7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose
/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_VM_NATIVEINST_SPARC_HPP
#define CPU_SPARC_VM_NATIVEINST_SPARC_HPP
#include "asm/assembler.hpp"
#include "memory/allocation.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
#include "utilities/top.hpp"
// We have interface for the following instructions:
// - NativeInstruction
// - - NativeCall
// - - NativeFarCall
// - - NativeMovConstReg
// - - NativeMovConstRegPatching
// - - NativeMovRegMem
// - - NativeMovRegMemPatching
// - - NativeJump
// - - NativeGeneralJump
// - - NativeIllegalInstruction
// The base class for different kinds of native instruction abstractions.
// Provides the primitive operations to manipulate code relative to this.
class NativeInstruction VALUE_OBJ_CLASS_SPEC {
friend class Relocation;
public:
enum Sparc_specific_constants {
nop_instruction_size = 4
};
bool is_dtrace_trap();
bool is_nop() { return long_at(0) == nop_instruction(); }
bool is_call() { return is_op(long_at(0), Assembler::call_op); }
bool is_sethi() { return (is_op2(long_at(0), Assembler::sethi_op2)
&& inv_rd(long_at(0)) != G0); }
bool sets_cc() {
// conservative (returns true for some instructions that do not set the
// the condition code, such as, "save".
// Does not return true for the deprecated tagged instructions, such as, TADDcc
int x = long_at(0);
return (is_op(x, Assembler::arith_op) &&
(inv_op3(x) & Assembler::cc_bit_op3) == Assembler::cc_bit_op3);
}
bool is_illegal();
bool is_zombie() {
int x = long_at(0);
return is_op3(x,
VM_Version::v9_instructions_work() ?
Assembler::ldsw_op3 : Assembler::lduw_op3,
Assembler::ldst_op)
&& Assembler::inv_rs1(x) == G0
&& Assembler::inv_rd(x) == O7;
}
bool is_ic_miss_trap(); // Inline-cache uses a trap to detect a miss
bool is_return() {
// is it the output of MacroAssembler::ret or MacroAssembler::retl?
int x = long_at(0);
const int pc_return_offset = 8; // see frame_sparc.hpp
return is_op3(x, Assembler::jmpl_op3, Assembler::arith_op)
&& (inv_rs1(x) == I7 || inv_rs1(x) == O7)
&& inv_immed(x) && inv_simm(x, 13) == pc_return_offset
&& inv_rd(x) == G0;
}
bool is_int_jump() {
// is it the output of MacroAssembler::b?
int x = long_at(0);
return is_op2(x, Assembler::bp_op2) || is_op2(x, Assembler::br_op2);
}
bool is_float_jump() {
// is it the output of MacroAssembler::fb?
int x = long_at(0);
return is_op2(x, Assembler::fbp_op2) || is_op2(x, Assembler::fb_op2);
}
bool is_jump() {
return is_int_jump() || is_float_jump();
}
bool is_cond_jump() {
int x = long_at(0);
return (is_int_jump() && Assembler::inv_cond(x) != Assembler::always) ||
(is_float_jump() && Assembler::inv_cond(x) != Assembler::f_always);
}
bool is_stack_bang() {
int x = long_at(0);
return is_op3(x, Assembler::stw_op3, Assembler::ldst_op) &&
(inv_rd(x) == G0) && (inv_rs1(x) == SP) && (inv_rs2(x) == G3_scratch);
}
bool is_prefetch() {
int x = long_at(0);
return is_op3(x, Assembler::prefetch_op3, Assembler::ldst_op);
}
bool is_membar() {
int x = long_at(0);
return is_op3(x, Assembler::membar_op3, Assembler::arith_op) &&
(inv_rd(x) == G0) && (inv_rs1(x) == O7);
}
bool is_safepoint_poll() {
int x = long_at(0);
#ifdef _LP64
return is_op3(x, Assembler::ldx_op3, Assembler::ldst_op) &&
#else
return is_op3(x, Assembler::lduw_op3, Assembler::ldst_op) &&
#endif
(inv_rd(x) == G0) && (inv_immed(x) ? Assembler::inv_simm13(x) == 0 : inv_rs2(x) == G0);
}
bool is_zero_test(Register ®);
bool is_load_store_with_small_offset(Register reg);
public:
#ifdef ASSERT
static int rdpc_instruction() { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) | Assembler::u_field(5, 18, 14) | Assembler::rd(O7); }
#else
// Temporary fix: in optimized mode, u_field is a macro for efficiency reasons (see Assembler::u_field) - needs to be fixed
