/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/macroAssembler.inline.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "vm_version_arm.hpp"
int VM_Version::_stored_pc_adjustment = 4;
int VM_Version::_arm_arch = 5;
bool VM_Version::_is_initialized = false;
int VM_Version::_kuser_helper_version = 0;
extern "C" {
typedef int (*get_cpu_info_t)();
typedef bool (*check_vfp_t)(double *d);
typedef bool (*check_simd_t)();
typedef bool (*check_mp_ext_t)(int *addr);
}
#define __ _masm->
class VM_Version_StubGenerator: public StubCodeGenerator {
public:
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
address generate_get_cpu_info() {
StubCodeMark mark(this, "VM_Version", "get_cpu_info");
address start = __ pc();
__ mov(R0, PC);
__ push(PC);
__ pop(R1);
__ sub(R0, R1, R0);
// return the result in R0
__ bx(LR);
return start;
};
address generate_check_vfp() {
StubCodeMark mark(this, "VM_Version", "check_vfp");
address start = __ pc();
__ fstd(D0, Address(R0));
__ mov(R0, 1);
__ bx(LR);
return start;
};
address generate_check_vfp3_32() {
StubCodeMark mark(this, "VM_Version", "check_vfp3_32");
address start = __ pc();
__ fstd(D16, Address(R0));
__ mov(R0, 1);
__ bx(LR);
return start;
};
address generate_check_simd() {
StubCodeMark mark(this, "VM_Version", "check_simd");
address start = __ pc();
__ vcnt(Stemp, Stemp);
__ mov(R0, 1);
__ bx(LR);
return start;
};
address generate_check_mp_ext() {
StubCodeMark mark(this, "VM_Version", "check_mp_ext");
address start = __ pc();
// PLDW is available with Multiprocessing Extensions only
__ pldw(Address(R0));
// Return true if instruction caused no signals
__ mov(R0, 1);
// JVM_handle_linux_signal moves PC here if SIGILL happens
__ bx(LR);
return start;
};
};
#undef __
extern "C" address check_vfp3_32_fault_instr;
extern "C" address check_vfp_fault_instr;
extern "C" address check_simd_fault_instr;
extern "C" address check_mp_ext_fault_instr;
void VM_Version::early_initialize() {
// Make sure that _arm_arch is initialized so that any calls to OrderAccess will
// use proper dmb instruction
get_os_cpu_info();
_kuser_helper_version = *(int*)KUSER_HELPER_VERSION_ADDR;
// armv7 has the ldrexd instruction that can be used to implement cx8
// armv5 with linux >= 3.1 can use kernel helper routine
_supports_cx8 = (supports_ldrexd() || supports_kuser_cmpxchg64());
}
void VM_Version::initialize() {
ResourceMark rm;
// Making this stub must be FIRST use of assembler
const int stub_size = 128;
BufferBlob* stub_blob = BufferBlob::create("get_cpu_info", stub_size);
if (stub_blob == NULL) {
vm_exit_during_initialization("Unable to allocate get_cpu_info stub");
}
CodeBuffer c(stub_blob);
VM_Version_StubGenerator g(&c);
address get_cpu_info_pc = g.generate_get_cpu_info();
get_cpu_info_t get_cpu_info = CAST_TO_FN_PTR(get_cpu_info_t, get_cpu_info_pc);
int pc_adjustment = get_cpu_info();
VM_Version::_stored_pc_adjustment = pc_adjustment;
#ifndef __SOFTFP__
address check_vfp_pc = g.generate_check_vfp();
check_vfp_t check_vfp = CAST_TO_FN_PTR(check_vfp_t, check_vfp_pc);
check_vfp_fault_instr = (address)check_vfp;
double dummy;
if (check_vfp(&dummy)) {
_features |= vfp_m;
}
#ifdef COMPILER2
if (has_vfp()) {
address check_vfp3_32_pc = g.generate_check_vfp3_32();
check_vfp_t check_vfp3_32 = CAST_TO_FN_PTR(check_vfp_t, check_vfp3_32_pc);
check_vfp3_32_fault_instr = (address)check_vfp3_32;
double dummy;
if (check_vfp3_32(&dummy)) {
_features |= vfp3_32_m;
}
address check_simd_pc =g.generate_check_simd();
check_simd_t check_simd = CAST_TO_FN_PTR(check_simd_t, check_simd_pc);
check_simd_fault_instr = (address)check_simd;
if (check_simd()) {
_features |= simd_m;
}
}
#endif
#endif
address check_mp_ext_pc = g.generate_check_mp_ext();
check_mp_ext_t check_mp_ext = CAST_TO_FN_PTR(check_mp_ext_t, check_mp_ext_pc);
check_mp_ext_fault_instr = (address)check_mp_ext;
int dummy_local_variable;
if (check_mp_ext(&dummy_local_variable)) {
_features |= mp_ext_m;
}
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
if (UseFMA) {
warning("FMA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseFMA, false);
}
if (UseSHA) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (UseCRC32Intrinsics) {
if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
warning("CRC32 intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
}
if (UseCRC32CIntrinsics) {
if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics))
warning("CRC32C intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
if (UseAdler32Intrinsics) {
warning("Adler32 intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
if (UseVectorizedMismatchIntrinsic) {
warning("vectorizedMismatch intrinsic is not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
#ifdef COMPILER2
// C2 is only supported on v7+ VFP at this time
if (_arm_arch < 7 || !has_vfp()) {
vm_exit_during_initialization("Server VM is only supported on ARMv7+ VFP");
}
#endif
// ARM doesn't have special instructions for these but ldrex/ldrexd
// enable shorter instruction sequences that the ones based on cas.
