8171244: PPC64: Make interpreter's math entries consistent with C1 and C2 and support FMA
Reviewed-by: kvn, goetz
/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
#define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
#include "asm/assembler.hpp"
// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
class MacroAssembler: public Assembler {
friend class LIR_Assembler;
public:
using Assembler::mov;
using Assembler::movi;
protected:
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
virtual void call_VM_leaf_base(
address entry_point, // the entry point
int number_of_arguments, // the number of arguments to pop after the call
Label *retaddr = NULL
);
virtual void call_VM_leaf_base(
address entry_point, // the entry point
int number_of_arguments, // the number of arguments to pop after the call
Label &retaddr) {
call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
}
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
// returns the register which contains the thread upon return. If a thread register has been
// specified, the return value will correspond to that register. If no last_java_sp is specified
// (noreg) than rsp will be used instead.
virtual void call_VM_base( // returns the register containing the thread upon return
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
bool check_exceptions // whether to check for pending exceptions after return
);
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
// Maximum size of class area in Metaspace when compressed
uint64_t use_XOR_for_compressed_class_base;
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {
use_XOR_for_compressed_class_base
= (operand_valid_for_logical_immediate(false /*is32*/,
(uint64_t)Universe::narrow_klass_base())
&& ((uint64_t)Universe::narrow_klass_base()
> (1u << log2_intptr(CompressedClassSpaceSize))));
}
// Biased locking support
// lock_reg and obj_reg must be loaded up with the appropriate values.
// swap_reg is killed.
// tmp_reg must be supplied and must not be rscratch1 or rscratch2
// Optional slow case is for implementations (interpreter and C1) which branch to
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
// Returns offset of first potentially-faulting instruction for null
// check info (currently consumed only by C1). If
// swap_reg_contains_mark is true then returns -1 as it is assumed
// the calling code has already passed any potential faults.
int biased_locking_enter(Register lock_reg, Register obj_reg,
Register swap_reg, Register tmp_reg,
bool swap_reg_contains_mark,
Label& done, Label* slow_case = NULL,
BiasedLockingCounters* counters = NULL);
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
// Helper functions for statistics gathering.
// Unconditional atomic increment.
void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
lea(tmp1, counter_addr);
atomic_incw(tmp1, tmp2, tmp3);
}
// Load Effective Address
void lea(Register r, const Address &a) {
InstructionMark im(this);
code_section()->relocate(inst_mark(), a.rspec());
a.lea(this, r);
}
void addmw(Address a, Register incr, Register scratch) {
ldrw(scratch, a);
addw(scratch, scratch, incr);
strw(scratch, a);
}
// Add constant to memory word
void addmw(Address a, int imm, Register scratch) {
ldrw(scratch, a);
if (imm > 0)
addw(scratch, scratch, (unsigned)imm);
else
subw(scratch, scratch, (unsigned)-imm);
strw(scratch, a);
}
void bind(Label& L) {
Assembler::bind(L);
code()->clear_last_membar();
}
void membar(Membar_mask_bits order_constraint);
// Frame creation and destruction shared between JITs.