static int rdpc_instruction() { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) | u_field(5, 18, 14) | Assembler::rd(O7); }
#endif
static int nop_instruction() { return Assembler::op(Assembler::branch_op) | Assembler::op2(Assembler::sethi_op2); }
static int illegal_instruction(); // the output of __ breakpoint_trap()
static int call_instruction(address destination, address pc) { return Assembler::op(Assembler::call_op) | Assembler::wdisp((intptr_t)destination, (intptr_t)pc, 30); }
static int branch_instruction(Assembler::op2s op2val, Assembler::Condition c, bool a) {
return Assembler::op(Assembler::branch_op) | Assembler::op2(op2val) | Assembler::annul(a) | Assembler::cond(c);
}
static int op3_instruction(Assembler::ops opval, Register rd, Assembler::op3s op3val, Register rs1, int simm13a) {
return Assembler::op(opval) | Assembler::rd(rd) | Assembler::op3(op3val) | Assembler::rs1(rs1) | Assembler::immed(true) | Assembler::simm(simm13a, 13);
}
static int sethi_instruction(Register rd, int imm22a) {
return Assembler::op(Assembler::branch_op) | Assembler::rd(rd) | Assembler::op2(Assembler::sethi_op2) | Assembler::hi22(imm22a);
}
protected:
address addr_at(int offset) const { return address(this) + offset; }
int long_at(int offset) const { return *(int*)addr_at(offset); }
void set_long_at(int offset, int i); /* deals with I-cache */
void set_jlong_at(int offset, jlong i); /* deals with I-cache */
void set_addr_at(int offset, address x); /* deals with I-cache */
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const { return addr_at(BytesPerInstWord); }
static bool is_op( int x, Assembler::ops opval) {
return Assembler::inv_op(x) == opval;
}
static bool is_op2(int x, Assembler::op2s op2val) {
return Assembler::inv_op(x) == Assembler::branch_op && Assembler::inv_op2(x) == op2val;
}
static bool is_op3(int x, Assembler::op3s op3val, Assembler::ops opval) {
return Assembler::inv_op(x) == opval && Assembler::inv_op3(x) == op3val;
}
// utilities to help subclasses decode:
static Register inv_rd( int x ) { return Assembler::inv_rd( x); }
static Register inv_rs1( int x ) { return Assembler::inv_rs1(x); }
static Register inv_rs2( int x ) { return Assembler::inv_rs2(x); }
static bool inv_immed( int x ) { return Assembler::inv_immed(x); }
static bool inv_annul( int x ) { return (Assembler::annul(true) & x) != 0; }
static int inv_cond( int x ) { return Assembler::inv_cond(x); }
static int inv_op( int x ) { return Assembler::inv_op( x); }
static int inv_op2( int x ) { return Assembler::inv_op2(x); }
static int inv_op3( int x ) { return Assembler::inv_op3(x); }
static int inv_simm( int x, int nbits ) { return Assembler::inv_simm(x, nbits); }
static intptr_t inv_wdisp( int x, int nbits ) { return Assembler::inv_wdisp( x, 0, nbits); }
static intptr_t inv_wdisp16( int x ) { return Assembler::inv_wdisp16(x, 0); }
static int branch_destination_offset(int x) { return Assembler::branch_destination(x, 0); }
static int patch_branch_destination_offset(int dest_offset, int x) {
return Assembler::patched_branch(dest_offset, x, 0);
}
void set_annul_bit() { set_long_at(0, long_at(0) | Assembler::annul(true)); }
// utility for checking if x is either of 2 small constants
static bool is_either(int x, int k1, int k2) {
// return x == k1 || x == k2;
return (1 << x) & (1 << k1 | 1 << k2);
}
// utility for checking overflow of signed instruction fields
static bool fits_in_simm(int x, int nbits) {
// cf. Assembler::assert_signed_range()
// return -(1 << nbits-1) <= x && x < ( 1 << nbits-1),
return (unsigned)(x + (1 << nbits-1)) < (unsigned)(1 << nbits);
}
// set a signed immediate field
static int set_simm(int insn, int imm, int nbits) {
return (insn &~ Assembler::simm(-1, nbits)) | Assembler::simm(imm, nbits);
}
// set a wdisp field (disp should be the difference of two addresses)
static int set_wdisp(int insn, intptr_t disp, int nbits) {
