8171244: PPC64: Make interpreter's math entries consistent with C1 and C2 and support FMA
Reviewed-by: kvn, goetz
/*
* Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_LIR.hpp"
#include "runtime/sharedRuntime.hpp"
#include "vmreg_aarch64.inline.hpp"
LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
LIR_Opr opr = LIR_OprFact::illegalOpr;
VMReg r_1 = reg->first();
VMReg r_2 = reg->second();
if (r_1->is_stack()) {
// Convert stack slot to an SP offset
// The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
// so we must add it in here.
int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
opr = LIR_OprFact::address(new LIR_Address(sp_opr, st_off, type));
} else if (r_1->is_Register()) {
Register reg = r_1->as_Register();
if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
Register reg2 = r_2->as_Register();
assert(reg2 == reg, "must be same register");
opr = as_long_opr(reg);
} else if (type == T_OBJECT || type == T_ARRAY) {
opr = as_oop_opr(reg);
} else if (type == T_METADATA) {
opr = as_metadata_opr(reg);
} else {
opr = as_opr(reg);
}
} else if (r_1->is_FloatRegister()) {
assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
int num = r_1->as_FloatRegister()->encoding();
if (type == T_FLOAT) {
opr = LIR_OprFact::single_fpu(num);
} else {
opr = LIR_OprFact::double_fpu(num);
}
} else {
ShouldNotReachHere();
}
return opr;
}
LIR_Opr FrameMap::r0_opr;
LIR_Opr FrameMap::r1_opr;
LIR_Opr FrameMap::r2_opr;
LIR_Opr FrameMap::r3_opr;
LIR_Opr FrameMap::r4_opr;
LIR_Opr FrameMap::r5_opr;
LIR_Opr FrameMap::r6_opr;
LIR_Opr FrameMap::r7_opr;
LIR_Opr FrameMap::r8_opr;
LIR_Opr FrameMap::r9_opr;
LIR_Opr FrameMap::r10_opr;
LIR_Opr FrameMap::r11_opr;
LIR_Opr FrameMap::r12_opr;
LIR_Opr FrameMap::r13_opr;
LIR_Opr FrameMap::r14_opr;
LIR_Opr FrameMap::r15_opr;
LIR_Opr FrameMap::r16_opr;
LIR_Opr FrameMap::r17_opr;
LIR_Opr FrameMap::r18_opr;
LIR_Opr FrameMap::r19_opr;
LIR_Opr FrameMap::r20_opr;
LIR_Opr FrameMap::r21_opr;
LIR_Opr FrameMap::r22_opr;
LIR_Opr FrameMap::r23_opr;
LIR_Opr FrameMap::r24_opr;
LIR_Opr FrameMap::r25_opr;
LIR_Opr FrameMap::r26_opr;
LIR_Opr FrameMap::r27_opr;
LIR_Opr FrameMap::r28_opr;
LIR_Opr FrameMap::r29_opr;
LIR_Opr FrameMap::r30_opr;
LIR_Opr FrameMap::rfp_opr;
LIR_Opr FrameMap::sp_opr;
LIR_Opr FrameMap::receiver_opr;
LIR_Opr FrameMap::r0_oop_opr;
LIR_Opr FrameMap::r1_oop_opr;
LIR_Opr FrameMap::r2_oop_opr;
LIR_Opr FrameMap::r3_oop_opr;
LIR_Opr FrameMap::r4_oop_opr;
LIR_Opr FrameMap::r5_oop_opr;
LIR_Opr FrameMap::r6_oop_opr;
LIR_Opr FrameMap::r7_oop_opr;
LIR_Opr FrameMap::r8_oop_opr;
LIR_Opr FrameMap::r9_oop_opr;
LIR_Opr FrameMap::r10_oop_opr;
LIR_Opr FrameMap::r11_oop_opr;
LIR_Opr FrameMap::r12_oop_opr;
LIR_Opr FrameMap::r13_oop_opr;
LIR_Opr FrameMap::r14_oop_opr;
LIR_Opr FrameMap::r15_oop_opr;
LIR_Opr FrameMap::r16_oop_opr;
LIR_Opr FrameMap::r17_oop_opr;
LIR_Opr FrameMap::r18_oop_opr;
LIR_Opr FrameMap::r19_oop_opr;
LIR_Opr FrameMap::r20_oop_opr;
LIR_Opr FrameMap::r21_oop_opr;
LIR_Opr FrameMap::r22_oop_opr;
LIR_Opr FrameMap::r23_oop_opr;
LIR_Opr FrameMap::r24_oop_opr;
LIR_Opr FrameMap::r25_oop_opr;
LIR_Opr FrameMap::r26_oop_opr;
LIR_Opr FrameMap::r27_oop_opr;
LIR_Opr FrameMap::r28_oop_opr;
LIR_Opr FrameMap::r29_oop_opr;
LIR_Opr FrameMap::r30_oop_opr;
LIR_Opr FrameMap::rscratch1_opr;
LIR_Opr FrameMap::rscratch2_opr;
LIR_Opr FrameMap::rscratch1_long_opr;
LIR_Opr FrameMap::rscratch2_long_opr;
LIR_Opr FrameMap::r0_metadata_opr;
LIR_Opr FrameMap::r1_metadata_opr;