_supports_atomic_getset4 = supports_ldrex();
_supports_atomic_getadd4 = supports_ldrex();
_supports_atomic_getset8 = supports_ldrexd();
_supports_atomic_getadd8 = supports_ldrexd();
#ifdef COMPILER2
assert(_supports_cx8 && _supports_atomic_getset4 && _supports_atomic_getadd4
&& _supports_atomic_getset8 && _supports_atomic_getadd8, "C2: atomic operations must be supported");
#endif
char buf[512];
jio_snprintf(buf, sizeof(buf), "(ARMv%d)%s%s%s%s",
_arm_arch,
(has_vfp() ? ", vfp" : ""),
(has_vfp3_32() ? ", vfp3-32" : ""),
(has_simd() ? ", simd" : ""),
(has_multiprocessing_extensions() ? ", mp_ext" : ""));
// buf is started with ", " or is empty
_features_string = os::strdup(buf);
if (has_simd()) {
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
FLAG_SET_DEFAULT(UsePopCountInstruction, true);
}
} else {
FLAG_SET_DEFAULT(UsePopCountInstruction, false);
}
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 128);
}
#ifdef COMPILER2
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
if (FLAG_IS_DEFAULT(MaxVectorSize)) {
// FLAG_SET_DEFAULT(MaxVectorSize, has_simd() ? 16 : 8);
// SIMD/NEON can use 16, but default is 8 because currently
// larger than 8 will disable instruction scheduling
FLAG_SET_DEFAULT(MaxVectorSize, 8);
} else {
int max_vector_size = has_simd() ? 16 : 8;
if (MaxVectorSize > max_vector_size) {
warning("MaxVectorSize must be at most %i on this platform", max_vector_size);
FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size);
}
}
#endif
if (FLAG_IS_DEFAULT(Tier4CompileThreshold)) {
Tier4CompileThreshold = 10000;
}
if (FLAG_IS_DEFAULT(Tier3InvocationThreshold)) {
Tier3InvocationThreshold = 1000;
}
if (FLAG_IS_DEFAULT(Tier3CompileThreshold)) {
Tier3CompileThreshold = 5000;
}
if (FLAG_IS_DEFAULT(Tier3MinInvocationThreshold)) {
Tier3MinInvocationThreshold = 500;
}
UNSUPPORTED_OPTION(TypeProfileLevel);
UNSUPPORTED_OPTION(CriticalJNINatives);
FLAG_SET_DEFAULT(TypeProfileLevel, 0); // unsupported
// This machine does not allow unaligned memory accesses
if (UseUnalignedAccesses) {
if (!FLAG_IS_DEFAULT(UseUnalignedAccesses))
warning("Unaligned memory access is not available on this CPU");
FLAG_SET_DEFAULT(UseUnalignedAccesses, false);
}
_is_initialized = true;
}
bool VM_Version::use_biased_locking() {
get_os_cpu_info();
// The cost of CAS on uniprocessor ARM v6 and later is low compared to the
// overhead related to slightly longer Biased Locking execution path.
// Testing shows no improvement when running with Biased Locking enabled
// on an ARMv6 and higher uniprocessor systems. The situation is different on
// ARMv5 and MP systems.
//
// Therefore the Biased Locking is enabled on ARMv5 and ARM MP only.
//
return (!os::is_MP() && (arm_arch() > 5)) ? false : true;
}