void build_frame(int framesize);
void remove_frame(int framesize);
virtual void _call_Unimplemented(address call_site) {
mov(rscratch2, call_site);
haltsim();
}
#define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
virtual void notify(int type);
// aliases defined in AARCH64 spec
template<class T>
inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); }
inline void cmp(Register Rd, unsigned imm) { subs(zr, Rd, imm); }
inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
void cset(Register Rd, Assembler::Condition cond) {
csinc(Rd, zr, zr, ~cond);
}
void csetw(Register Rd, Assembler::Condition cond) {
csincw(Rd, zr, zr, ~cond);
}
void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
csneg(Rd, Rn, Rn, ~cond);
}
void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
csnegw(Rd, Rn, Rn, ~cond);
}
inline void movw(Register Rd, Register Rn) {
if (Rd == sp || Rn == sp) {
addw(Rd, Rn, 0U);
} else {
orrw(Rd, zr, Rn);
}
}
inline void mov(Register Rd, Register Rn) {
assert(Rd != r31_sp && Rn != r31_sp, "should be");
if (Rd == Rn) {
} else if (Rd == sp || Rn == sp) {
add(Rd, Rn, 0U);
} else {
orr(Rd, zr, Rn);
}
}
inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
}
inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
}
inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
bfmw(Rd, Rn, lsb, (lsb + width - 1));
}
inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
bfm(Rd, Rn, lsb , (lsb + width - 1));
}
inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
}
inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
}
inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
sbfmw(Rd, Rn, lsb, (lsb + width - 1));
}
inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
sbfm(Rd, Rn, lsb , (lsb + width - 1));
}
inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
}
inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
}
inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
ubfmw(Rd, Rn, lsb, (lsb + width - 1));
}
inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
ubfm(Rd, Rn, lsb , (lsb + width - 1));
}
inline void asrw(Register Rd, Register Rn, unsigned imm) {
sbfmw(Rd, Rn, imm, 31);
}
inline void asr(Register Rd, Register Rn, unsigned imm) {
sbfm(Rd, Rn, imm, 63);
}
inline void lslw(Register Rd, Register Rn, unsigned imm) {
ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
}
inline void lsl(Register Rd, Register Rn, unsigned imm) {
ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
}
inline void lsrw(Register Rd, Register Rn, unsigned imm) {
ubfmw(Rd, Rn, imm, 31);
}
inline void lsr(Register Rd, Register Rn, unsigned imm) {
ubfm(Rd, Rn, imm, 63);
}
inline void rorw(Register Rd, Register Rn, unsigned imm) {
extrw(Rd, Rn, Rn, imm);
}
inline void ror(Register Rd, Register Rn, unsigned imm) {
extr(Rd, Rn, Rn, imm);
}
inline void sxtbw(Register Rd, Register Rn) {
sbfmw(Rd, Rn, 0, 7);
}
inline void sxthw(Register Rd, Register Rn) {
sbfmw(Rd, Rn, 0, 15);
}
inline void sxtb(Register Rd, Register Rn) {
sbfm(Rd, Rn, 0, 7);
}
inline void sxth(Register Rd, Register Rn) {
sbfm(Rd, Rn, 0, 15);
}
inline void sxtw(Register Rd, Register Rn) {
sbfm(Rd, Rn, 0, 31);
}
inline void uxtbw(Register Rd, Register Rn) {
ubfmw(Rd, Rn, 0, 7);
}
inline void uxthw(Register Rd, Register Rn) {
ubfmw(Rd, Rn, 0, 15);
}
inline void uxtb(Register Rd, Register Rn) {
ubfm(Rd, Rn, 0, 7);
}
inline void uxth(Register Rd, Register Rn) {
ubfm(Rd, Rn, 0, 15);
}
inline void uxtw(Register Rd, Register Rn) {
ubfm(Rd, Rn, 0, 31);
}
inline void cmnw(Register Rn, Register Rm) {
addsw(zr, Rn, Rm);
}
inline void cmn(Register Rn, Register Rm) {
adds(zr, Rn, Rm);
}
inline void cmpw(Register Rn, Register Rm) {
subsw(zr, Rn, Rm);
}
inline void cmp(Register Rn, Register Rm) {
subs(zr, Rn, Rm);
}
inline void negw(Register Rd, Register Rn) {
subw(Rd, zr, Rn);
}
inline void neg(Register Rd, Register Rn) {
sub(Rd, zr, Rn);
}
inline void negsw(Register Rd, Register Rn) {
subsw(Rd, zr, Rn);
}
inline void negs(Register Rd, Register Rn) {
subs(Rd, zr, Rn);
}
inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
addsw(zr, Rn, Rm, kind, shift);
}
inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
adds(zr, Rn, Rm, kind, shift);
}
inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
subsw(zr, Rn, Rm, kind, shift);
}
inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
subs(zr, Rn, Rm, kind, shift);
}
inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
subw(Rd, zr, Rn, kind, shift);
}
inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
sub(Rd, zr, Rn, kind, shift);
}
inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
subsw(Rd, zr, Rn, kind, shift);
}
inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
subs(Rd, zr, Rn, kind, shift);
}
inline void mnegw(Register Rd, Register Rn, Register Rm) {
msubw(Rd, Rn, Rm, zr);
}
inline void mneg(Register Rd, Register Rn, Register Rm) {
msub(Rd, Rn, Rm, zr);
}
inline void mulw(Register Rd, Register Rn, Register Rm) {
maddw(Rd, Rn, Rm, zr);
}
inline void mul(Register Rd, Register Rn, Register Rm) {
madd(Rd, Rn, Rm, zr);
}
inline void smnegl(Register Rd, Register Rn, Register Rm) {
smsubl(Rd, Rn, Rm, zr);
}
inline void smull(Register Rd, Register Rn, Register Rm) {
smaddl(Rd, Rn, Rm, zr);
}
inline void umnegl(Register Rd, Register Rn, Register Rm) {
umsubl(Rd, Rn, Rm, zr);
}
inline void umull(Register Rd, Register Rn, Register Rm) {
umaddl(Rd, Rn, Rm, zr);
}
#define WRAP(INSN) \
void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \
if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr) \
nop(); \
Assembler::INSN(Rd, Rn, Rm, Ra); \
}
WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
#undef WRAP
// macro assembly operations needed for aarch64
// first two private routines for loading 32 bit or 64 bit constants
private:
void mov_immediate64(Register dst, u_int64_t imm64);
void mov_immediate32(Register dst, u_int32_t imm32);
int push(unsigned int bitset, Register stack);
int pop(unsigned int bitset, Register stack);
void mov(Register dst, Address a);
public:
void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
// Push and pop everything that might be clobbered by a native
// runtime call except rscratch1 and rscratch2. (They are always
// scratch, so we don't have to protect them.) Only save the lower
// 64 bits of each vector register.