return (insn &~ Assembler::wdisp((intptr_t)-4, (intptr_t)0, nbits)) | Assembler::wdisp(disp, 0, nbits);
}
static int set_wdisp16(int insn, intptr_t disp) {
return (insn &~ Assembler::wdisp16((intptr_t)-4, 0)) | Assembler::wdisp16(disp, 0);
}
// get a simm13 field from an arithmetic or memory instruction
static int get_simm13(int insn) {
assert(is_either(Assembler::inv_op(insn),
Assembler::arith_op, Assembler::ldst_op) &&
(insn & Assembler::immed(true)), "must have a simm13 field");
return Assembler::inv_simm(insn, 13);
}
// set the simm13 field of an arithmetic or memory instruction
static bool set_simm13(int insn, int imm) {
get_simm13(insn); // tickle the assertion check
return set_simm(insn, imm, 13);
}
// combine the fields of a sethi stream (7 instructions ) and an add, jmp or ld/st
static intptr_t data64( address pc, int arith_insn ) {
assert(is_op2(*(unsigned int *)pc, Assembler::sethi_op2), "must be sethi");
intptr_t hi = (intptr_t)gethi( (unsigned int *)pc );
intptr_t lo = (intptr_t)get_simm13(arith_insn);
assert((unsigned)lo < (1 << 10), "offset field of set_oop must be 10 bits");
return hi | lo;
}
// Regenerate the instruction sequence that performs the 64 bit
// sethi. This only does the sethi. The disp field (bottom 10 bits)
// must be handled separately.
static void set_data64_sethi(address instaddr, intptr_t x);
static void verify_data64_sethi(address instaddr, intptr_t x);
// combine the fields of a sethi/simm13 pair (simm13 = or, add, jmpl, ld/st)
static int data32(int sethi_insn, int arith_insn) {
assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
int hi = Assembler::inv_hi22(sethi_insn);
int lo = get_simm13(arith_insn);
assert((unsigned)lo < (1 << 10), "offset field of set_oop must be 10 bits");
return hi | lo;
}
static int set_data32_sethi(int sethi_insn, int imm) {
// note that Assembler::hi22 clips the low 10 bits for us
assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
return (sethi_insn &~ Assembler::hi22(-1)) | Assembler::hi22(imm);
}
static int set_data32_simm13(int arith_insn, int imm) {
get_simm13(arith_insn); // tickle the assertion check
int imm10 = Assembler::low10(imm);
return (arith_insn &~ Assembler::simm(-1, 13)) | Assembler::simm(imm10, 13);
}
static int low10(int imm) {
return Assembler::low10(imm);
}
// Perform the inverse of the LP64 Macroassembler::sethi
// routine. Extracts the 54 bits of address from the instruction
// stream. This routine must agree with the sethi routine in
// assembler_inline_sparc.hpp
static address gethi( unsigned int *pc ) {
int i = 0;
uintptr_t adr;
// We first start out with the real sethi instruction
assert(is_op2(*pc, Assembler::sethi_op2), "in gethi - must be sethi");
adr = (unsigned int)Assembler::inv_hi22( *(pc++) );
i++;
while ( i < 7 ) {
// We're done if we hit a nop
if ( (int)*pc == nop_instruction() ) break;
assert ( Assembler::inv_op(*pc) == Assembler::arith_op, "in gethi - must be arith_op" );
switch ( Assembler::inv_op3(*pc) ) {
case Assembler::xor_op3:
adr ^= (intptr_t)get_simm13( *pc );
return ( (address)adr );
break;
case Assembler::sll_op3:
adr <<= ( *pc & 0x3f );
break;
case Assembler::or_op3:
adr |= (intptr_t)get_simm13( *pc );
break;
default:
assert ( 0, "in gethi - Should not reach here" );
break;
}
pc++;
i++;
}
return ( (address)adr );
}
public:
void verify();
void print();
// unit test stuff
static void test() {} // override for testing
inline friend NativeInstruction* nativeInstruction_at(address address);
};
inline NativeInstruction* nativeInstruction_at(address address) {
NativeInstruction* inst = (NativeInstruction*)address;
#ifdef ASSERT
inst->verify();
#endif
return inst;
}
//-----------------------------------------------------------------------------
// The NativeCall is an abstraction for accessing/manipulating native call imm32 instructions.
