/*
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// A "SharedHeap" is an implementation of a java heap for HotSpot. This
// is an abstract class: there may be many different kinds of heaps. This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.
class PermGen;
class Generation;
class BarrierSet;
class GenRemSet;
class Space;
class SpaceClosure;
class OopClosure;
class OopsInGenClosure;
class ObjectClosure;
class SubTasksDone;
class WorkGang;
class CollectorPolicy;
class KlassHandle;
class SharedHeap : public CollectedHeap {
friend class VMStructs;
friend class VM_GC_Operation;
friend class VM_CGC_Operation;
private:
// For claiming strong_roots tasks.
SubTasksDone* _process_strong_tasks;
protected:
// There should be only a single instance of "SharedHeap" in a program.
// This is enforced with the protected constructor below, which will also
// set the static pointer "_sh" to that instance.
static SharedHeap* _sh;
// All heaps contain a "permanent generation." This is some ways
// similar to a generation in a generational system, in other ways not.
// See the "PermGen" class.
PermGen* _perm_gen;
// and the Gen Remembered Set, at least one good enough to scan the perm
// gen.
GenRemSet* _rem_set;
// A gc policy, controls global gc resource issues
CollectorPolicy *_collector_policy;
// See the discussion below, in the specification of the reader function
// for this variable.
int _strong_roots_parity;
// If we're doing parallel GC, use this gang of threads.
WorkGang* _workers;
// Number of parallel threads currently working on GC tasks.
// O indicates use sequential code; 1 means use parallel code even with
// only one thread, for performance testing purposes.
int _n_par_threads;
// Full initialization is done in a concrete subtype's "initialize"
// function.
SharedHeap(CollectorPolicy* policy_);
// Returns true if the calling thread holds the heap lock,
// or the calling thread is a par gc thread and the heap_lock is held
// by the vm thread doing a gc operation.
bool heap_lock_held_for_gc();
// True if the heap_lock is held by the a non-gc thread invoking a gc
// operation.
bool _thread_holds_heap_lock_for_gc;
public:
static SharedHeap* heap() { return _sh; }
CollectorPolicy *collector_policy() const { return _collector_policy; }
void set_barrier_set(BarrierSet* bs);
// Does operations required after initialization has been done.
virtual void post_initialize();
// Initialization of ("weak") reference processing support
virtual void ref_processing_init();
void set_perm(PermGen* perm_gen) { _perm_gen = perm_gen; }
// This function returns the "GenRemSet" object that allows us to scan
// generations; at least the perm gen, possibly more in a fully
// generational heap.
GenRemSet* rem_set() { return _rem_set; }
// These function return the "permanent" generation, in which
// reflective objects are allocated and stored. Two versions, the second
// of which returns the view of the perm gen as a generation.
PermGen* perm() const { return _perm_gen; }
Generation* perm_gen() const { return _perm_gen->as_gen(); }
// Iteration functions.
void oop_iterate(OopClosure* cl) = 0;
// Same as above, restricted to a memory region.
virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
// Iterate over all objects allocated since the last collection, calling
// "cl->do_object" on each. The heap must have been initialized properly
// to support this function, or else this call will fail.
virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
// Iterate over all spaces in use in the heap, in an undefined order.
virtual void space_iterate(SpaceClosure* cl) = 0;
// A SharedHeap will contain some number of spaces. This finds the
// space whose reserved area contains the given address, or else returns
// NULL.
virtual Space* space_containing(const void* addr) const = 0;
bool no_gc_in_progress() { return !is_gc_active(); }
// Some collectors will perform "process_strong_roots" in parallel.
// Such a call will involve claiming some fine-grained tasks, such as
// scanning of threads. To make this process simpler, we provide the
// "strong_roots_parity()" method. Collectors that start parallel tasks
// whose threads invoke "process_strong_roots" must
// call "change_strong_roots_parity" in sequential code starting such a
// task. (This also means that a parallel thread may only call
// process_strong_roots once.)
