/*
* Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/codeBuffer.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "code/codeCache.hpp"
#include "code/compiledMethod.inline.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "jvmci/jvmciCompilerToVM.hpp"
#include "jvmci/jvmciCompiler.hpp"
#include "jvmci/jvmciJavaClasses.hpp"
#include "jvmci/jvmciEnv.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/reflection.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/debug.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_G1GC
#include "gc/g1/g1ThreadLocalData.hpp"
#endif // INCLUDE_G1GC
#if defined(_MSC_VER)
#define strtoll _strtoi64
#endif
jobject JVMCIRuntime::_HotSpotJVMCIRuntime_instance = NULL;
bool JVMCIRuntime::_HotSpotJVMCIRuntime_initialized = false;
bool JVMCIRuntime::_well_known_classes_initialized = false;
JVMCIRuntime::CompLevelAdjustment JVMCIRuntime::_comp_level_adjustment = JVMCIRuntime::none;
bool JVMCIRuntime::_shutdown_called = false;
BasicType JVMCIRuntime::kindToBasicType(Handle kind, TRAPS) {
if (kind.is_null()) {
THROW_(vmSymbols::java_lang_NullPointerException(), T_ILLEGAL);
}
jchar ch = JavaKind::typeChar(kind);
switch(ch) {
case 'Z': return T_BOOLEAN;
case 'B': return T_BYTE;
case 'S': return T_SHORT;
case 'C': return T_CHAR;
case 'I': return T_INT;
case 'F': return T_FLOAT;
case 'J': return T_LONG;
case 'D': return T_DOUBLE;
case 'A': return T_OBJECT;
case '-': return T_ILLEGAL;
default:
JVMCI_ERROR_(T_ILLEGAL, "unexpected Kind: %c", ch);
}
}
// Simple helper to see if the caller of a runtime stub which
// entered the VM has been deoptimized
static bool caller_is_deopted() {
JavaThread* thread = JavaThread::current();
RegisterMap reg_map(thread, false);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(®_map);
assert(caller_frame.is_compiled_frame(), "must be compiled");
return caller_frame.is_deoptimized_frame();
}
// Stress deoptimization
static void deopt_caller() {
if ( !caller_is_deopted()) {
JavaThread* thread = JavaThread::current();
RegisterMap reg_map(thread, false);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(®_map);
Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
assert(caller_is_deopted(), "Must be deoptimized");
}
}
// Manages a scope for a JVMCI runtime call that attempts a heap allocation.
// If there is a pending exception upon closing the scope and the runtime
// call is of the variety where allocation failure returns NULL without an
// exception, the following action is taken:
// 1. The pending exception is cleared
// 2. NULL is written to JavaThread::_vm_result
// 3. Checks that an OutOfMemoryError is Universe::out_of_memory_error_retry().
class RetryableAllocationMark: public StackObj {
private:
JavaThread* _thread;
public:
RetryableAllocationMark(JavaThread* thread, bool activate) {
if (activate) {
assert(!thread->in_retryable_allocation(), "retryable allocation scope is non-reentrant");
_thread = thread;
_thread->set_in_retryable_allocation(true);
} else {
_thread = NULL;
}
}
~RetryableAllocationMark() {
if (_thread != NULL) {
_thread->set_in_retryable_allocation(false);
JavaThread* THREAD = _thread;
if (HAS_PENDING_EXCEPTION) {
oop ex = PENDING_EXCEPTION;
CLEAR_PENDING_EXCEPTION;
oop retry_oome = Universe::out_of_memory_error_retry();
if (ex->is_a(retry_oome->klass()) && retry_oome != ex) {
ResourceMark rm;
fatal("Unexpected exception in scope of retryable allocation: " INTPTR_FORMAT " of type %s", p2i(ex), ex->klass()->external_name());
}
_thread->set_vm_result(NULL);
}
}
}
};
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_common(JavaThread* thread, Klass* klass, bool null_on_fail))
JRT_BLOCK;
assert(klass->is_klass(), "not a class");
Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
InstanceKlass* ik = InstanceKlass::cast(klass);
{
RetryableAllocationMark ram(thread, null_on_fail);
ik->check_valid_for_instantiation(true, CHECK);
oop obj;
if (null_on_fail) {
if (!ik->is_initialized()) {
// Cannot re-execute class initialization without side effects
// so return without attempting the initialization
return;
}
} else {
// make sure klass is initialized
ik->initialize(CHECK);
}
// allocate instance and return via TLS
obj = ik->allocate_instance(CHECK);
thread->set_vm_result(obj);
}
JRT_BLOCK_END;
SharedRuntime::on_slowpath_allocation_exit(thread);
JRT_END
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_common(JavaThread* thread, Klass* array_klass, jint length, bool null_on_fail))
JRT_BLOCK;
// Note: no handle for klass needed since they are not used
// anymore after new_objArray() and no GC can happen before.