// (used to manipulate inline caches, primitive & dll calls, etc.)
inline NativeCall* nativeCall_at(address instr);
inline NativeCall* nativeCall_overwriting_at(address instr,
address destination);
inline NativeCall* nativeCall_before(address return_address);
class NativeCall: public NativeInstruction {
public:
enum Sparc_specific_constants {
instruction_size = 8,
return_address_offset = 8,
call_displacement_width = 30,
displacement_offset = 0,
instruction_offset = 0
};
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const { return addr_at(instruction_size); }
address return_address() const { return addr_at(return_address_offset); }
address destination() const { return inv_wdisp(long_at(0), call_displacement_width) + instruction_address(); }
address displacement_address() const { return addr_at(displacement_offset); }
void set_destination(address dest) { set_long_at(0, set_wdisp(long_at(0), dest - instruction_address(), call_displacement_width)); }
void set_destination_mt_safe(address dest);
void verify_alignment() {} // do nothing on sparc
void verify();
void print();
// unit test stuff
static void test();
// Creation
friend inline NativeCall* nativeCall_at(address instr);
friend NativeCall* nativeCall_overwriting_at(address instr, address destination = NULL) {
// insert a "blank" call:
NativeCall* call = (NativeCall*)instr;
call->set_long_at(0 * BytesPerInstWord, call_instruction(destination, instr));
call->set_long_at(1 * BytesPerInstWord, nop_instruction());
assert(call->addr_at(2 * BytesPerInstWord) - instr == instruction_size, "instruction size");
// check its structure now:
assert(nativeCall_at(instr)->destination() == destination, "correct call destination");
return call;
}
friend inline NativeCall* nativeCall_before(address return_address) {
NativeCall* call = (NativeCall*)(return_address - return_address_offset);
#ifdef ASSERT
call->verify();
#endif
return call;
}
static bool is_call_at(address instr) {
return nativeInstruction_at(instr)->is_call();
}
static bool is_call_before(address instr) {
return nativeInstruction_at(instr - return_address_offset)->is_call();
}
static bool is_call_to(address instr, address target) {
return nativeInstruction_at(instr)->is_call() &&
nativeCall_at(instr)->destination() == target;
}
// MT-safe patching of a call instruction.
static void insert(address code_pos, address entry) {
(void)nativeCall_overwriting_at(code_pos, entry);
}
static void replace_mt_safe(address instr_addr, address code_buffer);
};
inline NativeCall* nativeCall_at(address instr) {
NativeCall* call = (NativeCall*)instr;
#ifdef ASSERT
call->verify();
#endif
return call;
}
// The NativeFarCall is an abstraction for accessing/manipulating native call-anywhere
// instructions in the sparcv9 vm. Used to call native methods which may be loaded
// anywhere in the address space, possibly out of reach of a call instruction.
#ifndef _LP64
// On 32-bit systems, a far call is the same as a near one.
class NativeFarCall;
inline NativeFarCall* nativeFarCall_at(address instr);
class NativeFarCall : public NativeCall {
public:
friend inline NativeFarCall* nativeFarCall_at(address instr) { return (NativeFarCall*)nativeCall_at(instr); }
friend NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL)
{ return (NativeFarCall*)nativeCall_overwriting_at(instr, destination); }
friend NativeFarCall* nativeFarCall_before(address return_address)
{ return (NativeFarCall*)nativeCall_before(return_address); }
};
#else
// The format of this extended-range call is:
// jumpl_to addr, lreg
// == sethi %hi54(addr), O7 ; jumpl O7, %lo10(addr), O7 ; <delay>
// That is, it is essentially the same as a NativeJump.
class NativeFarCall;
inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination);
inline NativeFarCall* nativeFarCall_at(address instr);
class NativeFarCall: public NativeInstruction {
public:
enum Sparc_specific_constants {
// instruction_size includes the delay slot instruction.