void push_call_clobbered_registers();
void pop_call_clobbered_registers();
// now mov instructions for loading absolute addresses and 32 or
// 64 bit integers
inline void mov(Register dst, address addr)
{
mov_immediate64(dst, (u_int64_t)addr);
}
inline void mov(Register dst, u_int64_t imm64)
{
mov_immediate64(dst, imm64);
}
inline void movw(Register dst, u_int32_t imm32)
{
mov_immediate32(dst, imm32);
}
inline void mov(Register dst, long l)
{
mov(dst, (u_int64_t)l);
}
inline void mov(Register dst, int i)
{
mov(dst, (long)i);
}
void mov(Register dst, RegisterOrConstant src) {
if (src.is_register())
mov(dst, src.as_register());
else
mov(dst, src.as_constant());
}
void movptr(Register r, uintptr_t imm64);
void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
orr(Vd, T, Vn, Vn);
}
public:
// Generalized Test Bit And Branch, including a "far" variety which
// spans more than 32KiB.
void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
assert(cond == EQ || cond == NE, "must be");
if (far)
cond = ~cond;
void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
if (cond == Assembler::EQ)
branch = &Assembler::tbz;
else
branch = &Assembler::tbnz;
if (far) {
Label L;
(this->*branch)(Rt, bitpos, L);
b(dest);
bind(L);
} else {
(this->*branch)(Rt, bitpos, dest);
}
}
// macro instructions for accessing and updating floating point
// status register
//
// FPSR : op1 == 011
// CRn == 0100
// CRm == 0100
// op2 == 001
inline void get_fpsr(Register reg)
{
mrs(0b11, 0b0100, 0b0100, 0b001, reg);
}
inline void set_fpsr(Register reg)
{
msr(0b011, 0b0100, 0b0100, 0b001, reg);
}
inline void clear_fpsr()
{
msr(0b011, 0b0100, 0b0100, 0b001, zr);
}
// DCZID_EL0: op1 == 011
// CRn == 0000
// CRm == 0000
// op2 == 111
inline void get_dczid_el0(Register reg)
{
mrs(0b011, 0b0000, 0b0000, 0b111, reg);
}
// CTR_EL0: op1 == 011
// CRn == 0000
// CRm == 0000
// op2 == 001
inline void get_ctr_el0(Register reg)
{
mrs(0b011, 0b0000, 0b0000, 0b001, reg);
}
// idiv variant which deals with MINLONG as dividend and -1 as divisor
int corrected_idivl(Register result, Register ra, Register rb,
bool want_remainder, Register tmp = rscratch1);
int corrected_idivq(Register result, Register ra, Register rb,
bool want_remainder, Register tmp = rscratch1);
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
virtual void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(intptr_t offset);
static address target_addr_for_insn(address insn_addr, unsigned insn);
static address target_addr_for_insn(address insn_addr) {
unsigned insn = *(unsigned*)insn_addr;
return target_addr_for_insn(insn_addr, insn);
}
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
static int pd_patch_instruction_size(address branch, address target);
static void pd_patch_instruction(address branch, address target) {
pd_patch_instruction_size(branch, target);
}
static address pd_call_destination(address branch) {
return target_addr_for_insn(branch);
}
#ifndef PRODUCT
static void pd_print_patched_instruction(address branch);
#endif
static int patch_oop(address insn_addr, address o);
static int patch_narrow_klass(address insn_addr, narrowKlass n);
address emit_trampoline_stub(int insts_call_instruction_offset, address target);
// The following 4 methods return the offset of the appropriate move instruction
// Support for fast byte/short loading with zero extension (depending on particular CPU)
int load_unsigned_byte(Register dst, Address src);
int load_unsigned_short(Register dst, Address src);
// Support for fast byte/short loading with sign extension (depending on particular CPU)
int load_signed_byte(Register dst, Address src);
int load_signed_short(Register dst, Address src);
int load_signed_byte32(Register dst, Address src);
int load_signed_short32(Register dst, Address src);
// Support for sign-extension (hi:lo = extend_sign(lo))
void extend_sign(Register hi, Register lo);
// Load and store values by size and signed-ness
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
// Support for inc/dec with optimal instruction selection depending on value
// x86_64 aliases an unqualified register/address increment and