// (This may have to change if this code changes!)
assert(array_klass->is_klass(), "not a class");
oop obj;
if (array_klass->is_typeArray_klass()) {
BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
RetryableAllocationMark ram(thread, null_on_fail);
obj = oopFactory::new_typeArray(elt_type, length, CHECK);
} else {
Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
RetryableAllocationMark ram(thread, null_on_fail);
obj = oopFactory::new_objArray(elem_klass, length, CHECK);
}
thread->set_vm_result(obj);
// This is pretty rare but this runtime patch is stressful to deoptimization
// if we deoptimize here so force a deopt to stress the path.
if (DeoptimizeALot) {
static int deopts = 0;
// Alternate between deoptimizing and raising an error (which will also cause a deopt)
if (deopts++ % 2 == 0) {
if (null_on_fail) {
return;
} else {
ResourceMark rm(THREAD);
THROW(vmSymbols::java_lang_OutOfMemoryError());
}
} else {
deopt_caller();
}
}
JRT_BLOCK_END;
SharedRuntime::on_slowpath_allocation_exit(thread);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::new_multi_array_common(JavaThread* thread, Klass* klass, int rank, jint* dims, bool null_on_fail))
assert(klass->is_klass(), "not a class");
assert(rank >= 1, "rank must be nonzero");
Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
RetryableAllocationMark ram(thread, null_on_fail);
oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
thread->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_common(JavaThread* thread, oopDesc* element_mirror, jint length, bool null_on_fail))
RetryableAllocationMark ram(thread, null_on_fail);
oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
thread->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_common(JavaThread* thread, oopDesc* type_mirror, bool null_on_fail))
InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
if (klass == NULL) {
ResourceMark rm(THREAD);
THROW(vmSymbols::java_lang_InstantiationException());
}
RetryableAllocationMark ram(thread, null_on_fail);
// Create new instance (the receiver)
klass->check_valid_for_instantiation(false, CHECK);
if (null_on_fail) {
if (!klass->is_initialized()) {
// Cannot re-execute class initialization without side effects
// so return without attempting the initialization
return;
}
} else {
// Make sure klass gets initialized
klass->initialize(CHECK);
}
oop obj = klass->allocate_instance(CHECK);
thread->set_vm_result(obj);
JRT_END
extern void vm_exit(int code);
// Enter this method from compiled code handler below. This is where we transition
// to VM mode. This is done as a helper routine so that the method called directly
// from compiled code does not have to transition to VM. This allows the entry
// method to see if the nmethod that we have just looked up a handler for has
// been deoptimized while we were in the vm. This simplifies the assembly code
// cpu directories.
//
// We are entering here from exception stub (via the entry method below)
// If there is a compiled exception handler in this method, we will continue there;
// otherwise we will unwind the stack and continue at the caller of top frame method
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
// control the area where we can allow a safepoint. After we exit the safepoint area we can
// check to see if the handler we are going to return is now in a nmethod that has
// been deoptimized. If that is the case we return the deopt blob
// unpack_with_exception entry instead. This makes life for the exception blob easier
// because making that same check and diverting is painful from assembly language.
