8171244: PPC64: Make interpreter's math entries consistent with C1 and C2 and support FMA
Reviewed-by: kvn, goetz
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
if (VerifyMethodHandles)
verify_klass(_masm, klass_reg, SystemDictionary::WK_KLASS_ENUM_NAME(java_lang_Class),
"MH argument is a Class");
__ ldr(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
}
#ifdef ASSERT
static int check_nonzero(const char* xname, int x) {
assert(x != 0, "%s should be nonzero", xname);
return x;
}
#define NONZERO(x) check_nonzero(#x, x)
#else //ASSERT
#define NONZERO(x) (x)
#endif //PRODUCT
#ifdef ASSERT
void MethodHandles::verify_klass(MacroAssembler* _masm,
Register obj, SystemDictionary::WKID klass_id,
const char* error_message) {
InstanceKlass** klass_addr = SystemDictionary::well_known_klass_addr(klass_id);
KlassHandle klass = SystemDictionary::well_known_klass(klass_id);
Register temp = rscratch2;
Register temp2 = rscratch1; // used by MacroAssembler::cmpptr
Label L_ok, L_bad;
BLOCK_COMMENT("verify_klass {");
__ verify_oop(obj);
__ cbz(obj, L_bad);
__ push(RegSet::of(temp, temp2), sp);
__ load_klass(temp, obj);
__ cmpptr(temp, ExternalAddress((address) klass_addr));
__ br(Assembler::EQ, L_ok);
intptr_t super_check_offset = klass->super_check_offset();
__ ldr(temp, Address(temp, super_check_offset));
__ cmpptr(temp, ExternalAddress((address) klass_addr));
__ br(Assembler::EQ, L_ok);
__ pop(RegSet::of(temp, temp2), sp);
__ bind(L_bad);
__ stop(error_message);
__ BIND(L_ok);
__ pop(RegSet::of(temp, temp2), sp);
BLOCK_COMMENT("} verify_klass");
}
void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) { }
#endif //ASSERT
void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp,
bool for_compiler_entry) {
assert(method == rmethod, "interpreter calling convention");
Label L_no_such_method;
__ cbz(rmethod, L_no_such_method);
__ verify_method_ptr(method);
if (!for_compiler_entry && JvmtiExport::can_post_interpreter_events()) {
Label run_compiled_code;
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
__ ldrb(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
__ cbnz(rscratch1, run_compiled_code);
__ ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
__ br(rscratch1);
__ BIND(run_compiled_code);
}
const ByteSize entry_offset = for_compiler_entry ? Method::from_compiled_offset() :
Method::from_interpreted_offset();
__ ldr(rscratch1,Address(method, entry_offset));
__ br(rscratch1);
__ bind(L_no_such_method);
__ far_jump(RuntimeAddress(StubRoutines::throw_AbstractMethodError_entry()));
}
void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm,
Register recv, Register method_temp,
Register temp2,
bool for_compiler_entry) {
BLOCK_COMMENT("jump_to_lambda_form {");
// This is the initial entry point of a lazy method handle.
// After type checking, it picks up the invoker from the LambdaForm.
assert_different_registers(recv, method_temp, temp2);
assert(recv != noreg, "required register");
assert(method_temp == rmethod, "required register for loading method");
//NOT_PRODUCT({ FlagSetting fs(TraceMethodHandles, true); trace_method_handle(_masm, "LZMH"); });
// Load the invoker, as MH -> MH.form -> LF.vmentry
__ verify_oop(recv);
__ load_heap_oop(method_temp, Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes())));
__ verify_oop(method_temp);
__ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes())));
__ verify_oop(method_temp);
// the following assumes that a Method* is normally compressed in the vmtarget field:
__ ldr(method_temp, Address(method_temp, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes())));
if (VerifyMethodHandles && !for_compiler_entry) {
// make sure recv is already on stack
__ ldr(temp2, Address(method_temp, Method::const_offset()));
__ load_sized_value(temp2,
Address(temp2, ConstMethod::size_of_parameters_offset()),
sizeof(u2), /*is_signed*/ false);
// assert(sizeof(u2) == sizeof(Method::_size_of_parameters), "");
Label L;
__ ldr(rscratch1, __ argument_address(temp2, -1));
__ cmp(recv, rscratch1);
__ br(Assembler::EQ, L);
__ ldr(r0, __ argument_address(temp2, -1));
__ hlt(0);
__ BIND(L);
}
jump_from_method_handle(_masm, method_temp, temp2, for_compiler_entry);
BLOCK_COMMENT("} jump_to_lambda_form");
}
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm,
vmIntrinsics::ID iid) {
const bool not_for_compiler_entry = false; // this is the interpreter entry
assert(is_signature_polymorphic(iid), "expected invoke iid");
if (iid == vmIntrinsics::_invokeGeneric ||
iid == vmIntrinsics::_compiledLambdaForm) {
// Perhaps surprisingly, the symbolic references visible to Java are not directly used.