instruction_size = 9 * BytesPerInstWord,
return_address_offset = 9 * BytesPerInstWord,
jmpl_offset = 7 * BytesPerInstWord,
displacement_offset = 0,
instruction_offset = 0
};
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const { return addr_at(instruction_size); }
address return_address() const { return addr_at(return_address_offset); }
address destination() const {
return (address) data64(addr_at(0), long_at(jmpl_offset));
}
address displacement_address() const { return addr_at(displacement_offset); }
void set_destination(address dest);
bool destination_is_compiled_verified_entry_point();
void verify();
void print();
// unit test stuff
static void test();
// Creation
friend inline NativeFarCall* nativeFarCall_at(address instr) {
NativeFarCall* call = (NativeFarCall*)instr;
#ifdef ASSERT
call->verify();
#endif
return call;
}
friend inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL) {
Unimplemented();
NativeFarCall* call = (NativeFarCall*)instr;
return call;
}
friend NativeFarCall* nativeFarCall_before(address return_address) {
NativeFarCall* call = (NativeFarCall*)(return_address - return_address_offset);
#ifdef ASSERT
call->verify();
#endif
return call;
}
static bool is_call_at(address instr);
// MT-safe patching of a call instruction.
static void insert(address code_pos, address entry) {
(void)nativeFarCall_overwriting_at(code_pos, entry);
}
static void replace_mt_safe(address instr_addr, address code_buffer);
};
#endif // _LP64
// An interface for accessing/manipulating native set_oop imm, reg instructions.
// (used to manipulate inlined data references, etc.)
// set_oop imm, reg
// == sethi %hi22(imm), reg ; add reg, %lo10(imm), reg
class NativeMovConstReg;
inline NativeMovConstReg* nativeMovConstReg_at(address address);
class NativeMovConstReg: public NativeInstruction {
public:
enum Sparc_specific_constants {
sethi_offset = 0,
#ifdef _LP64
add_offset = 7 * BytesPerInstWord,
instruction_size = 8 * BytesPerInstWord
#else
add_offset = 4,
instruction_size = 8
#endif
};
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const { return addr_at(instruction_size); }
// (The [set_]data accessor respects oop_type relocs also.)
intptr_t data() const;
void set_data(intptr_t x);
// report the destination register
Register destination() { return inv_rd(long_at(sethi_offset)); }
void verify();
void print();
// unit test stuff
static void test();
// Creation
friend inline NativeMovConstReg* nativeMovConstReg_at(address address) {
NativeMovConstReg* test = (NativeMovConstReg*)address;
#ifdef ASSERT
test->verify();
#endif
return test;
}
friend NativeMovConstReg* nativeMovConstReg_before(address address) {
NativeMovConstReg* test = (NativeMovConstReg*)(address - instruction_size);
#ifdef ASSERT
test->verify();
#endif
return test;
}
};
// An interface for accessing/manipulating native set_oop imm, reg instructions.
// (used to manipulate inlined data references, etc.)
// set_oop imm, reg
// == sethi %hi22(imm), reg; nop; add reg, %lo10(imm), reg
//
// Note that it is identical to NativeMovConstReg with the exception of a nop between the
// sethi and the add. The nop is required to be in the delay slot of the call instruction
// which overwrites the sethi during patching.
class NativeMovConstRegPatching;
inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address);class NativeMovConstRegPatching: public NativeInstruction {
public:
enum Sparc_specific_constants {
sethi_offset = 0,
#ifdef _LP64
nop_offset = 7 * BytesPerInstWord,
#else
nop_offset = sethi_offset + BytesPerInstWord,
#endif
add_offset = nop_offset + BytesPerInstWord,
instruction_size = add_offset + BytesPerInstWord
};
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const { return addr_at(instruction_size); }
// (The [set_]data accessor respects oop_type relocs also.)
