/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_heap.cpp.incl"
size_t CodeHeap::header_size() {
return sizeof(HeapBlock);
}
// Implementation of Heap
CodeHeap::CodeHeap() {
_number_of_committed_segments = 0;
_number_of_reserved_segments = 0;
_segment_size = 0;
_log2_segment_size = 0;
_next_segment = 0;
_freelist = NULL;
_free_segments = 0;
}
void CodeHeap::mark_segmap_as_free(size_t beg, size_t end) {
assert(0 <= beg && beg < _number_of_committed_segments, "interval begin out of bounds");
assert(beg < end && end <= _number_of_committed_segments, "interval end out of bounds");
// setup _segmap pointers for faster indexing
address p = (address)_segmap.low() + beg;
address q = (address)_segmap.low() + end;
// initialize interval
while (p < q) *p++ = 0xFF;
}
void CodeHeap::mark_segmap_as_used(size_t beg, size_t end) {
assert(0 <= beg && beg < _number_of_committed_segments, "interval begin out of bounds");
assert(beg < end && end <= _number_of_committed_segments, "interval end out of bounds");
// setup _segmap pointers for faster indexing
address p = (address)_segmap.low() + beg;
address q = (address)_segmap.low() + end;
// initialize interval
int i = 0;
while (p < q) {
*p++ = i++;
if (i == 0xFF) i = 1;
}
}
static size_t align_to_page_size(size_t size) {
const size_t alignment = (size_t)os::vm_page_size();
assert(is_power_of_2(alignment), "no kidding ???");
return (size + alignment - 1) & ~(alignment - 1);
}
static size_t align_to_allocation_size(size_t size) {
const size_t alignment = (size_t)os::vm_allocation_granularity();
assert(is_power_of_2(alignment), "no kidding ???");
return (size + alignment - 1) & ~(alignment - 1);
}
void CodeHeap::on_code_mapping(char* base, size_t size) {
#ifdef LINUX
extern void linux_wrap_code(char* base, size_t size);
linux_wrap_code(base, size);
#endif
}
bool CodeHeap::reserve(size_t reserved_size, size_t committed_size,
size_t segment_size) {
assert(reserved_size >= committed_size, "reserved < committed");
assert(segment_size >= sizeof(FreeBlock), "segment size is too small");
assert(is_power_of_2(segment_size), "segment_size must be a power of 2");
_segment_size = segment_size;
_log2_segment_size = exact_log2(segment_size);
// Reserve and initialize space for _memory.
const size_t page_size = os::can_execute_large_page_memory() ?
os::page_size_for_region(committed_size, reserved_size, 8) :
os::vm_page_size();
const size_t granularity = os::vm_allocation_granularity();
const size_t r_align = MAX2(page_size, granularity);
const size_t r_size = align_size_up(reserved_size, r_align);
const size_t c_size = align_size_up(committed_size, page_size);
const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
MAX2(page_size, granularity);
ReservedSpace rs(r_size, rs_align, rs_align > 0);
os::trace_page_sizes("code heap", committed_size, reserved_size, page_size,
rs.base(), rs.size());
if (!_memory.initialize(rs, c_size)) {
return false;
}
on_code_mapping(_memory.low(), _memory.committed_size());
_number_of_committed_segments = number_of_segments(_memory.committed_size());
_number_of_reserved_segments = number_of_segments(_memory.reserved_size());
assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
// reserve space for _segmap
if (!_segmap.initialize(align_to_page_size(_number_of_reserved_segments), align_to_page_size(_number_of_committed_segments))) {
return false;
}
assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "could not commit enough space for segment map");
assert(_segmap.reserved_size() >= (size_t) _number_of_reserved_segments , "could not reserve enough space for segment map");
assert(_segmap.reserved_size() >= _segmap.committed_size() , "just checking");
// initialize remaining instance variables
clear();
return true;
}
void CodeHeap::release() {
Unimplemented();
}
bool CodeHeap::expand_by(size_t size) {
// expand _memory space
size_t dm = align_to_page_size(_memory.committed_size() + size) - _memory.committed_size();
if (dm > 0) {
char* base = _memory.low() + _memory.committed_size();
if (!_memory.expand_by(dm)) return false;
on_code_mapping(base, dm);
size_t i = _number_of_committed_segments;
_number_of_committed_segments = number_of_segments(_memory.committed_size());
assert(_number_of_reserved_segments == number_of_segments(_memory.reserved_size()), "number of reserved segments should not change");
assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
// expand _segmap space
size_t ds = align_to_page_size(_number_of_committed_segments) - _segmap.committed_size();
if (ds > 0) {
if (!_segmap.expand_by(ds)) return false;
}
assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "just checking");
// initialize additional segmap entries
mark_segmap_as_free(i, _number_of_committed_segments);
}
return true;
}
void CodeHeap::shrink_by(size_t size) {