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, CompiledMethod*& cm))
// Reset method handle flag.
thread->set_is_method_handle_return(false);
Handle exception(thread, ex);
cm = CodeCache::find_compiled(pc);
assert(cm != NULL, "this is not a compiled method");
// Adjust the pc as needed/
if (cm->is_deopt_pc(pc)) {
RegisterMap map(thread, false);
frame exception_frame = thread->last_frame().sender(&map);
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
pc = exception_frame.pc();
}
#ifdef ASSERT
assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
// Check that exception is a subclass of Throwable, otherwise we have a VerifyError
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
if (ExitVMOnVerifyError) vm_exit(-1);
ShouldNotReachHere();
}
#endif
// Check the stack guard pages and reenable them if necessary and there is
// enough space on the stack to do so. Use fast exceptions only if the guard
// pages are enabled.
bool guard_pages_enabled = thread->stack_guards_enabled();
if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
if (JvmtiExport::can_post_on_exceptions()) {
// To ensure correct notification of exception catches and throws
// we have to deoptimize here. If we attempted to notify the
// catches and throws during this exception lookup it's possible
// we could deoptimize on the way out of the VM and end back in
// the interpreter at the throw site. This would result in double
// notifications since the interpreter would also notify about
// these same catches and throws as it unwound the frame.
RegisterMap reg_map(thread);
frame stub_frame = thread->last_frame();
frame caller_frame = stub_frame.sender(®_map);
// We don't really want to deoptimize the nmethod itself since we
// can actually continue in the exception handler ourselves but I
// don't see an easy way to have the desired effect.
Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
assert(caller_is_deopted(), "Must be deoptimized");
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
}
// ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
if (guard_pages_enabled) {
address fast_continuation = cm->handler_for_exception_and_pc(exception, pc);
if (fast_continuation != NULL) {
// Set flag if return address is a method handle call site.
thread->set_is_method_handle_return(cm->is_method_handle_return(pc));
return fast_continuation;
}
}
// If the stack guard pages are enabled, check whether there is a handler in
// the current method. Otherwise (guard pages disabled), force an unwind and
// skip the exception cache update (i.e., just leave continuation==NULL).
address continuation = NULL;
if (guard_pages_enabled) {
// New exception handling mechanism can support inlined methods
// with exception handlers since the mappings are from PC to PC
// debugging support
// tracing
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
stringStream tempst;
assert(cm->method() != NULL, "Unexpected null method()");
tempst.print("compiled method <%s>\n"
" at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
cm->method()->print_value_string(), p2i(pc), p2i(thread));
Exceptions::log_exception(exception, tempst);
}
// for AbortVMOnException flag
NOT_PRODUCT(Exceptions::debug_check_abort(exception));
// Clear out the exception oop and pc since looking up an
// exception handler can cause class loading, which might throw an
// exception and those fields are expected to be clear during
// normal bytecode execution.
thread->clear_exception_oop_and_pc();
bool recursive_exception = false;
continuation = SharedRuntime::compute_compiled_exc_handler(cm, pc, exception, false, false, recursive_exception);
// If an exception was thrown during exception dispatch, the exception oop may have changed
thread->set_exception_oop(exception());
thread->set_exception_pc(pc);
// the exception cache is used only by non-implicit exceptions
// Update the exception cache only when there didn't happen
// another exception during the computation of the compiled
// exception handler. Checking for exception oop equality is not
// sufficient because some exceptions are pre-allocated and reused.
if (continuation != NULL && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
cm->add_handler_for_exception_and_pc(exception, pc, continuation);
}
}
// Set flag if return address is a method handle call site.
thread->set_is_method_handle_return(cm->is_method_handle_return(pc));
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
" for exception thrown at PC " PTR_FORMAT,
p2i(thread), p2i(continuation), p2i(pc));
}
return continuation;
JRT_END
// Enter this method from compiled code only if there is a Java exception handler
// in the method handling the exception.
// We are entering here from exception stub. We don't do a normal VM transition here.
// We do it in a helper. This is so we can check to see if the nmethod we have just
// searched for an exception handler has been deoptimized in the meantime.
address JVMCIRuntime::exception_handler_for_pc(JavaThread* thread) {
oop exception = thread->exception_oop();
address pc = thread->exception_pc();
// Still in Java mode
DEBUG_ONLY(ResetNoHandleMark rnhm);
CompiledMethod* cm = NULL;
address continuation = NULL;
{
// Enter VM mode by calling the helper
ResetNoHandleMark rnhm;
continuation = exception_handler_for_pc_helper(thread, exception, pc, cm);
}
// Back in JAVA, use no oops DON'T safepoint
// Now check to see if the compiled method we were called from is now deoptimized.
