invalidated.
InstalledCode::set_entryPoint(installed_code, 0);
}
}
}
if (!is_alive() || is_unloading()) {
// Clear these out after the nmethod has been unregistered and any
// updates to the InstalledCode instance have been performed.
clear_jvmci_installed_code();
clear_speculation_log();
}
}
void nmethod::invalidate_installed_code(Handle installedCode, TRAPS) {
if (installedCode() == NULL) {
THROW(vmSymbols::java_lang_NullPointerException());
}
jlong nativeMethod = InstalledCode::address(installedCode);
nmethod* nm = (nmethod*)nativeMethod;
if (nm == NULL) {
// Nothing to do
return;
}
nmethodLocker nml(nm);
#ifdef ASSERT
{
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
// This relationship can only be checked safely under a lock
assert(!nm->is_alive() || nm->is_unloading() || nm->jvmci_installed_code() == installedCode(), "sanity check");
}
#endif
if (nm->is_alive()) {
// Invalidating the InstalledCode means we want the nmethod
// to be deoptimized.
nm->mark_for_deoptimization();
VM_Deoptimize op;
VMThread::execute(&op);
}
// Multiple threads could reach this point so we now need to
// lock and re-check the link to the nmethod so that only one
// thread clears it.
MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
if (InstalledCode::address(installedCode) == nativeMethod) {
InstalledCode::set_address(installedCode, 0);
}
}
oop nmethod::jvmci_installed_code() {
return JNIHandles::resolve(_jvmci_installed_code);
}
oop nmethod::speculation_log() {
return JNIHandles::resolve(_speculation_log);
}
char* nmethod::jvmci_installed_code_name(char* buf, size_t buflen) const {
if (!this->is_compiled_by_jvmci()) {
return NULL;
}
oop installed_code = JNIHandles::resolve(_jvmci_installed_code);
if (installed_code != NULL) {
oop installed_code_name = NULL;
if (installed_code->is_a(InstalledCode::klass())) {
installed_code_name = InstalledCode::name(installed_code);
}
if (installed_code_name != NULL) {
return java_lang_String::as_utf8_string(installed_code_name, buf, (int)buflen);
}
}
return NULL;
}
#endif