Unimplemented();
}
void CodeHeap::clear() {
_next_segment = 0;
mark_segmap_as_free(0, _number_of_committed_segments);
}
void* CodeHeap::allocate(size_t size) {
size_t length = number_of_segments(size + sizeof(HeapBlock));
assert(length *_segment_size >= sizeof(FreeBlock), "not enough room for FreeList");
// First check if we can satify request from freelist
debug_only(verify());
HeapBlock* block = search_freelist(length);
debug_only(if (VerifyCodeCacheOften) verify());
if (block != NULL) {
assert(block->length() >= length && block->length() < length + CodeCacheMinBlockLength, "sanity check");
assert(!block->free(), "must be marked free");
#ifdef ASSERT
memset((void *)block->allocated_space(), badCodeHeapNewVal, size);
#endif
return block->allocated_space();
}
if (length < CodeCacheMinBlockLength) {
length = CodeCacheMinBlockLength;
}
if (_next_segment + length <= _number_of_committed_segments) {
mark_segmap_as_used(_next_segment, _next_segment + length);
HeapBlock* b = block_at(_next_segment);
b->initialize(length);
_next_segment += length;
#ifdef ASSERT
memset((void *)b->allocated_space(), badCodeHeapNewVal, size);
#endif
return b->allocated_space();
} else {
return NULL;
}
}
void CodeHeap::deallocate(void* p) {
assert(p == find_start(p), "illegal deallocation");
// Find start of HeapBlock
HeapBlock* b = (((HeapBlock *)p) - 1);
assert(b->allocated_space() == p, "sanity check");
#ifdef ASSERT
memset((void *)b->allocated_space(),
badCodeHeapFreeVal,
size(b->length()) - sizeof(HeapBlock));
#endif
add_to_freelist(b);
debug_only(if (VerifyCodeCacheOften) verify());
}
void* CodeHeap::find_start(void* p) const {
if (!contains(p)) {
return NULL;
}
size_t i = segment_for(p);
address b = (address)_segmap.low();
if (b[i] == 0xFF) {
return NULL;
}
while (b[i] > 0) i -= (int)b[i];
HeapBlock* h = block_at(i);
if (h->free()) {
return NULL;
}
return h->allocated_space();
}
size_t CodeHeap::alignment_unit() const {
// this will be a power of two
return _segment_size;
}
size_t CodeHeap::alignment_offset() const {
// The lowest address in any allocated block will be
// equal to alignment_offset (mod alignment_unit).
return sizeof(HeapBlock) & (_segment_size - 1);
}
// Finds the next free heapblock. If the current one is free, that it returned
void* CodeHeap::next_free(HeapBlock *b) const {
// Since free blocks are merged, there is max. on free block
// between two used ones
if (b != NULL && b->free()) b = next_block(b);
assert(b == NULL || !b->free(), "must be in use or at end of heap");
return (b == NULL) ? NULL : b->allocated_space();
}
// Returns the first used HeapBlock
HeapBlock* CodeHeap::first_block() const {
if (_next_segment > 0)
return block_at(0);
return NULL;
}
HeapBlock *CodeHeap::block_start(void *q) const {
HeapBlock* b = (HeapBlock*)find_start(q);
if (b == NULL) return NULL;
return b - 1;
}
// Returns the next Heap block an offset into one
HeapBlock* CodeHeap::next_block(HeapBlock *b) const {
if (b == NULL) return NULL;
size_t i = segment_for(b) + b->length();
if (i < _next_segment)
return block_at(i);
return NULL;
}
// Returns current capacity
size_t CodeHeap::capacity() const {
return _memory.committed_size();
}
size_t CodeHeap::max_capacity() const {
return _memory.reserved_size();
}
size_t CodeHeap::allocated_capacity() const {
// Start with the committed size in _memory;
size_t l = _memory.committed_size();
// Subtract the committed, but unused, segments
l -= size(_number_of_committed_segments - _next_segment);
// Subtract the size of the freelist
l -= size(_free_segments);
return l;
}
// Free list management
FreeBlock *CodeHeap::following_block(FreeBlock *b) {
return (FreeBlock*)(((address)b) + _segment_size * b->length());
}
// Inserts block b after a
void CodeHeap::insert_after(FreeBlock* a, FreeBlock* b) {
assert(a != NULL && b != NULL, "must be real pointers");
// Link b into the list after a
b->set_link(a->link());
a->set_link(b);
// See if we can merge blocks
merge_right(b); // Try to make b bigger
merge_right(a); // Try to make a include b
}
// Try to merge this block with the following block
void CodeHeap::merge_right(FreeBlock *a) {
assert(a->free(), "must be a free block");
if (following_block(a) == a->link()) {
assert(a->link() != NULL && a->link()->free(), "must be free too");
// Update block a to include the following block
a->set_length(a->length() + a->link()->length());
a->set_link(a->link()->link());
// Update find_start map
size_t beg = segment_for(a);
mark_segmap_as_used(beg, beg + a->length());
}
}
void CodeHeap::add_to_freelist(HeapBlock *a) {
FreeBlock* b = (FreeBlock*)a;
assert(b != _freelist, "cannot be removed twice");
// Mark as free and update free space count
_free_segments += b->length();
b->set_free();
// First element in list?