// decrement to call incrementq and decrementq but also supports
// explicitly sized calls to incrementq/decrementq or
// incrementl/decrementl
// for aarch64 the proper convention would be to use
// increment/decrement for 64 bit operatons and
// incrementw/decrementw for 32 bit operations. so when porting
// x86_64 code we can leave calls to increment/decrement as is,
// replace incrementq/decrementq with increment/decrement and
// replace incrementl/decrementl with incrementw/decrementw.
// n.b. increment/decrement calls with an Address destination will
// need to use a scratch register to load the value to be
// incremented. increment/decrement calls which add or subtract a
// constant value greater than 2^12 will need to use a 2nd scratch
// register to hold the constant. so, a register increment/decrement
// may trash rscratch2 and an address increment/decrement trash
// rscratch and rscratch2
void decrementw(Address dst, int value = 1);
void decrementw(Register reg, int value = 1);
void decrement(Register reg, int value = 1);
void decrement(Address dst, int value = 1);
void incrementw(Address dst, int value = 1);
void incrementw(Register reg, int value = 1);
void increment(Register reg, int value = 1);
void increment(Address dst, int value = 1);
// Alignment
void align(int modulus);
// Stack frame creation/removal
void enter()
{
stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
mov(rfp, sp);
}
void leave()
{
mov(sp, rfp);
ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
}
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
// The pointer will be loaded into the thread register.
void get_thread(Register thread);
// Support for VM calls
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
void call_VM(Register oop_result,
address entry_point,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
// Overloadings with last_Java_sp
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments = 0,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, bool
check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
void get_vm_result (Register oop_result, Register thread);
void get_vm_result_2(Register metadata_result, Register thread);
// These always tightly bind to MacroAssembler::call_VM_base
// bypassing the virtual implementation
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
void call_VM_leaf(address entry_point,
int number_of_arguments = 0);
void call_VM_leaf(address entry_point,
Register arg_1);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2, Register arg_3);
// These always tightly bind to MacroAssembler::call_VM_leaf_base
// bypassing the virtual implementation
void super_call_VM_leaf(address entry_point);
void super_call_VM_leaf(address entry_point, Register arg_1);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
// last Java Frame (fills frame anchor)
void set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc,
Register scratch);
void set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
Label &last_java_pc,
Register scratch);
void set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
Register last_java_pc,
Register scratch);
void reset_last_Java_frame(Register thread);
// thread in the default location (rthread)
void reset_last_Java_frame(bool clear_fp);
// Stores
void store_check(Register obj); // store check for obj - register is destroyed afterwards
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
#if INCLUDE_ALL_GCS
void g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call);
void g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2);
#endif // INCLUDE_ALL_GCS
// oop manipulations
void load_klass(Register dst, Register src);
void store_klass(Register dst, Register src);
void cmp_klass(Register oop, Register trial_klass, Register tmp);
void load_mirror(Register dst, Register method);
void load_heap_oop(Register dst, Address src);
void load_heap_oop_not_null(Register dst, Address src);
void store_heap_oop(Address dst, Register src);
// currently unimplemented
// Used for storing NULL. All other oop constants should be
// stored using routines that take a jobject.
