/*
* Copyright 2002-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_heapInspection.cpp.incl"
// HeapInspection
int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) {
if(e1->_instance_words > e2->_instance_words) {
return -1;
} else if(e1->_instance_words < e2->_instance_words) {
return 1;
}
return 0;
}
void KlassInfoEntry::print_on(outputStream* st) const {
ResourceMark rm;
const char* name;;
if (_klass->klass_part()->name() != NULL) {
name = _klass->klass_part()->external_name();
} else {
if (_klass == Universe::klassKlassObj()) name = "<klassKlass>"; else
if (_klass == Universe::arrayKlassKlassObj()) name = "<arrayKlassKlass>"; else
if (_klass == Universe::objArrayKlassKlassObj()) name = "<objArrayKlassKlass>"; else
if (_klass == Universe::instanceKlassKlassObj()) name = "<instanceKlassKlass>"; else
if (_klass == Universe::typeArrayKlassKlassObj()) name = "<typeArrayKlassKlass>"; else
if (_klass == Universe::symbolKlassObj()) name = "<symbolKlass>"; else
if (_klass == Universe::boolArrayKlassObj()) name = "<boolArrayKlass>"; else
if (_klass == Universe::charArrayKlassObj()) name = "<charArrayKlass>"; else
if (_klass == Universe::singleArrayKlassObj()) name = "<singleArrayKlass>"; else
if (_klass == Universe::doubleArrayKlassObj()) name = "<doubleArrayKlass>"; else
if (_klass == Universe::byteArrayKlassObj()) name = "<byteArrayKlass>"; else
if (_klass == Universe::shortArrayKlassObj()) name = "<shortArrayKlass>"; else
if (_klass == Universe::intArrayKlassObj()) name = "<intArrayKlass>"; else
if (_klass == Universe::longArrayKlassObj()) name = "<longArrayKlass>"; else
if (_klass == Universe::methodKlassObj()) name = "<methodKlass>"; else
if (_klass == Universe::constMethodKlassObj()) name = "<constMethodKlass>"; else
if (_klass == Universe::methodDataKlassObj()) name = "<methodDataKlass>"; else
if (_klass == Universe::constantPoolKlassObj()) name = "<constantPoolKlass>"; else
if (_klass == Universe::constantPoolCacheKlassObj()) name = "<constantPoolCacheKlass>"; else
if (_klass == Universe::compiledICHolderKlassObj()) name = "<compiledICHolderKlass>"; else
name = "<no name>";
}
// simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit
st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s",
(jlong) _instance_count,
(julong) _instance_words * HeapWordSize,
name);
}
KlassInfoEntry* KlassInfoBucket::lookup(const klassOop k) {
KlassInfoEntry* elt = _list;
while (elt != NULL) {
if (elt->is_equal(k)) {
return elt;
}
elt = elt->next();
}
elt = new KlassInfoEntry(k, list());
// We may be out of space to allocate the new entry.
if (elt != NULL) {
set_list(elt);
}
return elt;
}
void KlassInfoBucket::iterate(KlassInfoClosure* cic) {
KlassInfoEntry* elt = _list;
while (elt != NULL) {
cic->do_cinfo(elt);
elt = elt->next();
}
}
void KlassInfoBucket::empty() {
KlassInfoEntry* elt = _list;
_list = NULL;
while (elt != NULL) {
KlassInfoEntry* next = elt->next();
delete elt;
elt = next;
}
}
KlassInfoTable::KlassInfoTable(int size, HeapWord* ref) {
_size = 0;
_ref = ref;
_buckets = NEW_C_HEAP_ARRAY(KlassInfoBucket, size);
if (_buckets != NULL) {
_size = size;
for (int index = 0; index < _size; index++) {
_buckets[index].initialize();
}
}
}
KlassInfoTable::~KlassInfoTable() {
if (_buckets != NULL) {
for (int index = 0; index < _size; index++) {
_buckets[index].empty();
}
FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets);
_size = 0;
}
}
uint KlassInfoTable::hash(klassOop p) {
assert(Universe::heap()->is_in_permanent((HeapWord*)p), "all klasses in permgen");
return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2);
}
KlassInfoEntry* KlassInfoTable::lookup(const klassOop k) {
uint idx = hash(k) % _size;
assert(_buckets != NULL, "Allocation failure should have been caught");
KlassInfoEntry* e = _buckets[idx].lookup(k);
// Lookup may fail if this is a new klass for which we
// could not allocate space for an new entry.
assert(e == NULL || k == e->klass(), "must be equal");
return e;
}
// Return false if the entry could not be recorded on account
// of running out of space required to create a new entry.
bool KlassInfoTable::record_instance(const oop obj) {
klassOop k = obj->klass();
KlassInfoEntry* elt = lookup(k);
// elt may be NULL if it's a new klass for which we
// could not allocate space for a new entry in the hashtable.