// If so we must return to the deopt blob and deoptimize the nmethod
if (cm != NULL && caller_is_deopted()) {
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
}
assert(continuation != NULL, "no handler found");
return continuation;
}
JRT_ENTRY_NO_ASYNC(void, JVMCIRuntime::monitorenter(JavaThread* thread, oopDesc* obj, BasicLock* lock))
IF_TRACE_jvmci_3 {
char type[O_BUFLEN];
obj->klass()->name()->as_C_string(type, O_BUFLEN);
markOop mark = obj->mark();
TRACE_jvmci_3("%s: entered locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(mark), p2i(lock));
tty->flush();
}
#ifdef ASSERT
if (PrintBiasedLockingStatistics) {
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
}
#endif
Handle h_obj(thread, obj);
if (UseBiasedLocking) {
// Retry fast entry if bias is revoked to avoid unnecessary inflation
ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
} else {
if (JVMCIUseFastLocking) {
// When using fast locking, the compiled code has already tried the fast case
ObjectSynchronizer::slow_enter(h_obj, lock, THREAD);
} else {
ObjectSynchronizer::fast_enter(h_obj, lock, false, THREAD);
}
}
TRACE_jvmci_3("%s: exiting locking slow with obj=" INTPTR_FORMAT, thread->name(), p2i(obj));
JRT_END
JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* thread, oopDesc* obj, BasicLock* lock))
assert(thread == JavaThread::current(), "threads must correspond");
assert(thread->last_Java_sp(), "last_Java_sp must be set");
// monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
EXCEPTION_MARK;
#ifdef DEBUG
if (!oopDesc::is_oop(obj)) {
ResetNoHandleMark rhm;
nmethod* method = thread->last_frame().cb()->as_nmethod_or_null();
if (method != NULL) {
tty->print_cr("ERROR in monitorexit in method %s wrong obj " INTPTR_FORMAT, method->name(), p2i(obj));
}
thread->print_stack_on(tty);
assert(false, "invalid lock object pointer dected");
}
#endif
if (JVMCIUseFastLocking) {
// When using fast locking, the compiled code has already tried the fast case
ObjectSynchronizer::slow_exit(obj, lock, THREAD);
} else {
ObjectSynchronizer::fast_exit(obj, lock, THREAD);
}
IF_TRACE_jvmci_3 {
char type[O_BUFLEN];
obj->klass()->name()->as_C_string(type, O_BUFLEN);
TRACE_jvmci_3("%s: exited locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(obj->mark()), p2i(lock));
tty->flush();
}
JRT_END
// Object.notify() fast path, caller does slow path
JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread *thread, oopDesc* obj))
// Very few notify/notifyAll operations find any threads on the waitset, so
// the dominant fast-path is to simply return.
// Relatedly, it's critical that notify/notifyAll be fast in order to
// reduce lock hold times.