void store_heap_oop_null(Address dst);
void load_prototype_header(Register dst, Register src);
void store_klass_gap(Register dst, Register src);
// This dummy is to prevent a call to store_heap_oop from
// converting a zero (like NULL) into a Register by giving
// the compiler two choices it can't resolve
void store_heap_oop(Address dst, void* dummy);
void encode_heap_oop(Register d, Register s);
void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
void decode_heap_oop(Register d, Register s);
void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
void set_narrow_oop(Register dst, jobject obj);
void encode_klass_not_null(Register r);
void decode_klass_not_null(Register r);
void encode_klass_not_null(Register dst, Register src);
void decode_klass_not_null(Register dst, Register src);
void set_narrow_klass(Register dst, Klass* k);
// if heap base register is used - reinit it with the correct value
void reinit_heapbase();
DEBUG_ONLY(void verify_heapbase(const char* msg);)
void push_CPU_state(bool save_vectors = false);
void pop_CPU_state(bool restore_vectors = false) ;
// Round up to a power of two
void round_to(Register reg, int modulus);
// allocation
void eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
void zero_memory(Register addr, Register len, Register t1);
void verify_tlab();
void incr_allocated_bytes(Register thread,
Register var_size_in_bytes, int con_size_in_bytes,
Register t1 = noreg);
// interface method calling
void lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& no_such_interface);
// virtual method calling
// n.b. x86 allows RegisterOrConstant for vtable_index
void lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be NULL, meaning take the fall-through.
// If super_check_offset is -1, the value is loaded up from super_klass.
// No registers are killed, except temp_reg.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
// The temp_reg and temp2_reg can be noreg, if no temps are available.
// Updates the sub's secondary super cache as necessary.
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
void check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes = false);
// Simplified, combined version, good for typical uses.
// Falls through on failure.
void check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success);
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
// Debugging
// only if +VerifyOops
void verify_oop(Register reg, const char* s = "broken oop");
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
// TODO: verify method and klass metadata (compare against vptr?)
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
// only if +VerifyFPU
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
// prints msg, dumps registers and stops execution
void stop(const char* msg);
// prints msg and continues
void warn(const char* msg);
static void debug64(char* msg, int64_t pc, int64_t regs[]);
void untested() { stop("untested"); }
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
void should_not_reach_here() { stop("should not reach here"); }
// Stack overflow checking
void bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
mov(rscratch2, -offset);
str(zr, Address(sp, rscratch2));
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. Also, clobbers tmp
void bang_stack_size(Register size, Register tmp);
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset);
// Support for serializing memory accesses between threads
void serialize_memory(Register thread, Register tmp);
// Arithmetics
void addptr(const Address &dst, int32_t src);
void cmpptr(Register src1, Address src2);
// Various forms of CAS
void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
Label &suceed, Label *fail);
void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
Label &suceed, Label *fail);
void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
void atomic_xchg(Register prev, Register newv, Register addr);
void atomic_xchgw(Register prev, Register newv, Register addr);
void atomic_xchgal(Register prev, Register newv, Register addr);
void atomic_xchgalw(Register prev, Register newv, Register addr);
void orptr(Address adr, RegisterOrConstant src) {
ldr(rscratch2, adr);
if (src.is_register())
orr(rscratch2, rscratch2, src.as_register());
else
orr(rscratch2, rscratch2, src.as_constant());
str(rscratch2, adr);
}
// A generic CAS; success or failure is in the EQ flag.
// Clobbers rscratch1
void cmpxchg(Register addr, Register expected, Register new_val,
enum operand_size size,
bool acquire, bool release, bool weak,
Register result);
// Calls
address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
static bool far_branches() {
return ReservedCodeCacheSize > branch_range;
}
// Jumps that can reach anywhere in the code cache.
// Trashes tmp.
