8171244: PPC64: Make interpreter's math entries consistent with C1 and C2 and support FMA
Reviewed-by: kvn, goetz
/*
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include <stdlib.h>
#include "decode_aarch64.hpp"
#include "immediate_aarch64.hpp"
// there are at most 2^13 possible logical immediate encodings
// however, some combinations of immr and imms are invalid
static const unsigned LI_TABLE_SIZE = (1 << 13);
static int li_table_entry_count;
// for forward lookup we just use a direct array lookup
// and assume that the cient has supplied a valid encoding
// table[encoding] = immediate
static u_int64_t LITable[LI_TABLE_SIZE];
// for reverse lookup we need a sparse map so we store a table of
// immediate and encoding pairs sorted by immediate value
struct li_pair {
u_int64_t immediate;
u_int32_t encoding;
};
static struct li_pair InverseLITable[LI_TABLE_SIZE];
// comparator to sort entries in the inverse table
int compare_immediate_pair(const void *i1, const void *i2)
{
struct li_pair *li1 = (struct li_pair *)i1;
struct li_pair *li2 = (struct li_pair *)i2;
if (li1->immediate < li2->immediate) {
return -1;
}
if (li1->immediate > li2->immediate) {
return 1;
}
return 0;
}
// helper functions used by expandLogicalImmediate
// for i = 1, ... N result<i-1> = 1 other bits are zero
static inline u_int64_t ones(int N)
{
return (N == 64 ? (u_int64_t)-1UL : ((1UL << N) - 1));
}
// result<0> to val<N>
static inline u_int64_t pickbit(u_int64_t val, int N)
{
return pickbits64(val, N, N);
}
// SPEC bits(M*N) Replicate(bits(M) x, integer N);
// this is just an educated guess
u_int64_t replicate(u_int64_t bits, int nbits, int count)
{
u_int64_t result = 0;
// nbits may be 64 in which case we want mask to be -1
u_int64_t mask = ones(nbits);
for (int i = 0; i < count ; i++) {
result <<= nbits;
result |= (bits & mask);
}
return result;
}
// this function writes the supplied bimm reference and returns a
// boolean to indicate success (1) or fail (0) because an illegal
// encoding must be treated as an UNALLOC instruction
// construct a 32 bit immediate value for a logical immediate operation
int expandLogicalImmediate(u_int32_t immN, u_int32_t immr,
u_int32_t imms, u_int64_t &bimm)
{
int len; // ought to be <= 6
u_int32_t levels; // 6 bits
u_int32_t tmask_and; // 6 bits
u_int32_t wmask_and; // 6 bits
u_int32_t tmask_or; // 6 bits
u_int32_t wmask_or; // 6 bits
u_int64_t imm64; // 64 bits
u_int64_t tmask, wmask; // 64 bits
u_int32_t S, R, diff; // 6 bits?
if (immN == 1) {
len = 6; // looks like 7 given the spec above but this cannot be!
} else {
len = 0;
u_int32_t val = (~imms & 0x3f);
for (int i = 5; i > 0; i--) {
if (val & (1 << i)) {
len = i;
break;
}
}
if (len < 1) {
return 0;
}
// for valid inputs leading 1s in immr must be less than leading
// zeros in imms
int len2 = 0; // ought to be < len
u_int32_t val2 = (~immr & 0x3f);
for (int i = 5; i > 0; i--) {
if (!(val2 & (1 << i))) {
len2 = i;
break;
}
}
if (len2 >= len) {
return 0;
}
}
levels = (1 << len) - 1;
if ((imms & levels) == levels) {
return 0;
}
S = imms & levels;
R = immr & levels;
// 6 bit arithmetic!