if (!SafepointSynchronize::is_synchronizing()) {
if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
return true;
}
}
return false; // caller must perform slow path
JRT_END
// Object.notifyAll() fast path, caller does slow path
JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread *thread, oopDesc* obj))
if (!SafepointSynchronize::is_synchronizing() ) {
if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
return true;
}
}
return false; // caller must perform slow path
JRT_END
JRT_ENTRY(void, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* thread, const char* exception, const char* message))
TempNewSymbol symbol = SymbolTable::new_symbol(exception, CHECK);
SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, message);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* thread, const char* exception, Klass* klass))
ResourceMark rm(thread);
TempNewSymbol symbol = SymbolTable::new_symbol(exception, CHECK);
SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, klass->external_name());
JRT_END
JRT_ENTRY(void, JVMCIRuntime::throw_class_cast_exception(JavaThread* thread, const char* exception, Klass* caster_klass, Klass* target_klass))
ResourceMark rm(thread);
const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
TempNewSymbol symbol = SymbolTable::new_symbol(exception, CHECK);
SharedRuntime::throw_and_post_jvmti_exception(thread, symbol, message);
JRT_END
JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
ttyLocker ttyl;
if (obj == NULL) {
tty->print("NULL");
} else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
if (oopDesc::is_oop_or_null(obj, true)) {
char buf[O_BUFLEN];
tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
} else {
tty->print(INTPTR_FORMAT, p2i(obj));
}
} else {
ResourceMark rm;
assert(obj != NULL && java_lang_String::is_instance(obj), "must be");
char *buf = java_lang_String::as_utf8_string(obj);
tty->print_raw(buf);
}
if (newline) {
tty->cr();
}
JRT_END
#if INCLUDE_G1GC
JRT_LEAF(void, JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj))
G1ThreadLocalData::satb_mark_queue(thread).enqueue(obj);
JRT_END
JRT_LEAF(void, JVMCIRuntime::write_barrier_post(JavaThread* thread, void* card_addr))
G1ThreadLocalData::dirty_card_queue(thread).enqueue(card_addr);
JRT_END
#endif // INCLUDE_G1GC
JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
bool ret = true;
if(!Universe::heap()->is_in_closed_subset(parent)) {
tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
parent->print();
ret=false;
}
if(!Universe::heap()->is_in_closed_subset(child)) {
tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
child->print();
ret=false;
}
return (jint)ret;
JRT_END
JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* thread, jlong where, jlong format, jlong value))
ResourceMark rm;
const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
char *detail_msg = NULL;
if (format != 0L) {
const char* buf = (char*) (address) format;
size_t detail_msg_length = strlen(buf) * 2;
detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
jio_snprintf(detail_msg, detail_msg_length, buf, value);
report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
} else {
report_vm_error(__FILE__, __LINE__, error_msg);
}
JRT_END
JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
oop exception = thread->exception_oop();
assert(exception != NULL, "npe");
thread->set_exception_oop(NULL);
thread->set_exception_pc(0);
return exception;
JRT_END
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
ResourceMark rm;
tty->print(format, v1, v2, v3);
JRT_END
PRAGMA_DIAG_POP
static void decipher(jlong v, bool ignoreZero) {
if (v != 0 || !ignoreZero) {
void* p = (void *)(address) v;
CodeBlob* cb = CodeCache::find_blob(p);
if (cb) {
if (cb->is_nmethod()) {
char buf[O_BUFLEN];
tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod_or_null()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
return;
}
cb->print_value_on(tty);
return;
}
if (Universe::heap()->is_in(p)) {
oop obj = oop(p);
obj->print_value_on(tty);
return;
}
tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
}
}
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
ResourceMark rm;
const char *buf = (const char*) (address) format;
if (vmError) {
if (buf != NULL) {
fatal(buf, v1, v2, v3);
} else {
fatal("<anonymous error>");
}
} else if (buf != NULL) {
tty->print(buf, v1, v2, v3);
} else {
assert(v2 == 0, "v2 != 0");
assert(v3 == 0, "v3 != 0");
decipher(v1, false);
}
JRT_END
PRAGMA_DIAG_POP
JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
union {
jlong l;
jdouble d;
jfloat f;
} uu;
uu.l = value;
switch (typeChar) {
case 'Z': tty->print(value == 0 ? "false" : "true"); break;
case 'B': tty->print("%d", (jbyte) value); break;
case 'C': tty->print("%c", (jchar) value); break;
case 'S': tty->print("%d", (jshort) value); break;
case 'I': tty->print("%d", (jint) value); break;
case 'F': tty->print("%f", uu.f); break;
case 'J': tty->print(JLONG_FORMAT, value); break;
case 'D': tty->print("%lf", uu.d); break;
default: assert(false, "unknown typeChar"); break;
}
if (newline) {
tty->cr();
}
JRT_END
JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* thread, oopDesc* obj))
return (jint) obj->identity_hash();
JRT_END
JRT_ENTRY(jboolean, JVMCIRuntime::thread_is_interrupted(JavaThread* thread, oopDesc* receiver, jboolean clear_interrupted))
Handle receiverHandle(thread, receiver);
// A nested ThreadsListHandle may require the Threads_lock which
// requires thread_in_vm which is why this method cannot be JRT_LEAF.