void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
static int far_branch_size() {
if (far_branches()) {
return 3 * 4; // adrp, add, br
} else {
return 4;
}
}
// Emit the CompiledIC call idiom
address ic_call(address entry, jint method_index = 0);
public:
// Data
void mov_metadata(Register dst, Metadata* obj);
Address allocate_metadata_address(Metadata* obj);
Address constant_oop_address(jobject obj);
void movoop(Register dst, jobject obj, bool immediate = false);
// CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
void kernel_crc32(Register crc, Register buf, Register len,
Register table0, Register table1, Register table2, Register table3,
Register tmp, Register tmp2, Register tmp3);
// CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
void kernel_crc32c(Register crc, Register buf, Register len,
Register table0, Register table1, Register table2, Register table3,
Register tmp, Register tmp2, Register tmp3);
// Stack push and pop individual 64 bit registers
void push(Register src);
void pop(Register dst);
// push all registers onto the stack
void pusha();
void popa();
void repne_scan(Register addr, Register value, Register count,
Register scratch);
void repne_scanw(Register addr, Register value, Register count,
Register scratch);
typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
// If a constant does not fit in an immediate field, generate some
// number of MOV instructions and then perform the operation
void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
add_sub_imm_insn insn1,
add_sub_reg_insn insn2);
// Seperate vsn which sets the flags
void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
add_sub_imm_insn insn1,
add_sub_reg_insn insn2);
#define WRAP(INSN) \
void INSN(Register Rd, Register Rn, unsigned imm) { \
wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
} \
\
void INSN(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind, unsigned shift = 0) { \
Assembler::INSN(Rd, Rn, Rm, kind, shift); \
} \
\
void INSN(Register Rd, Register Rn, Register Rm) { \
Assembler::INSN(Rd, Rn, Rm); \
} \
\
void INSN(Register Rd, Register Rn, Register Rm, \
ext::operation option, int amount = 0) { \
Assembler::INSN(Rd, Rn, Rm, option, amount); \
}
WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
#undef WRAP
#define WRAP(INSN) \
void INSN(Register Rd, Register Rn, unsigned imm) { \
wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
} \
\
void INSN(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind, unsigned shift = 0) { \
Assembler::INSN(Rd, Rn, Rm, kind, shift); \
} \
\
void INSN(Register Rd, Register Rn, Register Rm) { \
Assembler::INSN(Rd, Rn, Rm); \
} \
\
void INSN(Register Rd, Register Rn, Register Rm, \
ext::operation option, int amount = 0) { \
Assembler::INSN(Rd, Rn, Rm, option, amount); \
}
WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
void add(Register Rd, Register Rn, RegisterOrConstant increment);
void addw(Register Rd, Register Rn, RegisterOrConstant increment);
void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
void tableswitch(Register index, jint lowbound, jint highbound,
Label &jumptable, Label &jumptable_end, int stride = 1) {
adr(rscratch1, jumptable);
subsw(rscratch2, index, lowbound);
subsw(zr, rscratch2, highbound - lowbound);
br(Assembler::HS, jumptable_end);
add(rscratch1, rscratch1, rscratch2,
ext::sxtw, exact_log2(stride * Assembler::instruction_size));
br(rscratch1);
}
// Form an address from base + offset in Rd. Rd may or may not
// actually be used: you must use the Address that is returned. It
// is up to you to ensure that the shift provided matches the size
// of your data.
Address form_address(Register Rd, Register base, long byte_offset, int shift);
// Return true iff an address is within the 48-bit AArch64 address
// space.
bool is_valid_AArch64_address(address a) {
return ((uint64_t)a >> 48) == 0;
}
// Load the base of the cardtable byte map into reg.
void load_byte_map_base(Register reg);
// Prolog generator routines to support switch between x86 code and
// generated ARM code
// routine to generate an x86 prolog for a stub function which
// bootstraps into the generated ARM code which directly follows the
// stub
//
public:
// enum used for aarch64--x86 linkage to define return type of x86 function
enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
#ifdef BUILTIN_SIM
void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
#else
void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
#endif
// special version of call_VM_leaf_base needed for aarch64 simulator
// where we need to specify both the gp and fp arg counts and the
// return type so that the linkage routine from aarch64 to x86 and
// back knows which aarch64 registers to copy to x86 registers and
// which x86 result register to copy back to an aarch64 register
void call_VM_leaf_base1(
address entry_point, // the entry point
int number_of_gp_arguments, // the number of gp reg arguments to pass