int data() const;
void set_data(int x);
// report the destination register
Register destination() { return inv_rd(long_at(sethi_offset)); }
void verify();
void print();
// unit test stuff
static void test();
// Creation
friend inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)address;
#ifdef ASSERT
test->verify();
#endif
return test;
}
friend NativeMovConstRegPatching* nativeMovConstRegPatching_before(address address) {
NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_size);
#ifdef ASSERT
test->verify();
#endif
return test;
}
};
// An interface for accessing/manipulating native memory ops
// ld* [reg + offset], reg
// st* reg, [reg + offset]
// sethi %hi(imm), reg; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
// sethi %hi(imm), reg; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
//
class NativeMovRegMem;
inline NativeMovRegMem* nativeMovRegMem_at (address address);
class NativeMovRegMem: public NativeInstruction {
public:
enum Sparc_specific_constants {
op3_mask_ld = 1 << Assembler::lduw_op3 |
1 << Assembler::ldub_op3 |
1 << Assembler::lduh_op3 |
1 << Assembler::ldd_op3 |
1 << Assembler::ldsw_op3 |
1 << Assembler::ldsb_op3 |
1 << Assembler::ldsh_op3 |
1 << Assembler::ldx_op3,
op3_mask_st = 1 << Assembler::stw_op3 |
1 << Assembler::stb_op3 |
1 << Assembler::sth_op3 |
1 << Assembler::std_op3 |
1 << Assembler::stx_op3,
op3_ldst_int_limit = Assembler::ldf_op3,
op3_mask_ldf = 1 << (Assembler::ldf_op3 - op3_ldst_int_limit) |
1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
op3_mask_stf = 1 << (Assembler::stf_op3 - op3_ldst_int_limit) |
1 << (Assembler::stdf_op3 - op3_ldst_int_limit),
offset_width = 13,
sethi_offset = 0,
#ifdef _LP64
add_offset = 7 * BytesPerInstWord,
#else
add_offset = 4,
#endif
ldst_offset = add_offset + BytesPerInstWord
};
bool is_immediate() const {
// check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
int i0 = long_at(0);
return (is_op(i0, Assembler::ldst_op));
}
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const {
#ifdef _LP64
return addr_at(is_immediate() ? 4 : (7 * BytesPerInstWord));
#else
return addr_at(is_immediate() ? 4 : 12);
#endif
}
intptr_t offset() const {
return is_immediate()? inv_simm(long_at(0), offset_width) :
nativeMovConstReg_at(addr_at(0))->data();
}
void set_offset(intptr_t x) {
if (is_immediate()) {
guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
set_long_at(0, set_simm(long_at(0), x, offset_width));
} else
nativeMovConstReg_at(addr_at(0))->set_data(x);
}
void add_offset_in_bytes(intptr_t radd_offset) {
set_offset (offset() + radd_offset);
}
void copy_instruction_to(address new_instruction_address);
void verify();
void print ();
// unit test stuff
static void test();
private:
friend inline NativeMovRegMem* nativeMovRegMem_at (address address) {
NativeMovRegMem* test = (NativeMovRegMem*)address;
#ifdef ASSERT
test->verify();
#endif
return test;
}
};
// An interface for accessing/manipulating native memory ops
// ld* [reg + offset], reg
// st* reg, [reg + offset]
// sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
// sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
//
// Note that it is identical to NativeMovRegMem with the exception of a nop between the
// sethi and the add. The nop is required to be in the delay slot of the call instruction
// which overwrites the sethi during patching.
class NativeMovRegMemPatching;
inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address);
class NativeMovRegMemPatching: public NativeInstruction {
public:
enum Sparc_specific_constants {
op3_mask_ld = 1 << Assembler::lduw_op3 |
1 << Assembler::ldub_op3 |
1 << Assembler::lduh_op3 |
1 << Assembler::ldd_op3 |
1 << Assembler::ldsw_op3 |
1 << Assembler::ldsb_op3 |
1 << Assembler::ldsh_op3 |
1 << Assembler::ldx_op3,
op3_mask_st = 1 << Assembler::stw_op3 |
1 << Assembler::stb_op3 |
1 << Assembler::sth_op3 |
1 << Assembler::std_op3 |
1 << Assembler::stx_op3,
op3_ldst_int_limit = Assembler::ldf_op3,
op3_mask_ldf = 1 << (Assembler::ldf_op3 - op3_ldst_int_limit) |
1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
op3_mask_stf = 1 << (Assembler::stf_op3 - op3_ldst_int_limit) |
1 << (Assembler::stdf_op3 - op3_ldst_int_limit),
offset_width = 13,
sethi_offset = 0,
#ifdef _LP64
nop_offset = 7 * BytesPerInstWord,
#else
nop_offset = 4,
#endif
add_offset = nop_offset + BytesPerInstWord,
ldst_offset = add_offset + BytesPerInstWord
};
bool is_immediate() const {
// check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
int i0 = long_at(0);