// They are linked to Java-generated adapters via MethodHandleNatives.linkMethod.
// They all allow an appendix argument.
__ hlt(0); // empty stubs make SG sick
return NULL;
}
// r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
// rmethod: Method*
// r3: argument locator (parameter slot count, added to rsp)
// r1: used as temp to hold mh or receiver
// r0, r11: garbage temps, blown away
Register argp = r3; // argument list ptr, live on error paths
Register temp = r0;
Register mh = r1; // MH receiver; dies quickly and is recycled
// here's where control starts out:
__ align(CodeEntryAlignment);
address entry_point = __ pc();
if (VerifyMethodHandles) {
assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
Label L;
BLOCK_COMMENT("verify_intrinsic_id {");
__ ldrh(rscratch1, Address(rmethod, Method::intrinsic_id_offset_in_bytes()));
__ cmp(rscratch1, (int) iid);
__ br(Assembler::EQ, L);
if (iid == vmIntrinsics::_linkToVirtual ||
iid == vmIntrinsics::_linkToSpecial) {
// could do this for all kinds, but would explode assembly code size
trace_method_handle(_masm, "bad Method*::intrinsic_id");
}
__ hlt(0);
__ bind(L);
BLOCK_COMMENT("} verify_intrinsic_id");
}
// First task: Find out how big the argument list is.
Address r3_first_arg_addr;
int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid);
assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic");
if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) {
__ ldr(argp, Address(rmethod, Method::const_offset()));
__ load_sized_value(argp,
Address(argp, ConstMethod::size_of_parameters_offset()),
sizeof(u2), /*is_signed*/ false);
// assert(sizeof(u2) == sizeof(Method::_size_of_parameters), "");
r3_first_arg_addr = __ argument_address(argp, -1);
} else {
DEBUG_ONLY(argp = noreg);
}
if (!is_signature_polymorphic_static(iid)) {
__ ldr(mh, r3_first_arg_addr);
DEBUG_ONLY(argp = noreg);
}
// r3_first_arg_addr is live!
trace_method_handle_interpreter_entry(_masm, iid);
if (iid == vmIntrinsics::_invokeBasic) {
generate_method_handle_dispatch(_masm, iid, mh, noreg, not_for_compiler_entry);
} else {
// Adjust argument list by popping the trailing MemberName argument.
Register recv = noreg;
if (MethodHandles::ref_kind_has_receiver(ref_kind)) {
// Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack.
__ ldr(recv = r2, r3_first_arg_addr);
}
DEBUG_ONLY(argp = noreg);
Register rmember = rmethod; // MemberName ptr; incoming method ptr is dead now
__ pop(rmember); // extract last argument
generate_method_handle_dispatch(_masm, iid, recv, rmember, not_for_compiler_entry);
}
return entry_point;
}
void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
vmIntrinsics::ID iid,
Register receiver_reg,
Register member_reg,
bool for_compiler_entry) {
assert(is_signature_polymorphic(iid), "expected invoke iid");
// temps used in this code are not used in *either* compiled or interpreted calling sequences
Register temp1 = r10;
Register temp2 = r11;
Register temp3 = r14; // r13 is live by this point: it contains the sender SP
if (for_compiler_entry) {
assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : j_rarg0), "only valid assignment");
assert_different_registers(temp1, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
assert_different_registers(temp2, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
assert_different_registers(temp3, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
}
assert_different_registers(temp1, temp2, temp3, receiver_reg);
assert_different_registers(temp1, temp2, temp3, member_reg);
if (iid == vmIntrinsics::_invokeBasic) {
// indirect through MH.form.vmentry.vmtarget
jump_to_lambda_form(_masm, receiver_reg, rmethod, temp1, for_compiler_entry);
} else {
// The method is a member invoker used by direct method handles.
if (VerifyMethodHandles) {
// make sure the trailing argument really is a MemberName (caller responsibility)
verify_klass(_masm, member_reg, SystemDictionary::WK_KLASS_ENUM_NAME(java_lang_invoke_MemberName),
"MemberName required for invokeVirtual etc.");
}
Address member_clazz( member_reg, NONZERO(java_lang_invoke_MemberName::clazz_offset_in_bytes()));
Address member_vmindex( member_reg, NONZERO(java_lang_invoke_MemberName::vmindex_offset_in_bytes()));
Address member_vmtarget( member_reg, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes()));
Register temp1_recv_klass = temp1;
if (iid != vmIntrinsics::_linkToStatic) {
__ verify_oop(receiver_reg);
if (iid == vmIntrinsics::_linkToSpecial) {
// Don't actually load the klass; just null-check the receiver.