ThreadsListHandle tlh;
JavaThread* receiverThread = java_lang_Thread::thread(receiverHandle());
if (receiverThread == NULL || (EnableThreadSMRExtraValidityChecks && !tlh.includes(receiverThread))) {
// The other thread may exit during this process, which is ok so return false.
return JNI_FALSE;
} else {
return (jint) Thread::is_interrupted(receiverThread, clear_interrupted != 0);
}
JRT_END
JRT_ENTRY(int, JVMCIRuntime::test_deoptimize_call_int(JavaThread* thread, int value))
deopt_caller();
return value;
JRT_END
void JVMCIRuntime::force_initialization(TRAPS) {
JVMCIRuntime::initialize_well_known_classes(CHECK);
ResourceMark rm;
TempNewSymbol getCompiler = SymbolTable::new_symbol("getCompiler", CHECK);
TempNewSymbol sig = SymbolTable::new_symbol("()Ljdk/vm/ci/runtime/JVMCICompiler;", CHECK);
Handle jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(CHECK);
JavaValue result(T_OBJECT);
JavaCalls::call_virtual(&result, jvmciRuntime, HotSpotJVMCIRuntime::klass(), getCompiler, sig, CHECK);
}
// private static JVMCIRuntime JVMCI.initializeRuntime()
JVM_ENTRY(jobject, JVM_GetJVMCIRuntime(JNIEnv *env, jclass c))
if (!EnableJVMCI) {
THROW_MSG_NULL(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled")
}
JVMCIRuntime::initialize_HotSpotJVMCIRuntime(CHECK_NULL);
jobject ret = JVMCIRuntime::get_HotSpotJVMCIRuntime_jobject(CHECK_NULL);
return ret;
JVM_END
Handle JVMCIRuntime::callStatic(const char* className, const char* methodName, const char* signature, JavaCallArguments* args, TRAPS) {
TempNewSymbol name = SymbolTable::new_symbol(className, CHECK_(Handle()));
Klass* klass = SystemDictionary::resolve_or_fail(name, true, CHECK_(Handle()));
TempNewSymbol runtime = SymbolTable::new_symbol(methodName, CHECK_(Handle()));
TempNewSymbol sig = SymbolTable::new_symbol(signature, CHECK_(Handle()));
JavaValue result(T_OBJECT);
if (args == NULL) {
JavaCalls::call_static(&result, klass, runtime, sig, CHECK_(Handle()));
} else {
JavaCalls::call_static(&result, klass, runtime, sig, args, CHECK_(Handle()));
}
return Handle(THREAD, (oop)result.get_jobject());
}
Handle JVMCIRuntime::get_HotSpotJVMCIRuntime(TRAPS) {
initialize_JVMCI(CHECK_(Handle()));
return Handle(THREAD, JNIHandles::resolve_non_null(_HotSpotJVMCIRuntime_instance));
}
void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(TRAPS) {
guarantee(!_HotSpotJVMCIRuntime_initialized, "cannot reinitialize HotSpotJVMCIRuntime");
JVMCIRuntime::initialize_well_known_classes(CHECK);
// This should only be called in the context of the JVMCI class being initialized
InstanceKlass* klass = SystemDictionary::JVMCI_klass();
guarantee(klass->is_being_initialized() && klass->is_reentrant_initialization(THREAD),
"HotSpotJVMCIRuntime initialization should only be triggered through JVMCI initialization");
Handle result = callStatic("jdk/vm/ci/hotspot/HotSpotJVMCIRuntime",
"runtime",
"()Ljdk/vm/ci/hotspot/HotSpotJVMCIRuntime;", NULL, CHECK);
int adjustment = HotSpotJVMCIRuntime::compilationLevelAdjustment(result);
assert(adjustment >= JVMCIRuntime::none &&
adjustment <= JVMCIRuntime::by_full_signature,
"compilation level adjustment out of bounds");
_comp_level_adjustment = (CompLevelAdjustment) adjustment;
_HotSpotJVMCIRuntime_initialized = true;
_HotSpotJVMCIRuntime_instance = JNIHandles::make_global(result);
}
void JVMCIRuntime::initialize_JVMCI(TRAPS) {
if (JNIHandles::resolve(_HotSpotJVMCIRuntime_instance) == NULL) {
callStatic("jdk/vm/ci/runtime/JVMCI",
"getRuntime",
"()Ljdk/vm/ci/runtime/JVMCIRuntime;", NULL, CHECK);
}
assert(_HotSpotJVMCIRuntime_initialized == true, "what?");
}
bool JVMCIRuntime::can_initialize_JVMCI() {
// Initializing JVMCI requires the module system to be initialized past phase 3.