//
// For calls to process_strong_roots by sequential code, the parity is
// updated automatically.
//
// The idea is that objects representing fine-grained tasks, such as
// threads, will contain a "parity" field. A task will is claimed in the
// current "process_strong_roots" call only if its parity field is the
// same as the "strong_roots_parity"; task claiming is accomplished by
// updating the parity field to the strong_roots_parity with a CAS.
//
// If the client meats this spec, then strong_roots_parity() will have
// the following properties:
// a) to return a different value than was returned before the last
// call to change_strong_roots_parity, and
// c) to never return a distinguished value (zero) with which such
// task-claiming variables may be initialized, to indicate "never
// claimed".
void change_strong_roots_parity();
int strong_roots_parity() { return _strong_roots_parity; }
enum ScanningOption {
SO_None = 0x0,
SO_AllClasses = 0x1,
SO_SystemClasses = 0x2,
SO_Symbols = 0x4,
SO_Strings = 0x8,
SO_CodeCache = 0x10
};
WorkGang* workers() const { return _workers; }
// Sets the number of parallel threads that will be doing tasks
// (such as process strong roots) subsequently.
virtual void set_par_threads(int t);
// Number of threads currently working on GC tasks.
int n_par_threads() { return _n_par_threads; }
// Invoke the "do_oop" method the closure "roots" on all root locations.
// If "collecting_perm_gen" is false, then roots that may only contain
// references to permGen objects are not scanned. If true, the
// "perm_gen" closure is applied to all older-to-younger refs in the
// permanent generation. The "so" argument determines which of roots
// the closure is applied to:
// "SO_None" does none;
// "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
// "SO_SystemClasses" to all the "system" classes and loaders;
// "SO_Symbols" applies the closure to all entries in SymbolsTable;
// "SO_Strings" applies the closure to all entries in StringTable;
// "SO_CodeCache" applies the closure to all elements of the CodeCache.
void process_strong_roots(bool collecting_perm_gen,
ScanningOption so,
OopClosure* roots,
OopsInGenClosure* perm_blk);
// Apply "blk" to all the weak roots of the system. These include
// JNI weak roots, the code cache, system dictionary, symbol table,
// string table.
void process_weak_roots(OopClosure* root_closure,
OopClosure* non_root_closure);
// Like CollectedHeap::collect, but assume that the caller holds the Heap_lock.
virtual void collect_locked(GCCause::Cause cause) = 0;
// The functions below are helper functions that a subclass of
// "SharedHeap" can use in the implementation of its virtual
// functions.
public:
// Do anything common to GC's.
virtual void gc_prologue(bool full) = 0;
virtual void gc_epilogue(bool full) = 0;
//
// New methods from CollectedHeap
//
size_t permanent_capacity() const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->capacity();
}
size_t permanent_used() const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->used();
}
bool is_in_permanent(const void *p) const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->is_in_reserved(p);
}
// Different from is_in_permanent in that is_in_permanent
// only checks if p is in the reserved area of the heap
// and this checks to see if it in the commited area.
// This is typically used by things like the forte stackwalker
// during verification of suspicious frame values.
bool is_permanent(const void *p) const {
assert(perm_gen(), "NULL perm gen");
return perm_gen()->is_in(p);
}
HeapWord* permanent_mem_allocate(size_t size) {
assert(perm_gen(), "NULL perm gen");
return _perm_gen->mem_allocate(size);
}
void permanent_oop_iterate(OopClosure* cl) {
assert(perm_gen(), "NULL perm gen");
_perm_gen->oop_iterate(cl);
}
void permanent_object_iterate(ObjectClosure* cl) {
assert(perm_gen(), "NULL perm gen");
_perm_gen->object_iterate(cl);
}
// Some utilities.
void print_size_transition(outputStream* out,
size_t bytes_before,
size_t bytes_after,
size_t capacity);
};