__ null_check(receiver_reg);
} else {
// load receiver klass itself
__ null_check(receiver_reg, oopDesc::klass_offset_in_bytes());
__ load_klass(temp1_recv_klass, receiver_reg);
__ verify_klass_ptr(temp1_recv_klass);
}
BLOCK_COMMENT("check_receiver {");
// The receiver for the MemberName must be in receiver_reg.
// Check the receiver against the MemberName.clazz
if (VerifyMethodHandles && iid == vmIntrinsics::_linkToSpecial) {
// Did not load it above...
__ load_klass(temp1_recv_klass, receiver_reg);
__ verify_klass_ptr(temp1_recv_klass);
}
if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) {
Label L_ok;
Register temp2_defc = temp2;
__ load_heap_oop(temp2_defc, member_clazz);
load_klass_from_Class(_masm, temp2_defc);
__ verify_klass_ptr(temp2_defc);
__ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, L_ok);
// If we get here, the type check failed!
__ hlt(0);
// __ STOP("receiver class disagrees with MemberName.clazz");
__ bind(L_ok);
}
BLOCK_COMMENT("} check_receiver");
}
if (iid == vmIntrinsics::_linkToSpecial ||
iid == vmIntrinsics::_linkToStatic) {
DEBUG_ONLY(temp1_recv_klass = noreg); // these guys didn't load the recv_klass
}
// Live registers at this point:
// member_reg - MemberName that was the trailing argument
// temp1_recv_klass - klass of stacked receiver, if needed
// r13 - interpreter linkage (if interpreted) ??? FIXME
// r1 ... r0 - compiler arguments (if compiled)
Label L_incompatible_class_change_error;
switch (iid) {
case vmIntrinsics::_linkToSpecial:
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp3);
}
__ ldr(rmethod, member_vmtarget);
break;
case vmIntrinsics::_linkToStatic:
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp3);
}
__ ldr(rmethod, member_vmtarget);
break;
case vmIntrinsics::_linkToVirtual:
{
// same as TemplateTable::invokevirtual,
// minus the CP setup and profiling:
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeVirtual, member_reg, temp3);
}
// pick out the vtable index from the MemberName, and then we can discard it:
Register temp2_index = temp2;
__ ldr(temp2_index, member_vmindex);
if (VerifyMethodHandles) {
Label L_index_ok;
__ cmpw(temp2_index, 0U);
__ br(Assembler::GE, L_index_ok);
__ hlt(0);
__ BIND(L_index_ok);
}
// Note: The verifier invariants allow us to ignore MemberName.clazz and vmtarget
// at this point. And VerifyMethodHandles has already checked clazz, if needed.
// get target Method* & entry point
__ lookup_virtual_method(temp1_recv_klass, temp2_index, rmethod);
break;
}
case vmIntrinsics::_linkToInterface:
{
// same as TemplateTable::invokeinterface
// (minus the CP setup and profiling, with different argument motion)
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeInterface, member_reg, temp3);
}
Register temp3_intf = temp3;
__ load_heap_oop(temp3_intf, member_clazz);
load_klass_from_Class(_masm, temp3_intf);
__ verify_klass_ptr(temp3_intf);
Register rindex = rmethod;
__ ldr(rindex, member_vmindex);
if (VerifyMethodHandles) {
Label L;
__ cmpw(rindex, 0U);
__ br(Assembler::GE, L);
__ hlt(0);
__ bind(L);
}
// given intf, index, and recv klass, dispatch to the implementation method
__ lookup_interface_method(temp1_recv_klass, temp3_intf,
// note: next two args must be the same:
rindex, rmethod,
temp2,
L_incompatible_class_change_error);
break;
}
default:
fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
break;
}
// live at this point: rmethod, r13 (if interpreted)
// After figuring out which concrete method to call, jump into it.
// Note that this works in the interpreter with no data motion.
// But the compiled version will require that r2_recv be shifted out.
__ verify_method_ptr(rmethod);
jump_from_method_handle(_masm, rmethod, temp1, for_compiler_entry);
if (iid == vmIntrinsics::_linkToInterface) {
__ bind(L_incompatible_class_change_error);
__ far_jump(RuntimeAddress(StubRoutines::throw_IncompatibleClassChangeError_entry()));
}
}
}
#ifndef PRODUCT
void trace_method_handle_stub(const char* adaptername,
oop mh,
intptr_t* saved_regs,
intptr_t* entry_sp) { }
// The stub wraps the arguments in a struct on the stack to avoid
// dealing with the different calling conventions for passing 6
// arguments.
struct MethodHandleStubArguments {
const char* adaptername;
oopDesc* mh;
intptr_t* saved_regs;
intptr_t* entry_sp;
};
void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) { }
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { }
#endif //PRODUCT