diff = S - R;
tmask_and = (diff | ~levels) & 0x3f;
tmask_or = (diff & levels) & 0x3f;
tmask = 0xffffffffffffffffULL;
for (int i = 0; i < 6; i++) {
int nbits = 1 << i;
u_int64_t and_bit = pickbit(tmask_and, i);
u_int64_t or_bit = pickbit(tmask_or, i);
u_int64_t and_bits_sub = replicate(and_bit, 1, nbits);
u_int64_t or_bits_sub = replicate(or_bit, 1, nbits);
u_int64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
u_int64_t or_bits_top = (0 << nbits) | or_bits_sub;
tmask = ((tmask
& (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
| replicate(or_bits_top, 2 * nbits, 32 / nbits));
}
wmask_and = (immr | ~levels) & 0x3f;
wmask_or = (immr & levels) & 0x3f;
wmask = 0;
for (int i = 0; i < 6; i++) {
int nbits = 1 << i;
u_int64_t and_bit = pickbit(wmask_and, i);
u_int64_t or_bit = pickbit(wmask_or, i);
u_int64_t and_bits_sub = replicate(and_bit, 1, nbits);
u_int64_t or_bits_sub = replicate(or_bit, 1, nbits);
u_int64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
u_int64_t or_bits_top = (or_bits_sub << nbits) | 0;
wmask = ((wmask
& (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
| replicate(or_bits_top, 2 * nbits, 32 / nbits));
}
if (diff & (1U << 6)) {
imm64 = tmask & wmask;
} else {
imm64 = tmask | wmask;
}
bimm = imm64;
return 1;
}
// constructor to initialise the lookup tables
static void initLITables() __attribute__ ((constructor));
static void initLITables()
{
li_table_entry_count = 0;
for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
u_int32_t N = uimm(index, 12, 12);
u_int32_t immr = uimm(index, 11, 6);
u_int32_t imms = uimm(index, 5, 0);
if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
InverseLITable[li_table_entry_count].immediate = LITable[index];
InverseLITable[li_table_entry_count].encoding = index;
li_table_entry_count++;
}
}
// now sort the inverse table
qsort(InverseLITable, li_table_entry_count,
sizeof(InverseLITable[0]), compare_immediate_pair);
}
// public APIs provided for logical immediate lookup and reverse lookup
u_int64_t logical_immediate_for_encoding(u_int32_t encoding)
{
return LITable[encoding];
}
u_int32_t encoding_for_logical_immediate(u_int64_t immediate)
{
struct li_pair pair;
struct li_pair *result;
pair.immediate = immediate;
result = (struct li_pair *)
bsearch(&pair, InverseLITable, li_table_entry_count,
sizeof(InverseLITable[0]), compare_immediate_pair);
if (result) {
return result->encoding;
}
return 0xffffffff;
}
// floating point immediates are encoded in 8 bits
// fpimm[7] = sign bit
// fpimm[6:4] = signed exponent
// fpimm[3:0] = fraction (assuming leading 1)
// i.e. F = s * 1.f * 2^(e - b)
u_int64_t fp_immediate_for_encoding(u_int32_t imm8, int is_dp)
{
union {
float fpval;
double dpval;
u_int64_t val;
};
u_int32_t s, e, f;
s = (imm8 >> 7 ) & 0x1;
e = (imm8 >> 4) & 0x7;
f = imm8 & 0xf;
// the fp value is s * n/16 * 2r where n is 16+e
fpval = (16.0 + f) / 16.0;
// n.b. exponent is signed
if (e < 4) {
int epos = e;
for (int i = 0; i <= epos; i++) {
fpval *= 2.0;
}
} else {
int eneg = 7 - e;
for (int i = 0; i < eneg; i++) {
fpval /= 2.0;
}
}
if (s) {
fpval = -fpval;
}
if (is_dp) {
dpval = (double)fpval;
}
return val;
}
u_int32_t encoding_for_fp_immediate(float immediate)
{
// given a float which is of the form
//
// s * n/16 * 2r
//
// where n is 16+f and imm1:s, imm4:f, simm3:r
// return the imm8 result [s:r:f]
//
union {
float fpval;
u_int32_t val;
};
fpval = immediate;
u_int32_t s, r, f, res;
// sign bit is 31
s = (val >> 31) & 0x1;
// exponent is bits 30-23 but we only want the bottom 3 bits
// strictly we ought to check that the bits bits 30-25 are
// either all 1s or all 0s
r = (val >> 23) & 0x7;
// fraction is bits 22-0
f = (val >> 19) & 0xf;
res = (s << 7) | (r << 4) | f;
return res;
}