if (_freelist == NULL) {
_freelist = b;
b->set_link(NULL);
return;
}
// Scan for right place to put into list. List
// is sorted by increasing addresseses
FreeBlock* prev = NULL;
FreeBlock* cur = _freelist;
while(cur != NULL && cur < b) {
assert(prev == NULL || prev < cur, "must be ordered");
prev = cur;
cur = cur->link();
}
assert( (prev == NULL && b < _freelist) ||
(prev < b && (cur == NULL || b < cur)), "list must be ordered");
if (prev == NULL) {
// Insert first in list
b->set_link(_freelist);
_freelist = b;
merge_right(_freelist);
} else {
insert_after(prev, b);
}
}
// Search freelist for an entry on the list with the best fit
// Return NULL if no one was found
FreeBlock* CodeHeap::search_freelist(size_t length) {
FreeBlock *best_block = NULL;
FreeBlock *best_prev = NULL;
size_t best_length = 0;
// Search for smallest block which is bigger than length
FreeBlock *prev = NULL;
FreeBlock *cur = _freelist;
while(cur != NULL) {
size_t l = cur->length();
if (l >= length && (best_block == NULL || best_length > l)) {
// Remember best block, its previous element, and its length
best_block = cur;
best_prev = prev;
best_length = best_block->length();
}
// Next element in list
prev = cur;
cur = cur->link();
}
if (best_block == NULL) {
// None found
return NULL;
}
assert((best_prev == NULL && _freelist == best_block ) ||
(best_prev != NULL && best_prev->link() == best_block), "sanity check");
// Exact (or at least good enough) fit. Remove from list.
// Don't leave anything on the freelist smaller than CodeCacheMinBlockLength.
if (best_length < length + CodeCacheMinBlockLength) {
length = best_length;
if (best_prev == NULL) {
assert(_freelist == best_block, "sanity check");
_freelist = _freelist->link();
} else {
// Unmap element
best_prev->set_link(best_block->link());
}
} else {
// Truncate block and return a pointer to the following block
best_block->set_length(best_length - length);
best_block = following_block(best_block);
// Set used bit and length on new block
size_t beg = segment_for(best_block);
mark_segmap_as_used(beg, beg + length);
best_block->set_length(length);
}
best_block->set_used();
_free_segments -= length;
return best_block;
}
//----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
void CodeHeap::print() {
tty->print_cr("The Heap");
}
#endif
void CodeHeap::verify() {
// Count the number of blocks on the freelist, and the amount of space
// represented.
int count = 0;
size_t len = 0;
for(FreeBlock* b = _freelist; b != NULL; b = b->link()) {
len += b->length();
count++;
}
// Verify that freelist contains the right amount of free space
guarantee(len == _free_segments, "wrong freelist");
// Verify that the number of free blocks is not out of hand.
static int free_block_threshold = 10000;
if (count > free_block_threshold) {
warning("CodeHeap: # of free blocks > %d", free_block_threshold);
// Double the warning limit
free_block_threshold *= 2;
}
// Verify that the freelist contains the same number of free blocks that is
// found on the full list.
for(HeapBlock *h = first_block(); h != NULL; h = next_block(h)) {
if (h->free()) count--;
}
guarantee(count == 0, "missing free blocks");
}