if (elt != NULL) {
elt->set_count(elt->count() + 1);
elt->set_words(elt->words() + obj->size());
return true;
} else {
return false;
}
}
void KlassInfoTable::iterate(KlassInfoClosure* cic) {
assert(_size == 0 || _buckets != NULL, "Allocation failure should have been caught");
for (int index = 0; index < _size; index++) {
_buckets[index].iterate(cic);
}
}
int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) {
return (*e1)->compare(*e1,*e2);
}
KlassInfoHisto::KlassInfoHisto(const char* title, int estimatedCount) :
_title(title) {
_elements = new (ResourceObj::C_HEAP) GrowableArray<KlassInfoEntry*>(estimatedCount,true);
}
KlassInfoHisto::~KlassInfoHisto() {
delete _elements;
}
void KlassInfoHisto::add(KlassInfoEntry* cie) {
elements()->append(cie);
}
void KlassInfoHisto::sort() {
elements()->sort(KlassInfoHisto::sort_helper);
}
void KlassInfoHisto::print_elements(outputStream* st) const {
// simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit
jlong total = 0;
julong totalw = 0;
for(int i=0; i < elements()->length(); i++) {
st->print("%4d: ", i+1);
elements()->at(i)->print_on(st);
total += elements()->at(i)->count();
totalw += elements()->at(i)->words();
}
st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13),
total, totalw * HeapWordSize);
}
void KlassInfoHisto::print_on(outputStream* st) const {
st->print_cr("%s",title());
print_elements(st);
}
class HistoClosure : public KlassInfoClosure {
private:
KlassInfoHisto* _cih;
public:
HistoClosure(KlassInfoHisto* cih) : _cih(cih) {}
void do_cinfo(KlassInfoEntry* cie) {
_cih->add(cie);
}
};
class RecordInstanceClosure : public ObjectClosure {
private:
KlassInfoTable* _cit;
size_t _missed_count;
public:
RecordInstanceClosure(KlassInfoTable* cit) :
_cit(cit), _missed_count(0) {}
void do_object(oop obj) {
if (!_cit->record_instance(obj)) {
_missed_count++;
}
}
size_t missed_count() { return _missed_count; }
};
void HeapInspection::heap_inspection(outputStream* st) {
ResourceMark rm;
HeapWord* ref;
CollectedHeap* heap = Universe::heap();
bool is_shared_heap = false;
switch (heap->kind()) {
case CollectedHeap::G1CollectedHeap:
case CollectedHeap::GenCollectedHeap: {
is_shared_heap = true;
SharedHeap* sh = (SharedHeap*)heap;
sh->gc_prologue(false /* !full */); // get any necessary locks, etc.
ref = sh->perm_gen()->used_region().start();
break;
}
#ifndef SERIALGC
case CollectedHeap::ParallelScavengeHeap: {
ParallelScavengeHeap* psh = (ParallelScavengeHeap*)heap;
ref = psh->perm_gen()->object_space()->used_region().start();
break;
}
#endif // SERIALGC
default:
ShouldNotReachHere(); // Unexpected heap kind for this op
}
// Collect klass instance info
KlassInfoTable cit(KlassInfoTable::cit_size, ref);
if (!cit.allocation_failed()) {
// Iterate over objects in the heap
RecordInstanceClosure ric(&cit);
// If this operation encounters a bad object when using CMS,
// consider using safe_object_iterate() which avoids perm gen
// objects that may contain bad references.
Universe::heap()->object_iterate(&ric);
// Report if certain classes are not counted because of
// running out of C-heap for the histogram.
size_t missed_count = ric.missed_count();
if (missed_count != 0) {
st->print_cr("WARNING: Ran out of C-heap; undercounted " SIZE_FORMAT
" total instances in data below",
missed_count);
}
// Sort and print klass instance info
KlassInfoHisto histo("\n"
" num #instances #bytes class name\n"
"----------------------------------------------",
KlassInfoHisto::histo_initial_size);
HistoClosure hc(&histo);
cit.iterate(&hc);
histo.sort();
histo.print_on(st);
} else {
st->print_cr("WARNING: Ran out of C-heap; histogram not generated");
}
st->flush();
if (is_shared_heap) {
SharedHeap* sh = (SharedHeap*)heap;
sh->gc_epilogue(false /* !full */); // release all acquired locks, etc.
}
}
class FindInstanceClosure : public ObjectClosure {
private:
klassOop _klass;
GrowableArray<oop>* _result;
public:
FindInstanceClosure(klassOop k, GrowableArray<oop>* result) : _klass(k), _result(result) {};
void do_object(oop obj) {
if (obj->is_a(_klass)) {
_result->append(obj);
}
}
};
void HeapInspection::find_instances_at_safepoint(klassOop k, GrowableArray<oop>* result) {
assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
assert(Heap_lock->is_locked(), "should have the Heap_lock")
// Ensure that the heap is parsable
Universe::heap()->ensure_parsability(false); // no need to retire TALBs
// Iterate over objects in the heap
FindInstanceClosure fic(k, result);
// If this operation encounters a bad object when using CMS,
// consider using safe_object_iterate() which avoids perm gen
// objects that may contain bad references.
Universe::heap()->object_iterate(&fic);
}