LIR_Opr FrameMap::r2_metadata_opr;
LIR_Opr FrameMap::r3_metadata_opr;
LIR_Opr FrameMap::r4_metadata_opr;
LIR_Opr FrameMap::r5_metadata_opr;
LIR_Opr FrameMap::long0_opr;
LIR_Opr FrameMap::long1_opr;
LIR_Opr FrameMap::fpu0_float_opr;
LIR_Opr FrameMap::fpu0_double_opr;
LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
//--------------------------------------------------------
// FrameMap
//--------------------------------------------------------
void FrameMap::initialize() {
assert(!_init_done, "once");
int i=0;
map_register(i, r0); r0_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r1); r1_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r2); r2_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r3); r3_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r4); r4_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r5); r5_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r6); r6_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r7); r7_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r10); r10_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r11); r11_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r12); r12_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r13); r13_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r14); r14_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r15); r15_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r16); r16_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r17); r17_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r18); r18_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r19); r19_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r20); r20_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r21); r21_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r22); r22_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r23); r23_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r24); r24_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r25); r25_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r26); r26_opr = LIR_OprFact::single_cpu(i); i++;
map_register(i, r27); r27_opr = LIR_OprFact::single_cpu(i); i++; // rheapbase
map_register(i, r28); r28_opr = LIR_OprFact::single_cpu(i); i++; // rthread
map_register(i, r29); r29_opr = LIR_OprFact::single_cpu(i); i++; // rfp
map_register(i, r30); r30_opr = LIR_OprFact::single_cpu(i); i++; // lr
map_register(i, r31_sp); sp_opr = LIR_OprFact::single_cpu(i); i++; // sp
map_register(i, r8); r8_opr = LIR_OprFact::single_cpu(i); i++; // rscratch1
map_register(i, r9); r9_opr = LIR_OprFact::single_cpu(i); i++; // rscratch2
rscratch1_opr = r8_opr;
rscratch2_opr = r9_opr;
rscratch1_long_opr = LIR_OprFact::double_cpu(r8_opr->cpu_regnr(), r8_opr->cpu_regnr());
rscratch2_long_opr = LIR_OprFact::double_cpu(r9_opr->cpu_regnr(), r9_opr->cpu_regnr());
long0_opr = LIR_OprFact::double_cpu(0, 0);
long1_opr = LIR_OprFact::double_cpu(1, 1);
fpu0_float_opr = LIR_OprFact::single_fpu(0);
fpu0_double_opr = LIR_OprFact::double_fpu(0);
_caller_save_cpu_regs[0] = r0_opr;
_caller_save_cpu_regs[1] = r1_opr;
_caller_save_cpu_regs[2] = r2_opr;
_caller_save_cpu_regs[3] = r3_opr;
_caller_save_cpu_regs[4] = r4_opr;
_caller_save_cpu_regs[5] = r5_opr;
_caller_save_cpu_regs[6] = r6_opr;
_caller_save_cpu_regs[7] = r7_opr;
// rscratch1, rscratch 2 not included
_caller_save_cpu_regs[8] = r10_opr;
_caller_save_cpu_regs[9] = r11_opr;
_caller_save_cpu_regs[10] = r12_opr;