return (is_op(i0, Assembler::ldst_op));
}
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const {
return addr_at(is_immediate()? 4 : 16);
}
int offset() const {
return is_immediate()? inv_simm(long_at(0), offset_width) :
nativeMovConstRegPatching_at(addr_at(0))->data();
}
void set_offset(int x) {
if (is_immediate()) {
guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
set_long_at(0, set_simm(long_at(0), x, offset_width));
}
else
nativeMovConstRegPatching_at(addr_at(0))->set_data(x);
}
void add_offset_in_bytes(intptr_t radd_offset) {
set_offset (offset() + radd_offset);
}
void copy_instruction_to(address new_instruction_address);
void verify();
void print ();
// unit test stuff
static void test();
private:
friend inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)address;
#ifdef ASSERT
test->verify();
#endif
return test;
}
};
// An interface for accessing/manipulating native jumps
// jump_to addr
// == sethi %hi22(addr), temp ; jumpl reg, %lo10(addr), G0 ; <delay>
// jumpl_to addr, lreg
// == sethi %hi22(addr), temp ; jumpl reg, %lo10(addr), lreg ; <delay>
class NativeJump;
inline NativeJump* nativeJump_at(address address);
class NativeJump: public NativeInstruction {
private:
void guarantee_displacement(int disp, int width) {
guarantee(fits_in_simm(disp, width + 2), "branch displacement overflow");
}
public:
enum Sparc_specific_constants {
sethi_offset = 0,
#ifdef _LP64
jmpl_offset = 7 * BytesPerInstWord,
instruction_size = 9 * BytesPerInstWord // includes delay slot
#else
jmpl_offset = 1 * BytesPerInstWord,
instruction_size = 3 * BytesPerInstWord // includes delay slot
#endif
};
address instruction_address() const { return addr_at(0); }
address next_instruction_address() const { return addr_at(instruction_size); }
#ifdef _LP64
address jump_destination() const {
return (address) data64(instruction_address(), long_at(jmpl_offset));
}
void set_jump_destination(address dest) {
set_data64_sethi( instruction_address(), (intptr_t)dest);
set_long_at(jmpl_offset, set_data32_simm13( long_at(jmpl_offset), (intptr_t)dest));
}
#else
address jump_destination() const {
return (address) data32(long_at(sethi_offset), long_at(jmpl_offset));
}
void set_jump_destination(address dest) {
set_long_at(sethi_offset, set_data32_sethi( long_at(sethi_offset), (intptr_t)dest));
set_long_at(jmpl_offset, set_data32_simm13( long_at(jmpl_offset), (intptr_t)dest));
}
#endif
// Creation
friend inline NativeJump* nativeJump_at(address address) {
NativeJump* jump = (NativeJump*)address;
#ifdef ASSERT
jump->verify();
#endif
return jump;
}
void verify();
void print();
// Unit testing stuff
static void test();
// Insertion of native jump instruction
static void insert(address code_pos, address entry);
// MT-safe insertion of native jump at verified method entry
static void check_verified_entry_alignment(address entry, address verified_entry) {
// nothing to do for sparc.
}
static void patch_verified_entry(address entry, address verified_entry, address dest);
};
// Despite the name, handles only simple branches.
class NativeGeneralJump;
inline NativeGeneralJump* nativeGeneralJump_at(address address);
class NativeGeneralJump: public NativeInstruction {
public:
enum Sparc_specific_constants {
instruction_size = 8
};
address instruction_address() const { return addr_at(0); }
address jump_destination() const { return addr_at(0) + branch_destination_offset(long_at(0)); }
void set_jump_destination(address dest) {
int patched_instr = patch_branch_destination_offset(dest - addr_at(0), long_at(0));
set_long_at(0, patched_instr);
}
void set_annul() { set_annul_bit(); }
NativeInstruction *delay_slot_instr() { return nativeInstruction_at(addr_at(4));}
void fill_delay_slot(int instr) { set_long_at(4, instr);}
Assembler::Condition condition() {
int x = long_at(0);
return (Assembler::Condition) Assembler::inv_cond(x);
}
// Creation
friend inline NativeGeneralJump* nativeGeneralJump_at(address address) {
NativeGeneralJump* jump = (NativeGeneralJump*)(address);
#ifdef ASSERT
jump->verify();
#endif
return jump;
}
// Insertion of native general jump instruction
static void insert_unconditional(address code_pos, address entry);
static void replace_mt_safe(address instr_addr, address code_buffer);
void verify();
};
class NativeIllegalInstruction: public NativeInstruction {
public:
enum Sparc_specific_constants {
instruction_size = 4
};
// Insert illegal opcode as specific address
static void insert(address code_pos);
};
#endif // CPU_SPARC_VM_NATIVEINST_SPARC_HPP