// The JVMCI API itself isn't available until phase 2 and ServiceLoader (which
// JVMCI initialization requires) isn't usable until after phase 3. Testing
// whether the system loader is initialized satisfies all these invariants.
if (SystemDictionary::java_system_loader() == NULL) {
return false;
}
assert(Universe::is_module_initialized(), "must be");
return true;
}
void JVMCIRuntime::initialize_well_known_classes(TRAPS) {
if (JVMCIRuntime::_well_known_classes_initialized == false) {
guarantee(can_initialize_JVMCI(), "VM is not yet sufficiently booted to initialize JVMCI");
SystemDictionary::WKID scan = SystemDictionary::FIRST_JVMCI_WKID;
SystemDictionary::resolve_wk_klasses_through(SystemDictionary::LAST_JVMCI_WKID, scan, CHECK);
JVMCIJavaClasses::compute_offsets(CHECK);
JVMCIRuntime::_well_known_classes_initialized = true;
}
}
void JVMCIRuntime::metadata_do(void f(Metadata*)) {
// For simplicity, the existence of HotSpotJVMCIMetaAccessContext in
// the SystemDictionary well known classes should ensure the other
// classes have already been loaded, so make sure their order in the
// table enforces that.
assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedJavaMethodImpl) <
SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier");
assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotConstantPool) <
SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier");
assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedObjectTypeImpl) <
SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier");
if (HotSpotJVMCIMetaAccessContext::klass() == NULL ||
!HotSpotJVMCIMetaAccessContext::klass()->is_linked()) {
// Nothing could be registered yet
return;
}
// WeakReference<HotSpotJVMCIMetaAccessContext>[]
objArrayOop allContexts = HotSpotJVMCIMetaAccessContext::allContexts();
if (allContexts == NULL) {
return;
}
// These must be loaded at this point but the linking state doesn't matter.
assert(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass() != NULL, "must be loaded");
assert(SystemDictionary::HotSpotConstantPool_klass() != NULL, "must be loaded");
assert(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass() != NULL, "must be loaded");
for (int i = 0; i < allContexts->length(); i++) {
oop ref = allContexts->obj_at(i);
if (ref != NULL) {
oop referent = java_lang_ref_Reference::referent(ref);
if (referent != NULL) {
// Chunked Object[] with last element pointing to next chunk
objArrayOop metadataRoots = HotSpotJVMCIMetaAccessContext::metadataRoots(referent);
while (metadataRoots != NULL) {
for (int typeIndex = 0; typeIndex < metadataRoots->length() - 1; typeIndex++) {
oop reference = metadataRoots->obj_at(typeIndex);
if (reference == NULL) {
continue;
}
oop metadataRoot = java_lang_ref_Reference::referent(reference);
if (metadataRoot == NULL) {
continue;
}
if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass())) {
Method* method = CompilerToVM::asMethod(metadataRoot);
f(method);
} else if (metadataRoot->is_a(SystemDictionary::HotSpotConstantPool_klass())) {
ConstantPool* constantPool = CompilerToVM::asConstantPool(metadataRoot);
f(constantPool);
} else if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass())) {
Klass* klass = CompilerToVM::asKlass(metadataRoot);
f(klass);
} else {
metadataRoot->print();
ShouldNotReachHere();
}
}
metadataRoots = (objArrayOop)metadataRoots->obj_at(metadataRoots->length() - 1);
assert(metadataRoots == NULL || metadataRoots->is_objArray(), "wrong type");
}
}
}
}
}
// private static void CompilerToVM.registerNatives()
JVM_ENTRY(void, JVM_RegisterJVMCINatives(JNIEnv *env, jclass c2vmClass))