_caller_save_cpu_regs[11] = r13_opr;
_caller_save_cpu_regs[12] = r14_opr;
_caller_save_cpu_regs[13] = r15_opr;
_caller_save_cpu_regs[14] = r16_opr;
_caller_save_cpu_regs[15] = r17_opr;
_caller_save_cpu_regs[16] = r18_opr;
for (int i = 0; i < 8; i++) {
_caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
}
_init_done = true;
r0_oop_opr = as_oop_opr(r0);
r1_oop_opr = as_oop_opr(r1);
r2_oop_opr = as_oop_opr(r2);
r3_oop_opr = as_oop_opr(r3);
r4_oop_opr = as_oop_opr(r4);
r5_oop_opr = as_oop_opr(r5);
r6_oop_opr = as_oop_opr(r6);
r7_oop_opr = as_oop_opr(r7);
r8_oop_opr = as_oop_opr(r8);
r9_oop_opr = as_oop_opr(r9);
r10_oop_opr = as_oop_opr(r10);
r11_oop_opr = as_oop_opr(r11);
r12_oop_opr = as_oop_opr(r12);
r13_oop_opr = as_oop_opr(r13);
r14_oop_opr = as_oop_opr(r14);
r15_oop_opr = as_oop_opr(r15);
r16_oop_opr = as_oop_opr(r16);
r17_oop_opr = as_oop_opr(r17);
r18_oop_opr = as_oop_opr(r18);
r19_oop_opr = as_oop_opr(r19);
r20_oop_opr = as_oop_opr(r20);
r21_oop_opr = as_oop_opr(r21);
r22_oop_opr = as_oop_opr(r22);
r23_oop_opr = as_oop_opr(r23);
r24_oop_opr = as_oop_opr(r24);
r25_oop_opr = as_oop_opr(r25);
r26_oop_opr = as_oop_opr(r26);
r27_oop_opr = as_oop_opr(r27);
r28_oop_opr = as_oop_opr(r28);
r29_oop_opr = as_oop_opr(r29);
r30_oop_opr = as_oop_opr(r30);
r0_metadata_opr = as_metadata_opr(r0);
r1_metadata_opr = as_metadata_opr(r1);
r2_metadata_opr = as_metadata_opr(r2);
r3_metadata_opr = as_metadata_opr(r3);
r4_metadata_opr = as_metadata_opr(r4);
r5_metadata_opr = as_metadata_opr(r5);
sp_opr = as_pointer_opr(r31_sp);
rfp_opr = as_pointer_opr(rfp);
VMRegPair regs;
BasicType sig_bt = T_OBJECT;
SharedRuntime::java_calling_convention(&sig_bt, ®s, 1, true);
receiver_opr = as_oop_opr(regs.first()->as_Register());
for (int i = 0; i < nof_caller_save_fpu_regs; i++) {
_caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
}
}
Address FrameMap::make_new_address(ByteSize sp_offset) const {
// for rbp, based address use this:
// return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4);
return Address(sp, in_bytes(sp_offset));
}
// ----------------mapping-----------------------
// all mapping is based on rfp addressing, except for simple leaf methods where we access
// the locals sp based (and no frame is built)
// Frame for simple leaf methods (quick entries)
//
// +----------+
// | ret addr | <- TOS
// +----------+
// | args |
// | ...... |
// Frame for standard methods
//
// | .........| <- TOS
// | locals |
// +----------+
// | old fp, | <- RFP
// +----------+
// | ret addr |
// +----------+
// | args |
// | .........|
// For OopMaps, map a local variable or spill index to an VMRegImpl name.
// This is the offset from sp() in the frame of the slot for the index,
// skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
//
// framesize +
// stack0 stack0 0 <- VMReg
// | | <registers> |
// ...........|..............|.............|
// 0 1 2 3 x x 4 5 6 ... | <- local indices
// ^ ^ sp() ( x x indicate link
// | | and return addr)
// arguments non-argument locals
VMReg FrameMap::fpu_regname (int n) {
// Return the OptoReg name for the fpu stack slot "n"
// A spilled fpu stack slot comprises to two single-word OptoReg's.
return as_FloatRegister(n)->as_VMReg();
}
LIR_Opr FrameMap::stack_pointer() {
return FrameMap::sp_opr;
}
// JSR 292
LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() {
return LIR_OprFact::illegalOpr; // Not needed on aarch64
}
bool FrameMap::validate_frame() {
return true;
}