int number_of_fp_arguments, // the number of fp reg arguments to pass
ret_type type, // the return type for the call
Label* retaddr = NULL
);
void ldr_constant(Register dest, const Address &const_addr) {
if (NearCpool) {
ldr(dest, const_addr);
} else {
unsigned long offset;
adrp(dest, InternalAddress(const_addr.target()), offset);
ldr(dest, Address(dest, offset));
}
}
address read_polling_page(Register r, address page, relocInfo::relocType rtype);
address read_polling_page(Register r, relocInfo::relocType rtype);
// CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
void update_byte_crc32(Register crc, Register val, Register table);
void update_word_crc32(Register crc, Register v, Register tmp,
Register table0, Register table1, Register table2, Register table3,
bool upper = false);
void string_compare(Register str1, Register str2,
Register cnt1, Register cnt2, Register result,
Register tmp1,
FloatRegister vtmp, FloatRegister vtmpZ, int ae);
void arrays_equals(Register a1, Register a2,
Register result, Register cnt1,
int elem_size, bool is_string);
void fill_words(Register base, Register cnt, Register value);
void zero_words(Register base, u_int64_t cnt);
void zero_words(Register base, Register cnt);
void block_zero(Register base, Register cnt, bool is_large = false);
void byte_array_inflate(Register src, Register dst, Register len,
FloatRegister vtmp1, FloatRegister vtmp2,
FloatRegister vtmp3, Register tmp4);
void char_array_compress(Register src, Register dst, Register len,
FloatRegister tmp1Reg, FloatRegister tmp2Reg,
FloatRegister tmp3Reg, FloatRegister tmp4Reg,
Register result);
void encode_iso_array(Register src, Register dst,
Register len, Register result,
FloatRegister Vtmp1, FloatRegister Vtmp2,
FloatRegister Vtmp3, FloatRegister Vtmp4);
void string_indexof(Register str1, Register str2,
Register cnt1, Register cnt2,
Register tmp1, Register tmp2,
Register tmp3, Register tmp4,
int int_cnt1, Register result, int ae);
void string_indexof_char(Register str1, Register cnt1,
Register ch, Register result,
Register tmp1, Register tmp2, Register tmp3);
private:
void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
Register src1, Register src2);
void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
}
void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
Register y, Register y_idx, Register z,
Register carry, Register product,
Register idx, Register kdx);
void multiply_128_x_128_loop(Register y, Register z,
Register carry, Register carry2,
Register idx, Register jdx,
Register yz_idx1, Register yz_idx2,
Register tmp, Register tmp3, Register tmp4,
Register tmp7, Register product_hi);
public:
void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
Register zlen, Register tmp1, Register tmp2, Register tmp3,
Register tmp4, Register tmp5, Register tmp6, Register tmp7);
// ISB may be needed because of a safepoint
void maybe_isb() { isb(); }
private:
// Return the effective address r + (r1 << ext) + offset.
// Uses rscratch2.
Address offsetted_address(Register r, Register r1, Address::extend ext,
int offset, int size);
private:
// Returns an address on the stack which is reachable with a ldr/str of size
// Uses rscratch2 if the address is not directly reachable
Address spill_address(int size, int offset, Register tmp=rscratch2);
public:
void spill(Register Rx, bool is64, int offset) {
if (is64) {
str(Rx, spill_address(8, offset));
} else {
strw(Rx, spill_address(4, offset));
}
}
void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
str(Vx, T, spill_address(1 << (int)T, offset));
}
void unspill(Register Rx, bool is64, int offset) {
if (is64) {
ldr(Rx, spill_address(8, offset));
} else {
ldrw(Rx, spill_address(4, offset));
}
}
void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
ldr(Vx, T, spill_address(1 << (int)T, offset));
}
void spill_copy128(int src_offset, int dst_offset,
Register tmp1=rscratch1, Register tmp2=rscratch2) {
if (src_offset < 512 && (src_offset & 7) == 0 &&
dst_offset < 512 && (dst_offset & 7) == 0) {
ldp(tmp1, tmp2, Address(sp, src_offset));
stp(tmp1, tmp2, Address(sp, dst_offset));
} else {
unspill(tmp1, true, src_offset);
spill(tmp1, true, dst_offset);
unspill(tmp1, true, src_offset+8);
spill(tmp1, true, dst_offset+8);
}
}
};
#ifdef ASSERT
inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
#endif
/**
* class SkipIfEqual:
*
* Instantiating this class will result in assembly code being output that will
* jump around any code emitted between the creation of the instance and it's
* automatic destruction at the end of a scope block, depending on the value of
* the flag passed to the constructor, which will be checked at run-time.
*/
class SkipIfEqual {
private:
MacroAssembler* _masm;
Label _label;
public:
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
~SkipIfEqual();
};
struct tableswitch {
Register _reg;
int _insn_index; jint _first_key; jint _last_key;
Label _after;
Label _branches;
};
#endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP