7133857: exp() and pow() should use the x87 ISA on x86
Summary: use x87 instructions to implement exp() and pow() in interpreter/c1/c2.
Reviewed-by: kvn, never, twisti
/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
#define CPU_X86_VM_ASSEMBLER_X86_HPP
class BiasedLockingCounters;
// Contains all the definitions needed for x86 assembly code generation.
// Calling convention
class Argument VALUE_OBJ_CLASS_SPEC {
public:
enum {
#ifdef _LP64
#ifdef _WIN64
n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
#else
n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
#endif // _WIN64
n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
#else
n_register_parameters = 0 // 0 registers used to pass arguments
#endif // _LP64
};
};
#ifdef _LP64
// Symbolically name the register arguments used by the c calling convention.
// Windows is different from linux/solaris. So much for standards...
#ifdef _WIN64
REGISTER_DECLARATION(Register, c_rarg0, rcx);
REGISTER_DECLARATION(Register, c_rarg1, rdx);
REGISTER_DECLARATION(Register, c_rarg2, r8);
REGISTER_DECLARATION(Register, c_rarg3, r9);
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
#else
REGISTER_DECLARATION(Register, c_rarg0, rdi);
REGISTER_DECLARATION(Register, c_rarg1, rsi);
REGISTER_DECLARATION(Register, c_rarg2, rdx);
REGISTER_DECLARATION(Register, c_rarg3, rcx);
REGISTER_DECLARATION(Register, c_rarg4, r8);
REGISTER_DECLARATION(Register, c_rarg5, r9);
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
#endif // _WIN64
// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do little shuffling. A suitable jni method is non-static and a
// small number of arguments (two fewer args on windows)
//
// |-------------------------------------------------------|
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
// |-------------------------------------------------------|
// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
// | rdi rsi rdx rcx r8 r9 | solaris/linux
// |-------------------------------------------------------|
// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
// |-------------------------------------------------------|
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
// Windows runs out of register args here
#ifdef _WIN64
REGISTER_DECLARATION(Register, j_rarg3, rdi);
REGISTER_DECLARATION(Register, j_rarg4, rsi);
#else
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
#endif /* _WIN64 */
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
#else
// rscratch1 will apear in 32bit code that is dead but of course must compile
// Using noreg ensures if the dead code is incorrectly live and executed it
// will cause an assertion failure
#define rscratch1 noreg
#define rscratch2 noreg
#endif // _LP64
// JSR 292 fixed register usages:
REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
// Address is an abstraction used to represent a memory location
// using any of the amd64 addressing modes with one object.
//
// Note: A register location is represented via a Register, not
// via an address for efficiency & simplicity reasons.
class ArrayAddress;
class Address VALUE_OBJ_CLASS_SPEC {
public:
enum ScaleFactor {
no_scale = -1,
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
};
static ScaleFactor times(int size) {
assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
if (size == 8) return times_8;
if (size == 4) return times_4;
if (size == 2) return times_2;
return times_1;
}
static int scale_size(ScaleFactor scale) {
assert(scale != no_scale, "");
assert(((1 << (int)times_1) == 1 &&
(1 << (int)times_2) == 2 &&
(1 << (int)times_4) == 4 &&
(1 << (int)times_8) == 8), "");
return (1 << (int)scale);
}
private:
Register _base;
Register _index;
ScaleFactor _scale;
int _disp;
RelocationHolder _rspec;
// Easily misused constructors make them private
// %%% can we make these go away?
NOT_LP64(Address(address loc, RelocationHolder spec);)
Address(int disp, address loc, relocInfo::relocType rtype);
Address(int disp, address loc, RelocationHolder spec);
public:
int disp() { return _disp; }
// creation
Address()
: _base(noreg),
_index(noreg),
_scale(no_scale),
_disp(0) {
}
// No default displacement otherwise Register can be implicitly
// converted to 0(Register) which is quite a different animal.
Address(Register base, int disp)
: _base(base),
_index(noreg),
_scale(no_scale),
_disp(disp) {
}
Address(Register base, Register index, ScaleFactor scale, int disp = 0)
: _base (base),
_index(index),
_scale(scale),
_disp (disp) {
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
: _base (base),
_index(index.register_or_noreg()),
_scale(scale),
_disp (disp + (index.constant_or_zero() * scale_size(scale))) {
if (!index.is_register()) scale = Address::no_scale;
assert(!_index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address plus_disp(int disp) const {
Address a = (*this);
a._disp += disp;
return a;
}
Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
Address a = (*this);
a._disp += disp.constant_or_zero() * scale_size(scale);
if (disp.is_register()) {
assert(!a.index()->is_valid(), "competing indexes");
a._index = disp.as_register();
a._scale = scale;
}
return a;
}
bool is_same_address(Address a) const {
// disregard _rspec
return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
}
// The following two overloads are used in connection with the
// ByteSize type (see sizes.hpp). They simplify the use of
// ByteSize'd arguments in assembly code. Note that their equivalent
// for the optimized build are the member functions with int disp
// argument since ByteSize is mapped to an int type in that case.
//
// Note: DO NOT introduce similar overloaded functions for WordSize
// arguments as in the optimized mode, both ByteSize and WordSize
// are mapped to the same type and thus the compiler cannot make a
// distinction anymore (=> compiler errors).
#ifdef ASSERT
Address(Register base, ByteSize disp)
: _base(base),
_index(noreg),
_scale(no_scale),
_disp(in_bytes(disp)) {
}
Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
: _base(base),
_index(index),
_scale(scale),
_disp(in_bytes(disp)) {
assert(!index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
: _base (base),
_index(index.register_or_noreg()),
_scale(scale),
_disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
if (!index.is_register()) scale = Address::no_scale;
assert(!_index->is_valid() == (scale == Address::no_scale),
"inconsistent address");
}
#endif // ASSERT
// accessors
bool uses(Register reg) const { return _base == reg || _index == reg; }
Register base() const { return _base; }
Register index() const { return _index; }
ScaleFactor scale() const { return _scale; }
int disp() const { return _disp; }
// Convert the raw encoding form into the form expected by the constructor for
// Address. An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
static Address make_array(ArrayAddress);
private:
bool base_needs_rex() const {
return _base != noreg && _base->encoding() >= 8;
}
bool index_needs_rex() const {
return _index != noreg &&_index->encoding() >= 8;
}
relocInfo::relocType reloc() const { return _rspec.type(); }
friend class Assembler;
friend class MacroAssembler;
friend class LIR_Assembler; // base/index/scale/disp
};
//
// AddressLiteral has been split out from Address because operands of this type
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
// the few instructions that need to deal with address literals are unique and the
// MacroAssembler does not have to implement every instruction in the Assembler
// in order to search for address literals that may need special handling depending
// on the instruction and the platform. As small step on the way to merging i486/amd64
// directories.
//
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
friend class ArrayAddress;
RelocationHolder _rspec;
// Typically we use AddressLiterals we want to use their rval
// However in some situations we want the lval (effect address) of the item.
// We provide a special factory for making those lvals.
bool _is_lval;
// If the target is far we'll need to load the ea of this to
// a register to reach it. Otherwise if near we can do rip
// relative addressing.
address _target;
protected:
// creation
AddressLiteral()
: _is_lval(false),
_target(NULL)
{}
public:
AddressLiteral(address target, relocInfo::relocType rtype);
AddressLiteral(address target, RelocationHolder const& rspec)
: _rspec(rspec),
_is_lval(false),
_target(target)
{}
AddressLiteral addr() {
AddressLiteral ret = *this;
ret._is_lval = true;
return ret;
}
private:
address target() { return _target; }
bool is_lval() { return _is_lval; }
relocInfo::relocType reloc() const { return _rspec.type(); }
const RelocationHolder& rspec() const { return _rspec; }
friend class Assembler;
friend class MacroAssembler;
friend class Address;
friend class LIR_Assembler;
};
// Convience classes
class RuntimeAddress: public AddressLiteral {
public:
RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
};
class OopAddress: public AddressLiteral {
public:
OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
};
class ExternalAddress: public AddressLiteral {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
};
class InternalAddress: public AddressLiteral {
public:
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
};
// x86 can do array addressing as a single operation since disp can be an absolute
// address amd64 can't. We create a class that expresses the concept but does extra
// magic on amd64 to get the final result
class ArrayAddress VALUE_OBJ_CLASS_SPEC {
private:
AddressLiteral _base;
Address _index;
public:
ArrayAddress() {};
ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
AddressLiteral base() { return _base; }
Address index() { return _index; }
};
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.
class Assembler : public AbstractAssembler {
friend class AbstractAssembler; // for the non-virtual hack
friend class LIR_Assembler; // as_Address()
friend class StubGenerator;
public:
enum Condition { // The x86 condition codes used for conditional jumps/moves.
zero = 0x4,
notZero = 0x5,
equal = 0x4,
notEqual = 0x5,
less = 0xc,
lessEqual = 0xe,
greater = 0xf,
greaterEqual = 0xd,
below = 0x2,
belowEqual = 0x6,
above = 0x7,
aboveEqual = 0x3,
overflow = 0x0,
noOverflow = 0x1,
carrySet = 0x2,
carryClear = 0x3,
negative = 0x8,
positive = 0x9,
parity = 0xa,
noParity = 0xb
};
enum Prefix {
// segment overrides
CS_segment = 0x2e,
SS_segment = 0x36,
DS_segment = 0x3e,
ES_segment = 0x26,
FS_segment = 0x64,
GS_segment = 0x65,
REX = 0x40,
REX_B = 0x41,
REX_X = 0x42,
REX_XB = 0x43,
REX_R = 0x44,
REX_RB = 0x45,
REX_RX = 0x46,
REX_RXB = 0x47,
REX_W = 0x48,
REX_WB = 0x49,
REX_WX = 0x4A,
REX_WXB = 0x4B,
REX_WR = 0x4C,
REX_WRB = 0x4D,
REX_WRX = 0x4E,
REX_WRXB = 0x4F,
VEX_3bytes = 0xC4,
VEX_2bytes = 0xC5
};
enum VexPrefix {
VEX_B = 0x20,
VEX_X = 0x40,
VEX_R = 0x80,
VEX_W = 0x80
};
enum VexSimdPrefix {
VEX_SIMD_NONE = 0x0,
VEX_SIMD_66 = 0x1,
VEX_SIMD_F3 = 0x2,
VEX_SIMD_F2 = 0x3
};
enum VexOpcode {
VEX_OPCODE_NONE = 0x0,
VEX_OPCODE_0F = 0x1,
VEX_OPCODE_0F_38 = 0x2,
VEX_OPCODE_0F_3A = 0x3
};
enum WhichOperand {
// input to locate_operand, and format code for relocations
imm_operand = 0, // embedded 32-bit|64-bit immediate operand
disp32_operand = 1, // embedded 32-bit displacement or address
call32_operand = 2, // embedded 32-bit self-relative displacement
#ifndef _LP64
_WhichOperand_limit = 3
#else
narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
_WhichOperand_limit = 4
#endif
};
// NOTE: The general philopsophy of the declarations here is that 64bit versions
// of instructions are freely declared without the need for wrapping them an ifdef.
// (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
// In the .cpp file the implementations are wrapped so that they are dropped out
// of the resulting jvm. This is done mostly to keep the footprint of KERNEL
// to the size it was prior to merging up the 32bit and 64bit assemblers.
//
// This does mean you'll get a linker/runtime error if you use a 64bit only instruction
// in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
private:
// 64bit prefixes
int prefix_and_encode(int reg_enc, bool byteinst = false);
int prefixq_and_encode(int reg_enc);
int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
int prefixq_and_encode(int dst_enc, int src_enc);
void prefix(Register reg);
void prefix(Address adr);
void prefixq(Address adr);
void prefix(Address adr, Register reg, bool byteinst = false);
void prefix(Address adr, XMMRegister reg);
void prefixq(Address adr, Register reg);
void prefixq(Address adr, XMMRegister reg);
void prefetch_prefix(Address src);
void rex_prefix(Address adr, XMMRegister xreg,
VexSimdPrefix pre, VexOpcode opc, bool rex_w);
int rex_prefix_and_encode(int dst_enc, int src_enc,
VexSimdPrefix pre, VexOpcode opc, bool rex_w);
void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
int nds_enc, VexSimdPrefix pre, VexOpcode opc,
bool vector256);
void vex_prefix(Address adr, int nds_enc, int xreg_enc,
VexSimdPrefix pre, VexOpcode opc,
bool vex_w, bool vector256);
void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
VexSimdPrefix pre, bool vector256 = false) {
vex_prefix(src, nds->encoding(), dst->encoding(),
pre, VEX_OPCODE_0F, false, vector256);
}
int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
VexSimdPrefix pre, VexOpcode opc,
bool vex_w, bool vector256);
int vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
VexSimdPrefix pre, bool vector256 = false) {
return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
pre, VEX_OPCODE_0F, false, vector256);
}
void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
bool rex_w = false, bool vector256 = false);
void simd_prefix(XMMRegister dst, Address src,
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
simd_prefix(dst, xnoreg, src, pre, opc);
}
void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
simd_prefix(src, dst, pre);
}
void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
VexSimdPrefix pre) {
bool rex_w = true;
simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
}
int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
bool rex_w = false, bool vector256 = false);
int simd_prefix_and_encode(XMMRegister dst, XMMRegister src,
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
return simd_prefix_and_encode(dst, xnoreg, src, pre, opc);
}
// Move/convert 32-bit integer value.
int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
VexSimdPrefix pre) {
// It is OK to cast from Register to XMMRegister to pass argument here
// since only encoding is used in simd_prefix_and_encode() and number of
// Gen and Xmm registers are the same.
return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
}
int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
return simd_prefix_and_encode(dst, xnoreg, src, pre);
}
int simd_prefix_and_encode(Register dst, XMMRegister src,
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
}
// Move/convert 64-bit integer value.
int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
VexSimdPrefix pre) {
bool rex_w = true;
return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
}
int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
}
int simd_prefix_and_encode_q(Register dst, XMMRegister src,
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
bool rex_w = true;
return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
}
// Helper functions for groups of instructions
void emit_arith_b(int op1, int op2, Register dst, int imm8);
void emit_arith(int op1, int op2, Register dst, int32_t imm32);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
// only 32bit??
void emit_arith(int op1, int op2, Register dst, jobject obj);
void emit_arith(int op1, int op2, Register dst, Register src);
void emit_operand(Register reg,
Register base, Register index, Address::ScaleFactor scale,
int disp,
RelocationHolder const& rspec,
int rip_relative_correction = 0);
void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
// operands that only take the original 32bit registers
void emit_operand32(Register reg, Address adr);
void emit_operand(XMMRegister reg,
Register base, Register index, Address::ScaleFactor scale,
int disp,
RelocationHolder const& rspec);
void emit_operand(XMMRegister reg, Address adr);
void emit_operand(MMXRegister reg, Address adr);
// workaround gcc (3.2.1-7) bug
void emit_operand(Address adr, MMXRegister reg);
// Immediate-to-memory forms
void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
void emit_farith(int b1, int b2, int i);
protected:
#ifdef ASSERT
void check_relocation(RelocationHolder const& rspec, int format);
#endif
inline void emit_long64(jlong x);
void emit_data(jint data, relocInfo::relocType rtype, int format);
void emit_data(jint data, RelocationHolder const& rspec, int format);
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
// These are all easily abused and hence protected
// 32BIT ONLY SECTION
#ifndef _LP64
// Make these disappear in 64bit mode since they would never be correct
void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
#else
// 64BIT ONLY SECTION
void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
#endif // _LP64
// These are unique in that we are ensured by the caller that the 32bit
// relative in these instructions will always be able to reach the potentially
// 64bit address described by entry. Since they can take a 64bit address they
// don't have the 32 suffix like the other instructions in this class.
void call_literal(address entry, RelocationHolder const& rspec);
void jmp_literal(address entry, RelocationHolder const& rspec);
// Avoid using directly section
// Instructions in this section are actually usable by anyone without danger
// of failure but have performance issues that are addressed my enhanced
// instructions which will do the proper thing base on the particular cpu.
// We protect them because we don't trust you...
// Don't use next inc() and dec() methods directly. INC & DEC instructions
// could cause a partial flag stall since they don't set CF flag.
// Use MacroAssembler::decrement() & MacroAssembler::increment() methods
// which call inc() & dec() or add() & sub() in accordance with
// the product flag UseIncDec value.
void decl(Register dst);
void decl(Address dst);
void decq(Register dst);
void decq(Address dst);
void incl(Register dst);
void incl(Address dst);
void incq(Register dst);
void incq(Address dst);
// New cpus require use of movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
// Move Scalar Single-Precision Floating-Point Values
void movss(XMMRegister dst, Address src);
void movss(XMMRegister dst, XMMRegister src);
void movss(Address dst, XMMRegister src);
// Move Scalar Double-Precision Floating-Point Values
void movsd(XMMRegister dst, Address src);
void movsd(XMMRegister dst, XMMRegister src);
void movsd(Address dst, XMMRegister src);
void movlpd(XMMRegister dst, Address src);
// New cpus require use of movaps and movapd to avoid partial register stall
// when moving between registers.
void movaps(XMMRegister dst, XMMRegister src);
void movapd(XMMRegister dst, XMMRegister src);
// End avoid using directly
// Instruction prefixes
void prefix(Prefix p);
public:
// Creation
Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
// Decoding
static address locate_operand(address inst, WhichOperand which);
static address locate_next_instruction(address inst);
// Utilities
static bool is_polling_page_far() NOT_LP64({ return false;});
// Generic instructions
// Does 32bit or 64bit as needed for the platform. In some sense these
// belong in macro assembler but there is no need for both varieties to exist
void lea(Register dst, Address src);
void mov(Register dst, Register src);
void pusha();
void popa();
void pushf();
void popf();
void push(int32_t imm32);
void push(Register src);
void pop(Register dst);
// These are dummies to prevent surprise implicit conversions to Register
void push(void* v);
void pop(void* v);
// These do register sized moves/scans
void rep_mov();
void rep_set();
void repne_scan();
#ifdef _LP64
void repne_scanl();
#endif
// Vanilla instructions in lexical order
void adcl(Address dst, int32_t imm32);
void adcl(Address dst, Register src);
void adcl(Register dst, int32_t imm32);
void adcl(Register dst, Address src);
void adcl(Register dst, Register src);
void adcq(Register dst, int32_t imm32);
void adcq(Register dst, Address src);
void adcq(Register dst, Register src);
void addl(Address dst, int32_t imm32);
void addl(Address dst, Register src);
void addl(Register dst, int32_t imm32);
void addl(Register dst, Address src);
void addl(Register dst, Register src);
void addq(Address dst, int32_t imm32);
void addq(Address dst, Register src);
void addq(Register dst, int32_t imm32);
void addq(Register dst, Address src);
void addq(Register dst, Register src);
void addr_nop_4();
void addr_nop_5();
void addr_nop_7();
void addr_nop_8();
// Add Scalar Double-Precision Floating-Point Values
void addsd(XMMRegister dst, Address src);
void addsd(XMMRegister dst, XMMRegister src);
// Add Scalar Single-Precision Floating-Point Values
void addss(XMMRegister dst, Address src);
void addss(XMMRegister dst, XMMRegister src);
void andl(Address dst, int32_t imm32);
void andl(Register dst, int32_t imm32);
void andl(Register dst, Address src);
void andl(Register dst, Register src);
void andq(Address dst, int32_t imm32);
void andq(Register dst, int32_t imm32);
void andq(Register dst, Address src);
void andq(Register dst, Register src);
// Bitwise Logical AND of Packed Double-Precision Floating-Point Values
void andpd(XMMRegister dst, XMMRegister src);
// Bitwise Logical AND of Packed Single-Precision Floating-Point Values
void andps(XMMRegister dst, XMMRegister src);
void bsfl(Register dst, Register src);
void bsrl(Register dst, Register src);
#ifdef _LP64
void bsfq(Register dst, Register src);
void bsrq(Register dst, Register src);
#endif
void bswapl(Register reg);
void bswapq(Register reg);
void call(Label& L, relocInfo::relocType rtype);
void call(Register reg); // push pc; pc <- reg
void call(Address adr); // push pc; pc <- adr
void cdql();
void cdqq();
void cld() { emit_byte(0xfc); }
void clflush(Address adr);
void cmovl(Condition cc, Register dst, Register src);
void cmovl(Condition cc, Register dst, Address src);
void cmovq(Condition cc, Register dst, Register src);
void cmovq(Condition cc, Register dst, Address src);
void cmpb(Address dst, int imm8);
void cmpl(Address dst, int32_t imm32);
void cmpl(Register dst, int32_t imm32);
void cmpl(Register dst, Register src);
void cmpl(Register dst, Address src);
void cmpq(Address dst, int32_t imm32);
void cmpq(Address dst, Register src);
void cmpq(Register dst, int32_t imm32);
void cmpq(Register dst, Register src);
void cmpq(Register dst, Address src);
// these are dummies used to catch attempting to convert NULL to Register
void cmpl(Register dst, void* junk); // dummy
void cmpq(Register dst, void* junk); // dummy
void cmpw(Address dst, int imm16);
void cmpxchg8 (Address adr);
void cmpxchgl(Register reg, Address adr);
void cmpxchgq(Register reg, Address adr);
// Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
void comisd(XMMRegister dst, Address src);
void comisd(XMMRegister dst, XMMRegister src);
// Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
void comiss(XMMRegister dst, Address src);
void comiss(XMMRegister dst, XMMRegister src);
// Identify processor type and features
void cpuid() {
emit_byte(0x0F);
emit_byte(0xA2);
}
// Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
void cvtsd2ss(XMMRegister dst, XMMRegister src);
void cvtsd2ss(XMMRegister dst, Address src);
// Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
void cvtsi2sdl(XMMRegister dst, Register src);
void cvtsi2sdl(XMMRegister dst, Address src);
void cvtsi2sdq(XMMRegister dst, Register src);
void cvtsi2sdq(XMMRegister dst, Address src);
// Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
void cvtsi2ssl(XMMRegister dst, Register src);
void cvtsi2ssl(XMMRegister dst, Address src);
void cvtsi2ssq(XMMRegister dst, Register src);
void cvtsi2ssq(XMMRegister dst, Address src);
// Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
void cvtdq2pd(XMMRegister dst, XMMRegister src);
// Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
void cvtdq2ps(XMMRegister dst, XMMRegister src);
// Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtss2sd(XMMRegister dst, Address src);
// Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
void cvttsd2sil(Register dst, Address src);
void cvttsd2sil(Register dst, XMMRegister src);
void cvttsd2siq(Register dst, XMMRegister src);
// Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
void cvttss2sil(Register dst, XMMRegister src);
void cvttss2siq(Register dst, XMMRegister src);
// Divide Scalar Double-Precision Floating-Point Values
void divsd(XMMRegister dst, Address src);
void divsd(XMMRegister dst, XMMRegister src);
// Divide Scalar Single-Precision Floating-Point Values
void divss(XMMRegister dst, Address src);
void divss(XMMRegister dst, XMMRegister src);
void emms();
void fabs();
void fadd(int i);
void fadd_d(Address src);
void fadd_s(Address src);
// "Alternate" versions of x87 instructions place result down in FPU
// stack instead of on TOS
void fadda(int i); // "alternate" fadd
void faddp(int i = 1);
void fchs();
void fcom(int i);
void fcomp(int i = 1);
void fcomp_d(Address src);
void fcomp_s(Address src);
void fcompp();
void fcos();
void fdecstp();
void fdiv(int i);
void fdiv_d(Address src);
void fdivr_s(Address src);
void fdiva(int i); // "alternate" fdiv
void fdivp(int i = 1);
void fdivr(int i);
void fdivr_d(Address src);
void fdiv_s(Address src);
void fdivra(int i); // "alternate" reversed fdiv
void fdivrp(int i = 1);
void ffree(int i = 0);
void fild_d(Address adr);
void fild_s(Address adr);
void fincstp();
void finit();
void fist_s (Address adr);
void fistp_d(Address adr);
void fistp_s(Address adr);
void fld1();
void fld_d(Address adr);
void fld_s(Address adr);
void fld_s(int index);
void fld_x(Address adr); // extended-precision (80-bit) format
void fldcw(Address src);
void fldenv(Address src);
void fldlg2();
void fldln2();
void fldz();
void flog();
void flog10();
void fmul(int i);
void fmul_d(Address src);
void fmul_s(Address src);
void fmula(int i); // "alternate" fmul
void fmulp(int i = 1);
void fnsave(Address dst);
void fnstcw(Address src);
void fnstsw_ax();
void fprem();
void fprem1();
void frstor(Address src);
void fsin();
void fsqrt();
void fst_d(Address adr);
void fst_s(Address adr);
void fstp_d(Address adr);
void fstp_d(int index);
void fstp_s(Address adr);
void fstp_x(Address adr); // extended-precision (80-bit) format
void fsub(int i);
void fsub_d(Address src);
void fsub_s(Address src);
void fsuba(int i); // "alternate" fsub
void fsubp(int i = 1);
void fsubr(int i);
void fsubr_d(Address src);
void fsubr_s(Address src);
void fsubra(int i); // "alternate" reversed fsub
void fsubrp(int i = 1);
void ftan();
void ftst();
void fucomi(int i = 1);
void fucomip(int i = 1);
void fwait();
void fxch(int i = 1);
void fxrstor(Address src);
void fxsave(Address dst);
void fyl2x();
void frndint();
void f2xm1();
void fldl2e();
void hlt();
void idivl(Register src);
void divl(Register src); // Unsigned division
void idivq(Register src);
void imull(Register dst, Register src);
void imull(Register dst, Register src, int value);
void imulq(Register dst, Register src);
void imulq(Register dst, Register src, int value);
// jcc is the generic conditional branch generator to run-
// time routines, jcc is used for branches to labels. jcc
// takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// jcc(cc, L); // forward branch to unbound label
// bind(L); // bind label to the current pc
// jcc(cc, L); // backward branch to bound label
// bind(L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void jcc(Condition cc, Label& L, bool maybe_short = true);
// Conditional jump to a 8-bit offset to L.
// WARNING: be very careful using this for forward jumps. If the label is
// not bound within an 8-bit offset of this instruction, a run-time error
// will occur.
void jccb(Condition cc, Label& L);
void jmp(Address entry); // pc <- entry
// Label operations & relative jumps (PPUM Appendix D)
void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
void jmp(Register entry); // pc <- entry
// Unconditional 8-bit offset jump to L.
// WARNING: be very careful using this for forward jumps. If the label is
// not bound within an 8-bit offset of this instruction, a run-time error
// will occur.
void jmpb(Label& L);
void ldmxcsr( Address src );
void leal(Register dst, Address src);
void leaq(Register dst, Address src);
void lfence() {
emit_byte(0x0F);
emit_byte(0xAE);
emit_byte(0xE8);
}
void lock();
void lzcntl(Register dst, Register src);
#ifdef _LP64
void lzcntq(Register dst, Register src);
#endif
enum Membar_mask_bits {
StoreStore = 1 << 3,
LoadStore = 1 << 2,
StoreLoad = 1 << 1,
LoadLoad = 1 << 0
};
// Serializes memory and blows flags
void membar(Membar_mask_bits order_constraint) {
if (os::is_MP()) {
// We only have to handle StoreLoad
if (order_constraint & StoreLoad) {
// All usable chips support "locked" instructions which suffice
// as barriers, and are much faster than the alternative of
// using cpuid instruction. We use here a locked add [esp],0.
// This is conveniently otherwise a no-op except for blowing
// flags.
// Any change to this code may need to revisit other places in
// the code where this idiom is used, in particular the
// orderAccess code.
lock();
addl(Address(rsp, 0), 0);// Assert the lock# signal here
}
}
}
void mfence();
// Moves
void mov64(Register dst, int64_t imm64);
void movb(Address dst, Register src);
void movb(Address dst, int imm8);
void movb(Register dst, Address src);
void movdl(XMMRegister dst, Register src);
void movdl(Register dst, XMMRegister src);
void movdl(XMMRegister dst, Address src);
// Move Double Quadword
void movdq(XMMRegister dst, Register src);
void movdq(Register dst, XMMRegister src);
// Move Aligned Double Quadword
void movdqa(XMMRegister dst, XMMRegister src);
// Move Unaligned Double Quadword
void movdqu(Address dst, XMMRegister src);
void movdqu(XMMRegister dst, Address src);
void movdqu(XMMRegister dst, XMMRegister src);
void movl(Register dst, int32_t imm32);
void movl(Address dst, int32_t imm32);
void movl(Register dst, Register src);
void movl(Register dst, Address src);
void movl(Address dst, Register src);
// These dummies prevent using movl from converting a zero (like NULL) into Register
// by giving the compiler two choices it can't resolve
void movl(Address dst, void* junk);
void movl(Register dst, void* junk);
#ifdef _LP64
void movq(Register dst, Register src);
void movq(Register dst, Address src);
void movq(Address dst, Register src);
#endif
void movq(Address dst, MMXRegister src );
void movq(MMXRegister dst, Address src );
#ifdef _LP64
// These dummies prevent using movq from converting a zero (like NULL) into Register
// by giving the compiler two choices it can't resolve
void movq(Address dst, void* dummy);
void movq(Register dst, void* dummy);
#endif
// Move Quadword
void movq(Address dst, XMMRegister src);
void movq(XMMRegister dst, Address src);
void movsbl(Register dst, Address src);
void movsbl(Register dst, Register src);
#ifdef _LP64
void movsbq(Register dst, Address src);
void movsbq(Register dst, Register src);
// Move signed 32bit immediate to 64bit extending sign
void movslq(Address dst, int32_t imm64);
void movslq(Register dst, int32_t imm64);
void movslq(Register dst, Address src);
void movslq(Register dst, Register src);
void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
#endif
void movswl(Register dst, Address src);
void movswl(Register dst, Register src);
#ifdef _LP64
void movswq(Register dst, Address src);
void movswq(Register dst, Register src);
#endif
void movw(Address dst, int imm16);
void movw(Register dst, Address src);
void movw(Address dst, Register src);
void movzbl(Register dst, Address src);
void movzbl(Register dst, Register src);
#ifdef _LP64
void movzbq(Register dst, Address src);
void movzbq(Register dst, Register src);
#endif
void movzwl(Register dst, Address src);
void movzwl(Register dst, Register src);
#ifdef _LP64
void movzwq(Register dst, Address src);
void movzwq(Register dst, Register src);
#endif
void mull(Address src);
void mull(Register src);
// Multiply Scalar Double-Precision Floating-Point Values
void mulsd(XMMRegister dst, Address src);
void mulsd(XMMRegister dst, XMMRegister src);
// Multiply Scalar Single-Precision Floating-Point Values
void mulss(XMMRegister dst, Address src);
void mulss(XMMRegister dst, XMMRegister src);
void negl(Register dst);
#ifdef _LP64
void negq(Register dst);
#endif
void nop(int i = 1);
void notl(Register dst);
#ifdef _LP64
void notq(Register dst);
#endif
void orl(Address dst, int32_t imm32);
void orl(Register dst, int32_t imm32);
void orl(Register dst, Address src);
void orl(Register dst, Register src);
void orq(Address dst, int32_t imm32);
void orq(Register dst, int32_t imm32);
void orq(Register dst, Address src);
void orq(Register dst, Register src);
// Pack with unsigned saturation
void packuswb(XMMRegister dst, XMMRegister src);
void packuswb(XMMRegister dst, Address src);
// SSE4.2 string instructions
void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
void pcmpestri(XMMRegister xmm1, Address src, int imm8);
// SSE4.1 packed move
void pmovzxbw(XMMRegister dst, XMMRegister src);
void pmovzxbw(XMMRegister dst, Address src);
#ifndef _LP64 // no 32bit push/pop on amd64
void popl(Address dst);
#endif
#ifdef _LP64
void popq(Address dst);
#endif
void popcntl(Register dst, Address src);
void popcntl(Register dst, Register src);
#ifdef _LP64
void popcntq(Register dst, Address src);
void popcntq(Register dst, Register src);
#endif
// Prefetches (SSE, SSE2, 3DNOW only)
void prefetchnta(Address src);
void prefetchr(Address src);
void prefetcht0(Address src);
void prefetcht1(Address src);
void prefetcht2(Address src);
void prefetchw(Address src);
// POR - Bitwise logical OR
void por(XMMRegister dst, XMMRegister src);
void por(XMMRegister dst, Address src);
// Shuffle Packed Doublewords
void pshufd(XMMRegister dst, XMMRegister src, int mode);
void pshufd(XMMRegister dst, Address src, int mode);
// Shuffle Packed Low Words
void pshuflw(XMMRegister dst, XMMRegister src, int mode);
void pshuflw(XMMRegister dst, Address src, int mode);
// Shift Right by bits Logical Quadword Immediate
void psrlq(XMMRegister dst, int shift);
// Shift Right by bytes Logical DoubleQuadword Immediate
void psrldq(XMMRegister dst, int shift);
// Logical Compare Double Quadword
void ptest(XMMRegister dst, XMMRegister src);
void ptest(XMMRegister dst, Address src);
// Interleave Low Bytes
void punpcklbw(XMMRegister dst, XMMRegister src);
void punpcklbw(XMMRegister dst, Address src);
// Interleave Low Doublewords
void punpckldq(XMMRegister dst, XMMRegister src);
void punpckldq(XMMRegister dst, Address src);
#ifndef _LP64 // no 32bit push/pop on amd64
void pushl(Address src);
#endif
void pushq(Address src);
// Xor Packed Byte Integer Values
void pxor(XMMRegister dst, Address src);
void pxor(XMMRegister dst, XMMRegister src);
void rcll(Register dst, int imm8);
void rclq(Register dst, int imm8);
void ret(int imm16);
void sahf();
void sarl(Register dst, int imm8);
void sarl(Register dst);
void sarq(Register dst, int imm8);
void sarq(Register dst);
void sbbl(Address dst, int32_t imm32);
void sbbl(Register dst, int32_t imm32);
void sbbl(Register dst, Address src);
void sbbl(Register dst, Register src);
void sbbq(Address dst, int32_t imm32);
void sbbq(Register dst, int32_t imm32);
void sbbq(Register dst, Address src);
void sbbq(Register dst, Register src);
void setb(Condition cc, Register dst);
void shldl(Register dst, Register src);
void shll(Register dst, int imm8);
void shll(Register dst);
void shlq(Register dst, int imm8);
void shlq(Register dst);
void shrdl(Register dst, Register src);
void shrl(Register dst, int imm8);
void shrl(Register dst);
void shrq(Register dst, int imm8);
void shrq(Register dst);
void smovl(); // QQQ generic?
// Compute Square Root of Scalar Double-Precision Floating-Point Value
void sqrtsd(XMMRegister dst, Address src);
void sqrtsd(XMMRegister dst, XMMRegister src);
// Compute Square Root of Scalar Single-Precision Floating-Point Value
void sqrtss(XMMRegister dst, Address src);
void sqrtss(XMMRegister dst, XMMRegister src);
void std() { emit_byte(0xfd); }
void stmxcsr( Address dst );
void subl(Address dst, int32_t imm32);
void subl(Address dst, Register src);
void subl(Register dst, int32_t imm32);
void subl(Register dst, Address src);
void subl(Register dst, Register src);
void subq(Address dst, int32_t imm32);
void subq(Address dst, Register src);
void subq(Register dst, int32_t imm32);
void subq(Register dst, Address src);
void subq(Register dst, Register src);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void subl_imm32(Register dst, int32_t imm32);
void subq_imm32(Register dst, int32_t imm32);
// Subtract Scalar Double-Precision Floating-Point Values
void subsd(XMMRegister dst, Address src);
void subsd(XMMRegister dst, XMMRegister src);
// Subtract Scalar Single-Precision Floating-Point Values
void subss(XMMRegister dst, Address src);
void subss(XMMRegister dst, XMMRegister src);
void testb(Register dst, int imm8);
void testl(Register dst, int32_t imm32);
void testl(Register dst, Register src);
void testl(Register dst, Address src);
void testq(Register dst, int32_t imm32);
void testq(Register dst, Register src);
// Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
void ucomisd(XMMRegister dst, Address src);
void ucomisd(XMMRegister dst, XMMRegister src);
// Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
void ucomiss(XMMRegister dst, Address src);
void ucomiss(XMMRegister dst, XMMRegister src);
void xaddl(Address dst, Register src);
void xaddq(Address dst, Register src);
void xchgl(Register reg, Address adr);
void xchgl(Register dst, Register src);
void xchgq(Register reg, Address adr);
void xchgq(Register dst, Register src);
// Get Value of Extended Control Register
void xgetbv() {
emit_byte(0x0F);
emit_byte(0x01);
emit_byte(0xD0);
}
void xorl(Register dst, int32_t imm32);
void xorl(Register dst, Address src);
void xorl(Register dst, Register src);
void xorq(Register dst, Address src);
void xorq(Register dst, Register src);
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src);
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
void xorps(XMMRegister dst, XMMRegister src);
void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
// AVX 3-operands instructions (encoded with VEX prefix)
void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vaddss(XMMRegister dst, XMMRegister nds, Address src);
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vandpd(XMMRegister dst, XMMRegister nds, Address src);
void vandps(XMMRegister dst, XMMRegister nds, Address src);
void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vdivss(XMMRegister dst, XMMRegister nds, Address src);
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vmulss(XMMRegister dst, XMMRegister nds, Address src);
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vsubss(XMMRegister dst, XMMRegister nds, Address src);
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
void vxorpd(XMMRegister dst, XMMRegister nds, Address src);
void vxorps(XMMRegister dst, XMMRegister nds, Address src);
protected:
// Next instructions require address alignment 16 bytes SSE mode.
// They should be called only from corresponding MacroAssembler instructions.
void andpd(XMMRegister dst, Address src);
void andps(XMMRegister dst, Address src);
void xorpd(XMMRegister dst, Address src);
void xorps(XMMRegister dst, Address src);
};
// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
class MacroAssembler: public Assembler {
friend class LIR_Assembler;
friend class Runtime1; // as_Address()
protected:
Address as_Address(AddressLiteral adr);
Address as_Address(ArrayAddress adr);
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
#ifdef CC_INTERP
// c++ interpreter never wants to use interp_masm version of call_VM
#define VIRTUAL
#else
#define VIRTUAL virtual
#endif
VIRTUAL void call_VM_leaf_base(
address entry_point, // the entry point
int number_of_arguments // the number of arguments to pop after the call
);
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
// returns the register which contains the thread upon return. If a thread register has been
// specified, the return value will correspond to that register. If no last_java_sp is specified
// (noreg) than rsp will be used instead.
VIRTUAL void call_VM_base( // returns the register containing the thread upon return
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
bool check_exceptions // whether to check for pending exceptions after return
);
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
// helpers for FPU flag access
// tmp is a temporary register, if none is available use noreg
void save_rax (Register tmp);
void restore_rax(Register tmp);
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(intptr_t offset);
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
static void pd_print_patched_instruction(address branch);
#endif
// The following 4 methods return the offset of the appropriate move instruction
// Support for fast byte/short loading with zero extension (depending on particular CPU)
int load_unsigned_byte(Register dst, Address src);
int load_unsigned_short(Register dst, Address src);
// Support for fast byte/short loading with sign extension (depending on particular CPU)
int load_signed_byte(Register dst, Address src);
int load_signed_short(Register dst, Address src);
// Support for sign-extension (hi:lo = extend_sign(lo))
void extend_sign(Register hi, Register lo);
// Load and store values by size and signed-ness
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
// Support for inc/dec with optimal instruction selection depending on value
void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
void decrementl(Address dst, int value = 1);
void decrementl(Register reg, int value = 1);
void decrementq(Register reg, int value = 1);
void decrementq(Address dst, int value = 1);
void incrementl(Address dst, int value = 1);
void incrementl(Register reg, int value = 1);
void incrementq(Register reg, int value = 1);
void incrementq(Address dst, int value = 1);
// Support optimal SSE move instructions.
void movflt(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
else { movss (dst, src); return; }
}
void movflt(XMMRegister dst, Address src) { movss(dst, src); }
void movflt(XMMRegister dst, AddressLiteral src);
void movflt(Address dst, XMMRegister src) { movss(dst, src); }
void movdbl(XMMRegister dst, XMMRegister src) {
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
else { movsd (dst, src); return; }
}
void movdbl(XMMRegister dst, AddressLiteral src);
void movdbl(XMMRegister dst, Address src) {
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
else { movlpd(dst, src); return; }
}
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
void incrementl(AddressLiteral dst);
void incrementl(ArrayAddress dst);
// Alignment
void align(int modulus);
// A 5 byte nop that is safe for patching (see patch_verified_entry)
void fat_nop();
// Stack frame creation/removal
void enter();
void leave();
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
// The pointer will be loaded into the thread register.
void get_thread(Register thread);
// Support for VM calls
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
void call_VM(Register oop_result,
address entry_point,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
// Overloadings with last_Java_sp
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments = 0,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, bool
check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
// These always tightly bind to MacroAssembler::call_VM_base
// bypassing the virtual implementation
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
void call_VM_leaf(address entry_point,
int number_of_arguments = 0);
void call_VM_leaf(address entry_point,
Register arg_1);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2, Register arg_3);
// These always tightly bind to MacroAssembler::call_VM_leaf_base
// bypassing the virtual implementation
void super_call_VM_leaf(address entry_point);
void super_call_VM_leaf(address entry_point, Register arg_1);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
// last Java Frame (fills frame anchor)
void set_last_Java_frame(Register thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc);
// thread in the default location (r15_thread on 64bit)
void set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc);
void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
// thread in the default location (r15_thread on 64bit)
void reset_last_Java_frame(bool clear_fp, bool clear_pc);
// Stores
void store_check(Register obj); // store check for obj - register is destroyed afterwards
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
#ifndef SERIALGC
void g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call);
void g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2);
#endif // SERIALGC
// split store_check(Register obj) to enhance instruction interleaving
void store_check_part_1(Register obj);
void store_check_part_2(Register obj);
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
void c2bool(Register x);
// C++ bool manipulation
void movbool(Register dst, Address src);
void movbool(Address dst, bool boolconst);
void movbool(Address dst, Register src);
void testbool(Register dst);
// oop manipulations
void load_klass(Register dst, Register src);
void store_klass(Register dst, Register src);
void load_heap_oop(Register dst, Address src);
void load_heap_oop_not_null(Register dst, Address src);
void store_heap_oop(Address dst, Register src);
// Used for storing NULL. All other oop constants should be
// stored using routines that take a jobject.
void store_heap_oop_null(Address dst);
void load_prototype_header(Register dst, Register src);
#ifdef _LP64
void store_klass_gap(Register dst, Register src);
// This dummy is to prevent a call to store_heap_oop from
// converting a zero (like NULL) into a Register by giving
// the compiler two choices it can't resolve
void store_heap_oop(Address dst, void* dummy);
void encode_heap_oop(Register r);
void decode_heap_oop(Register r);
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
void set_narrow_oop(Register dst, jobject obj);
void set_narrow_oop(Address dst, jobject obj);
void cmp_narrow_oop(Register dst, jobject obj);
void cmp_narrow_oop(Address dst, jobject obj);
// if heap base register is used - reinit it with the correct value
void reinit_heapbase();
DEBUG_ONLY(void verify_heapbase(const char* msg);)
#endif // _LP64
// Int division/remainder for Java
// (as idivl, but checks for special case as described in JVM spec.)
// returns idivl instruction offset for implicit exception handling
int corrected_idivl(Register reg);
// Long division/remainder for Java
// (as idivq, but checks for special case as described in JVM spec.)
// returns idivq instruction offset for implicit exception handling
int corrected_idivq(Register reg);
void int3();
// Long operation macros for a 32bit cpu
// Long negation for Java
void lneg(Register hi, Register lo);
// Long multiplication for Java
// (destroys contents of eax, ebx, ecx and edx)
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
// Long shifts for Java
// (semantics as described in JVM spec.)
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
// Long compare for Java
// (semantics as described in JVM spec.)
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
// misc
// Sign extension
void sign_extend_short(Register reg);
void sign_extend_byte(Register reg);
// Division by power of 2, rounding towards 0
void division_with_shift(Register reg, int shift_value);
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
//
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
void fcmp(Register tmp);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
// Floating-point comparison for Java
// Compares the top-most stack entries on the FPU stack and stores the result in dst.
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// (semantics as described in JVM spec.)
void fcmp2int(Register dst, bool unordered_is_less);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
// tmp is a temporary register, if none is available use noreg
void fremr(Register tmp);
// same as fcmp2int, but using SSE2
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
// Inlined sin/cos generator for Java; must not use CPU instruction
// directly on Intel as it does not have high enough precision
// outside of the range [-pi/4, pi/4]. Extra argument indicate the
// number of FPU stack slots in use; all but the topmost will
// require saving if a slow case is necessary. Assumes argument is
// on FP TOS; result is on FP TOS. No cpu registers are changed by
// this code.
void trigfunc(char trig, int num_fpu_regs_in_use = 1);
// branch to L if FPU flag C2 is set/not set
// tmp is a temporary register, if none is available use noreg
void jC2 (Register tmp, Label& L);
void jnC2(Register tmp, Label& L);
// Pop ST (ffree & fincstp combined)
void fpop();
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void push_fTOS();
// pops double TOS element from CPU stack and pushes on FPU stack
void pop_fTOS();
void empty_FPU_stack();
void push_IU_state();
void pop_IU_state();
void push_FPU_state();
void pop_FPU_state();
void push_CPU_state();
void pop_CPU_state();
// Round up to a power of two
void round_to(Register reg, int modulus);
// Callee saved registers handling
void push_callee_saved_registers();
void pop_callee_saved_registers();
// allocation
void eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
void incr_allocated_bytes(Register thread,
Register var_size_in_bytes, int con_size_in_bytes,
Register t1 = noreg);
// interface method calling
void lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& no_such_interface);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be NULL, meaning take the fall-through.
// If super_check_offset is -1, the value is loaded up from super_klass.
// No registers are killed, except temp_reg.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
// The temp_reg and temp2_reg can be noreg, if no temps are available.
// Updates the sub's secondary super cache as necessary.
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
void check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes = false);
// Simplified, combined version, good for typical uses.
// Falls through on failure.
void check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success);
// method handles (JSR 292)
void check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type);
void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg);
void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
//----
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
// Debugging
// only if +VerifyOops
void verify_oop(Register reg, const char* s = "broken oop");
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
// only if +VerifyFPU
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
// prints msg, dumps registers and stops execution
void stop(const char* msg);
// prints msg and continues
void warn(const char* msg);
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
static void debug64(char* msg, int64_t pc, int64_t regs[]);
void os_breakpoint();
void untested() { stop("untested"); }
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
void should_not_reach_here() { stop("should not reach here"); }
void print_CPU_state();
// Stack overflow checking
void bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
movl(Address(rsp, (-offset)), rax);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. Also, clobbers tmp
void bang_stack_size(Register size, Register tmp);
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset);
// Support for serializing memory accesses between threads
void serialize_memory(Register thread, Register tmp);
void verify_tlab();
// Biased locking support
// lock_reg and obj_reg must be loaded up with the appropriate values.
// swap_reg must be rax, and is killed.
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will
// be killed; if not supplied, push/pop will be used internally to
// allocate a temporary (inefficient, avoid if possible).
// Optional slow case is for implementations (interpreter and C1) which branch to
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
// Returns offset of first potentially-faulting instruction for null
// check info (currently consumed only by C1). If
// swap_reg_contains_mark is true then returns -1 as it is assumed
// the calling code has already passed any potential faults.
int biased_locking_enter(Register lock_reg, Register obj_reg,
Register swap_reg, Register tmp_reg,
bool swap_reg_contains_mark,
Label& done, Label* slow_case = NULL,
BiasedLockingCounters* counters = NULL);
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
Condition negate_condition(Condition cond);
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
// operands. In general the names are modified to avoid hiding the instruction in Assembler
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers
// here in MacroAssembler. The major exception to this rule is call
// Arithmetics
void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
void addptr(Address dst, Register src);
void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
void addptr(Register dst, int32_t src);
void addptr(Register dst, Register src);
void addptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) addptr(dst, (int) src.as_constant());
else addptr(dst, src.as_register());
}
void andptr(Register dst, int32_t src);
void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
void cmp8(AddressLiteral src1, int imm);
// renamed to drag out the casting of address to int32_t/intptr_t
void cmp32(Register src1, int32_t imm);
void cmp32(AddressLiteral src1, int32_t imm);
// compare reg - mem, or reg - &mem
void cmp32(Register src1, AddressLiteral src2);
void cmp32(Register src1, Address src2);
#ifndef _LP64
void cmpoop(Address dst, jobject obj);
void cmpoop(Register dst, jobject obj);
#endif // _LP64
// NOTE src2 must be the lval. This is NOT an mem-mem compare
void cmpptr(Address src1, AddressLiteral src2);
void cmpptr(Register src1, AddressLiteral src2);
void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
// void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
// cmp64 to avoild hiding cmpq
void cmp64(Register src1, AddressLiteral src);
void cmpxchgptr(Register reg, Address adr);
void locked_cmpxchgptr(Register reg, AddressLiteral adr);
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
void shlptr(Register dst, int32_t shift);
void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
void shrptr(Register dst, int32_t shift);
void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
void subptr(Register dst, int32_t src);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void subptr_imm32(Register dst, int32_t src);
void subptr(Register dst, Register src);
void subptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) subptr(dst, (int) src.as_constant());
else subptr(dst, src.as_register());
}
void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
// Helper functions for statistics gathering.
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
void cond_inc32(Condition cond, AddressLiteral counter_addr);
// Unconditional atomic increment.
void atomic_incl(AddressLiteral counter_addr);
void lea(Register dst, AddressLiteral adr);
void lea(Address dst, AddressLiteral adr);
void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
void leal32(Register dst, Address src) { leal(dst, src); }
// Import other testl() methods from the parent class or else
// they will be hidden by the following overriding declaration.
using Assembler::testl;
void testl(Register dst, AddressLiteral src);
void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
void testptr(Register src1, Register src2);
void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
// Calls
void call(Label& L, relocInfo::relocType rtype);
void call(Register entry);
// NOTE: this call tranfers to the effective address of entry NOT
// the address contained by entry. This is because this is more natural
// for jumps/calls.
void call(AddressLiteral entry);
// Jumps
// NOTE: these jumps tranfer to the effective address of dst NOT
// the address contained by dst. This is because this is more natural
// for jumps/calls.
void jump(AddressLiteral dst);
void jump_cc(Condition cc, AddressLiteral dst);
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class. This jump will tranfers to the address
// contained in the location described by entry (not the address of entry)
void jump(ArrayAddress entry);
// Floating
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
void andpd(XMMRegister dst, AddressLiteral src);
void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
void andps(XMMRegister dst, AddressLiteral src);
void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, AddressLiteral src);
void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, AddressLiteral src);
void fadd_s(Address src) { Assembler::fadd_s(src); }
void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
void fldcw(Address src) { Assembler::fldcw(src); }
void fldcw(AddressLiteral src);
void fld_s(int index) { Assembler::fld_s(index); }
void fld_s(Address src) { Assembler::fld_s(src); }
void fld_s(AddressLiteral src);
void fld_d(Address src) { Assembler::fld_d(src); }
void fld_d(AddressLiteral src);
void fld_x(Address src) { Assembler::fld_x(src); }
void fld_x(AddressLiteral src);
void fmul_s(Address src) { Assembler::fmul_s(src); }
void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
void ldmxcsr(AddressLiteral src);
// compute pow(x,y) and exp(x) with x86 instructions. Don't cover
// all corner cases and may result in NaN and require fallback to a
// runtime call.
void fast_pow();
void fast_exp();
// computes exp(x). Fallback to runtime call included.
void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
// computes pow(x,y). Fallback to runtime call included.
void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
private:
// call runtime as a fallback for trig functions and pow/exp.
void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
// computes 2^(Ylog2X); Ylog2X in ST(0)
void pow_exp_core_encoding();
// computes pow(x,y) or exp(x). Fallback to runtime call included.
void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
// these are private because users should be doing movflt/movdbl
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, AddressLiteral src);
void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
void movlpd(XMMRegister dst, AddressLiteral src);
public:
void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
void addsd(XMMRegister dst, AddressLiteral src);
void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
void addss(XMMRegister dst, AddressLiteral src);
void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
void divsd(XMMRegister dst, AddressLiteral src);
void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
void divss(XMMRegister dst, AddressLiteral src);
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, AddressLiteral src);
void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
void mulsd(XMMRegister dst, AddressLiteral src);
void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
void mulss(XMMRegister dst, AddressLiteral src);
void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
void sqrtsd(XMMRegister dst, AddressLiteral src);
void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
void sqrtss(XMMRegister dst, AddressLiteral src);
void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
void subsd(XMMRegister dst, AddressLiteral src);
void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
void subss(XMMRegister dst, AddressLiteral src);
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, AddressLiteral src);
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, AddressLiteral src);
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, AddressLiteral src);
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, AddressLiteral src);
// AVX 3-operands instructions
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vandpd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vandpd(dst, nds, src); }
void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vandps(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vandps(dst, nds, src); }
void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vxorpd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vxorpd(dst, nds, src); }
void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
void vxorps(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vxorps(dst, nds, src); }
void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src);
// Data
void cmov32( Condition cc, Register dst, Address src);
void cmov32( Condition cc, Register dst, Register src);
void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
void movoop(Register dst, jobject obj);
void movoop(Address dst, jobject obj);
void movptr(ArrayAddress dst, Register src);
// can this do an lea?
void movptr(Register dst, ArrayAddress src);
void movptr(Register dst, Address src);
void movptr(Register dst, AddressLiteral src);
void movptr(Register dst, intptr_t src);
void movptr(Register dst, Register src);
void movptr(Address dst, intptr_t src);
void movptr(Address dst, Register src);
void movptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) movptr(dst, src.as_constant());
else movptr(dst, src.as_register());
}
#ifdef _LP64
// Generally the next two are only used for moving NULL
// Although there are situations in initializing the mark word where
// they could be used. They are dangerous.
// They only exist on LP64 so that int32_t and intptr_t are not the same
// and we have ambiguous declarations.
void movptr(Address dst, int32_t imm32);
void movptr(Register dst, int32_t imm32);
#endif // _LP64
// to avoid hiding movl
void mov32(AddressLiteral dst, Register src);
void mov32(Register dst, AddressLiteral src);
// to avoid hiding movb
void movbyte(ArrayAddress dst, int src);
// Can push value or effective address
void pushptr(AddressLiteral src);
void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
void pushoop(jobject obj);
// sign extend as need a l to ptr sized element
void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
// C2 compiled method's prolog code.
void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
// IndexOf strings.
// Small strings are loaded through stack if they cross page boundary.
void string_indexof(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp);
// IndexOf for constant substrings with size >= 8 elements
// which don't need to be loaded through stack.
void string_indexofC8(Register str1, Register str2,
Register cnt1, Register cnt2,
int int_cnt2, Register result,
XMMRegister vec, Register tmp);
// Smallest code: we don't need to load through stack,
// check string tail.
// Compare strings.
void string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
XMMRegister vec1);
// Compare char[] arrays.
void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register result, Register chr,
XMMRegister vec1, XMMRegister vec2);
// Fill primitive arrays
void generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp);
#undef VIRTUAL
};
/**
* class SkipIfEqual:
*
* Instantiating this class will result in assembly code being output that will
* jump around any code emitted between the creation of the instance and it's
* automatic destruction at the end of a scope block, depending on the value of
* the flag passed to the constructor, which will be checked at run-time.
*/
class SkipIfEqual {
private:
MacroAssembler* _masm;
Label _label;
public:
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
~SkipIfEqual();
};
#ifdef ASSERT
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif
#endif // CPU_X86_VM_ASSEMBLER_X86_HPP