if (!EnableJVMCI) {
THROW_MSG(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled");
}
#ifdef _LP64
#ifndef SPARC
uintptr_t heap_end = (uintptr_t) Universe::heap()->reserved_region().end();
uintptr_t allocation_end = heap_end + ((uintptr_t)16) * 1024 * 1024 * 1024;
guarantee(heap_end < allocation_end, "heap end too close to end of address space (might lead to erroneous TLAB allocations)");
#endif // !SPARC
#else
fatal("check TLAB allocation code for address space conflicts");
#endif // _LP64
JVMCIRuntime::initialize_well_known_classes(CHECK);
{
ThreadToNativeFromVM trans(thread);
env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count());
}
JVM_END
void JVMCIRuntime::shutdown(TRAPS) {
if (_HotSpotJVMCIRuntime_instance != NULL) {
_shutdown_called = true;
HandleMark hm(THREAD);
Handle receiver = get_HotSpotJVMCIRuntime(CHECK);
JavaValue result(T_VOID);
JavaCallArguments args;
args.push_oop(receiver);
JavaCalls::call_special(&result, receiver->klass(), vmSymbols::shutdown_method_name(), vmSymbols::void_method_signature(), &args, CHECK);
}
}
CompLevel JVMCIRuntime::adjust_comp_level_inner(const methodHandle& method, bool is_osr, CompLevel level, JavaThread* thread) {
JVMCICompiler* compiler = JVMCICompiler::instance(false, thread);
if (compiler != NULL && compiler->is_bootstrapping()) {
return level;
}
if (!is_HotSpotJVMCIRuntime_initialized() || _comp_level_adjustment == JVMCIRuntime::none) {
// JVMCI cannot participate in compilation scheduling until
// JVMCI is initialized and indicates it wants to participate.
return level;
}
#define CHECK_RETURN THREAD); \
if (HAS_PENDING_EXCEPTION) { \
Handle exception(THREAD, PENDING_EXCEPTION); \
CLEAR_PENDING_EXCEPTION; \
\
if (exception->is_a(SystemDictionary::ThreadDeath_klass())) { \
/* In the special case of ThreadDeath, we need to reset the */ \
/* pending async exception so that it is propagated. */ \
thread->set_pending_async_exception(exception()); \
return level; \
} \
tty->print("Uncaught exception while adjusting compilation level: "); \
java_lang_Throwable::print(exception(), tty); \
tty->cr(); \
java_lang_Throwable::print_stack_trace(exception, tty); \
if (HAS_PENDING_EXCEPTION) { \
CLEAR_PENDING_EXCEPTION; \
} \
return level; \
} \
(void)(0
Thread* THREAD = thread;
HandleMark hm;
Handle receiver = JVMCIRuntime::get_HotSpotJVMCIRuntime(CHECK_RETURN);
Handle name;
Handle sig;
if (_comp_level_adjustment == JVMCIRuntime::by_full_signature) {
name = java_lang_String::create_from_symbol(method->name(), CHECK_RETURN);
sig = java_lang_String::create_from_symbol(method->signature(), CHECK_RETURN);
} else {
name = Handle();
sig = Handle();
}
JavaValue result(T_INT);
JavaCallArguments args;
args.push_oop(receiver);
args.push_oop(Handle(THREAD, method->method_holder()->java_mirror()));
args.push_oop(name);
args.push_oop(sig);
args.push_int(is_osr);
args.push_int(level);
JavaCalls::call_special(&result, receiver->klass(), vmSymbols::adjustCompilationLevel_name(),
vmSymbols::adjustCompilationLevel_signature(), &args, CHECK_RETURN);
int comp_level = result.get_jint();
if (comp_level < CompLevel_none || comp_level > CompLevel_full_optimization) {
assert(false, "compilation level out of bounds");
return level;
}
return (CompLevel) comp_level;
#undef CHECK_RETURN
}
void JVMCIRuntime::bootstrap_finished(TRAPS) {
HandleMark hm(THREAD);
Handle receiver = get_HotSpotJVMCIRuntime(CHECK);
JavaValue result(T_VOID);
JavaCallArguments args;
args.push_oop(receiver);
JavaCalls::call_special(&result, receiver->klass(), vmSymbols::bootstrapFinished_method_name(), vmSymbols::void_method_signature(), &args, CHECK);
}